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Abstract

In this paper, we derive some subordination and superordination results for certain
subclasses of p— valent analytic functions that defined by generalized Fox-wright
functions using the principle of differential subordination, ---------- producing best
dominant univalent solutions. We have also derived inclusion relations and solved
majorization problem.
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1.Introduction

Let A ={w€eC:|w|< 1} be the open unit disk in the complex plane C, and p = (4) is
the class of analytic functions defined in A . For a positive integer n and a €C, let 4 [a , n] =
{fen: flw)=a+anw™ + any 0™+ 3, with pg = p0,1] ,p = p[L,1].
Miller and Mocanu [1] assumed that f and g are functions of « . The function f is said to
be subordinate to g , written f < g or f(w) < g(w) , if there exists a Schwarz function w(w)

*Email: kasimmathphd@gmail.com
675



Mahmood et al. Iragi Journal of Science, 2022, Vol. 63, No. 2, pp: 675-682

analytic in A, with w(0)= 0 and |w(w)| < 1 such that f(w) = g (W(w)), (w EA) .In
particular , if the function g is univalent in A , then f < g if and only if f(0) = g(0) and
f(A) cg(D).
Lety : C3 xA— C,and his univalentin A.If f is analytic in A and satisfies the ( second
—order) differential subordination

v(f (@), of (), 0’ f (w); w) < h(w) (1.1)
thenf is called a solution of the differential subordination . The univalent functiong is called a
dominant of the solutions of the differential subordination , or more simply dominant if f<q
for all f satisfying (1.1) A dominant gthat satisfies g<gfor all dominants q of (1.1) is said to
be the best dominant of (1.1) .
Definition1.1: For the parameters a;,b; € cand 4;,B,€R(i=12,...,p; j = 1,2,...,9),

with % 0,-1,-2,...,(i = 1,2...,p)and  2:#0,-1,-2,...,( = 1,2,...,q), the
i ]

generalized Fox-Wright function , ¥, is defined by
(ai;Ai)l'p ((ll,Al), ...... (ap,Aq)

b: B . = Pl‘Uq i -
( ) ')l,ql w (Bl,bl),.......,(bq,Bq), w

. ]'[lel“(aﬁnAi) n

P=O T, (b8, @ (1.2
for suitable bounded values ofw € ¢, where I is the Gamma function. For more details see
[2-5].
Remarkl.1:
1. According to [6]. If Z?lej- —YP ,4; > —1, then the power series of (1.2) converges
absolutely on C and the above defined function ¥, is an entire function. If Z;LlBj -
l_[;‘I=1|BJ'|B].
M7 141
2If4;, = (i=1.2,..... ,p)and B; = 1(j = 1,2, ...., q), one can find as the relationship [7]

Ay, s Gy (@i, D1 Ay, sy
Q (bl, ...,bq>' p¥a (bj, 1)1q; wl|l P Fq (bl, wrbg; a))’
ay, e,y _ ) ) _
where ,F, (51, o by; a)) is the generalized hypergeometric function [4] , and

4 l}lq

leAl- = —1 ,then the power series of (1.2) converges absolutely on the disk|w| <

aww%)_maﬂﬁ (1.3)

Q=Q (bl, b)) = T T

3.Forp=1,q= 1,4, = 1and B; = 1, the Fox-Wright defined function , ¥, reduces to

w EA.

(@, 1)14 o Ta+n)
11{,1 w

CRVY TLTGnM,””

4. With the parameters values a =1and b =a> 0 (b = a) , the function ;¥; represents
the classical Mittag-Leffler function for example see [8]. Moreover ¥ is a special case of
the Fox’s $-function 3;;" [3].

Use the generalized hypergeometric function , the authors [9] introduced a linear operator
which was subsequently extended in [7] by using the Fox-Wright generalized hypergeometric
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function. Let

(apA)1p _ L
) : Jp — Lp be a linear operator which is defined by
(bj’Bj)llq

(a;, 4; )1p (a;, 4; )1p
l lf(w) = @pfa| (5, B), l*f(w)-
Note that for f(w) of the form (1.l)and, ¢, = Q,¥, , tone can obtain that
(auA )
%\(5,.3, )1p]f<w> = 0 + L7 6,(a1)a, 0" (14)
1q

where 8,,(a;)is given by

6}2 (ai) =

and Q is given by (1.3).
For convenience propose the contracted notation @(q;) f (w) can be represented as follows:
0@ =0 (A ) (L.5)
a; w) = w .
l (B, b1y, on vee) (bq,Bq)
From the equation (1.4) one can get the recursive relation that involves the operator

0(a)f (w)

Qr(ay + (2 — DAy) ... T (ap + (2 — 1)4,)
r,+ @m—18)...I(by + (2 —1)B,)

4,;0(0(a)f (@) = a;0(a; + 1)f (@) — (a; — 4)0(a)f (@) (1.6)

Note that there are several interesting operators that are special cases of the linear operator
(1.4). They have been extensively studied by researchers in [10-15], Hohlov operator and
others. For more details see[16-18].
In order to prove the main results, we need the following definitions and theorem.
Definition 1.7.[19] The set of all function g hat, which is denoted by Q, are analytic and
injective on A\E(q), where

E(q) ={¢ € 9 A:lim,_; q(w) = x},

(1.7)

such that q'(&) # 0 for & € 8 A\E(q) , Furthermore let (a), Q(0)=Q,and Q(1) = Q,
such that q(0) = a.
Definition 1.8[19]. Let Q be a subsetof C ,q € Q and nis a positive integer. The class of
admissible functions {1, q] consists function y:C3xA —C that satisfies the admissibility
condition:

v(r,§,v;w,8) ¢ 10,
whenever

r=q(8, = kéq'(é) and
t el
R{s+1}2 kiR{ @+1} (1.8)

where w € A,E€0 A\E(q) and k >n. We write y,[0,q] = y[,q]. In addition if
w €A, €0 Aand b =n =1, then in particular we write y, 12,91 = v[2,q].
Theorem 1.1[19].Let ¥ € y [2,q], with (0)=a . If the analytic functionF €
pla, n]satisfies ¥ (g (w), wg'(w), w?g (w); w) € Q, then F(w) < q(w).
1. Main Results
Definition 2.1: LetQ be a subset of C withgeQon H,. The class of admissible functions

@, [Q,q] consists of those functions @:C3x A x A— Cwhich satisfies the admissibility
condition:
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O(u,v,w;w, &) & Q, (2.1)
where
kA:Ea' (&) — (A: — a:
u = q(g), = lgq (5) a( ! az)Q(@ ,(ai € C\Za , i * 0),
and
m{wai(ai + 1) - ai(Zai - 2Al + 1)17 + (AL - ai)zu} > KR {é:(’]”(g) n 1}’
Ai(aiv + (4; — apu) q(9
(2.2)
w EA,{ €9 A\E(q),EA and k > 1.
Theorem 2.1: Let @ € @, [Q, q]. If f € £ satisfies
{p(0(a)f(w)),0(a; + Df(w),0(a; + 2)f (w); w EA}cQ (2.3)
0(a)f (w) < q(w).
Proof: From equation (1.6) we have
A;0(0(a)f(®) = a;0(a; + 1f (@) — (a; — 4)0(a;) f (w)
Which is equivalent to
A;w(0(a; + (a; — A4;)0(q;
6a; + 1)f (@) = i0(0(a) f (w)) a(al DO (a)f (@) 2.4)
i
Now assume that F(w) = 0(q;)f(w), then
A;wF'(w) + (a; — A)F
0(a; + Df () = 2D 3 0 2 1)T(0)
L
Therefore,
0(a; + 2)f (o) = AizwzF”(w)+Ai(2ai—Ai+t)icg;i—(:)))+(ai—Ai)(ai—Ai—1)F(w) 2.5)
and from equation ( 2.4), we have
(@((li n 1)f((1))) _ Ain”(wj:aiF'(w) (26)
So that
0(a; + 2)f (w)
1 |40 (Ain”(a)) + aiF'(w))
T (a; + 1)
A;wF ' (2) + (a; — A)F (w)
+(Cll+1—Al)< (al+1)
_APw?F () + 4;2a; + 1 — 4)wF (2) + (4; — @) (4; — a; — D)F (w)
N ai(ai + 1)
Letu —r v = AiS—(Al‘—ai)’l" ’ w = A t+Al‘(2ai+1—Ai)5+(Ai—ai)(Ai—ai—1)4"
aj ai(ai+1)
(2.7)
and
let y(r,8,tw d=0uv,ww =
Ai§—(4j—ap)r Ai2t+Ai(Zai+1—Ai)5+(Ai—ai)(Ai—ai—1)4"_
1) (r, , ) o ,w). (2.8)

So that byaéquation (2.4) and (2.5) , we obtain
y(F(0), wF (@), 0*F"(0); @, 8 = @ ((O(ai)f (@)),0(a; + Df (0),0(a; +
Df@)w).  (29)
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by using equation (2.3), we get
Y(F(w), oF (w), w?*F"(w); w, &) € Q. (2.10)
We also use the following equation
B A2 w*F " (w) + 4;2a; + 1 — 4)wF (2) + (4; — a;)(4; — a; — 1)F (w)
W= aj(a; +1) ’

and by simple calculations we get

a)ai(al- + 1) - ai(Zai - ZAL + 1)17 + (Al - Cli)z’l«l/ _ i 41 (211)

4i(av + (4; — apu) S
We note that the admissibility condition for @ € @, [€, q] is equivalent to the admissibility
condition for y , then F(w)<q(w).
Example 2.1. Let the class of ®,,[Q,q] consists of those functions @:C3x A— C that
satisfies the admissibility condition:
Aikéq (O + (4 —
o= Aikea (D + Ui —a)a())
a;
WEA, (EOA\Eq ,andm >p. ] €l)p satisfies S(i'j)"”f(w) c Q,then
(6(a)f (@) < q(w)

We consider the special situation when Q # C is a simply connected domain. Now if we
assume that Q # C be a simply connected , so that Q = h(A) for some conformal mapping
h of Aonto Q. The next result is an abrupt outcome of Theorem 2.1.

Theorem2.2 :Let @ € @ [h, q].If f € £ satisfies

0 ((0@a)f (@), 0(a; + 1)f(w),0(a; + 2); 0 €A) < h(w), (2.12)
Then
0(a)f (w) < q(o).
The next result is an extension of Theorem (2.1) to the case where the behavior of g on A is
not known.

Corollary 2.1.Let QcC, g be univalent in A and q(0)=0.Let @ € ®;[Q, q,] for some p €
(0,1), where g,(w) = q(pw). If f € Lpsatisfies

0 ((0(a)f (), 0(a; + Df (), 0(a; +2); 0 €A) €, (2.13)
Then
(6(a)f(@)) < q(w).
Proof. From Theorem 2.1,we have (O(ai)f(a))), < qp(w) .
Theorem 2.3. Let h and g are univalent .Also ,q(0)=0,q,(w) = q(pw) and h,(w) = h(pw).
Let @: C3x A x A >C satisfies one of the following conditions:
(1) @ € @[, q,]for some p € (0,1) or
(2) There exists p, € (0,1) such that @ € ®y[h,, q,] forall p € (p,, 1).
If f € Dp satisfies (2.12), then
(6(a)f(®)) < q(w).
Proof:Case (1): By using Theorem (2.1) , we get (6 (a,)f ()), < q,(w). Since q,(w) <
q(w), we deduce
(0(a)f (@) < q(w).
Case (2): Assume that F(w)=(0(a;)f (w)), and F,(w) = F(pw). So that
B(F, (0), wF; (0), w*Fy' (0); pw) = B(F (pw), poF' (pw), p*w?F" (pw); pw) € hy(A).
By using Theorem 2.1 with associated
O(F(w), wF' (w), w*F"(w); w(w)) € Q,where w is any function mapping from
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A onto A, withw(w)=pw, we obtain F,(w) < g,(w) for p € (py, 1).By letting p - 17,we
getF (w) < q(w).
Therefore

(0(a)f(w)) < q(w)
The next theorem gives the best dominant of the differential subordination (2.12).
Theorem2.4. Let h be univalent in A and let @: C3x A x A —C. Suppose that the differential
equation
¢ (q(w),
= h(w),

qa; a;(a; +1)

(2.14)
has a solution g with q(0)=0 and satisfies one of the following conditions:

(1) g€ Q, and @ € dy[h, q].
(2) q is univalentin A and @ € ®y[h, q,] for some p € (0,1), or
(3) g is univalent in A and there exists p, € (0,1) such that @ € ®y[h,,q,], forall p, €
(0,1).If f € Dp satisfies (2.12) , then (0 (a;)f (w)), < q(w) and g is the bestdominant.
Proof. By using Theorem 2.2 and Theorem 2.3 , we get that q is a dominant of (2.12). Since q
satisfies (2.14), it is also a solution of (2.12) and therefore g will be dominant by all
dominants of (2.12). Hence q is the best dominant of (2.12).
Definition 2.2.Let Q be a set in Cand M > 0.The class of admissible functions D, [Q, q]
consists of functions @: C3x A x A— C such that
< o Ak — (A —a))Me® AL+ [AkQa;— A+ 1) + (A — a)(A; — a; — D)]Me™ )
D Me'?, , ;W
a; a;(a; +1)
€0, (2.15)
Where 2>0,0 € R, R(Le") = k(k — 1)Mfor allreal k= 1,w EA.
Corollary 2.2: Let @ € @, [Q, M]. If f € Dp satisfies that
o ((@(ai) f(®),0(q; + 1)f (@), O(a; + 2); w) € Q, then 6(a,)f(w) < Mw.
Corollary 2.3: Let @ € @, [Q, M]. If f € Dp satisfies that
|(@(a)f(w)),0(a; + 1)f (w),6(a; + 2); w| < M, then |6(a) f(w)| <M
Corollary 2.4:LetM>0 ,qa; € c\z,,R (a;) = 0 and f € Dp satisfies the following inequality

|0(a; + 1)f(w)] < M,ithen |0(a; + 1)f(w)]| < M,w EA.
_ (Aik—(Ai—a)Me'?

Proof. From Corollary (2.2) one can take @(u,v,w,w,) = v -
Corollary 2.5.1f M>0 ,q; € c\z,, If f € Dp satisfies the following inequality
A; MA;
|0 + V(@) - (51 1) 0@ f @) < —
l l
then |0 (a;)f(w)| < M,,w EA.
Proof. Letd(u, v, w,w,) = v + (% - 1)u and Q = h(A) where h(w) = a"'w,M > 0.

From the corollary (1.3), it is enough to show that ¢ € ®,[Q, q] ,that means the admissibility
condition (1.6) is satisfied . Hence,

MA

Ajwq () + (A — a)q(w) A w?q" () +A;2a; + 1 —A)wq (@) + (A — a)(A; — a; — Dq(w)
, )

d) M i (Alk - (Al - (]l'))MeiH AizL + [Aik(Zai — Ai + 1) + (Al - qi)(Ai —Q; — 1)]M€l
e, )
. a; a;(a; +1)
- A;Me® Y
oa | el

Whenever w EA.60 € R,q; € c\zy,0; # —1 and k > 1.
Definition 2.3.Let Q be asetin C and g€ Q, N H,,. The class of admissible functions
@y 1[Q, q] consists of @: C*x A— C that satisfies
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o(u,v,w,w, 8 & Q,

whenever
1 kA&q'
u=q(dv= ot 1( qgé)(g) + aq;q(8 + 1) ,0; € c\z,
and
v+ D@+ Dw-—v)+w—-1) @(+1)—aqu@+1)—1)
{ Ai(v(ai + 1) —aq;u — 1) + Ai }
&q" ()
> k&R{ G + 1},

wWEA,{ €I A\E(q),k=1and aq; # —1.
Theorem 2.5. Let @ € ®y[h,q]. If f € Dp, O(a;)f(w) € Q, and

8 ((0a)f (@), 8(a; + Df (@), 6(a; +2); w)
is univalent inA,then
ac{o ((0€a)f(w)), 0(a; + 1f (@), 6(a; +2);w €A, &R )} which implies that
q(z) < 0(a)f(w).
Proof: By (11) and Qc{@ ((@(ai) f(@)),0(a; + Df(w),0(q; + 2); w EA, & ez),
we haveQc{y (F(w), oF'(w), w*F" (w); w, £); w EA, E EA)} .

from
AiS — (Al — (li)/l"
u=r ,v= )
a;
AP+ A Qe +1-A)S + (A —a)(A —a; — D7

ai(ai + 1)

we see that the admissibility for @ € ®';[Q, q] is equivalent to admissibility condition for .
Hence , v € W'[Q, q] and so we have q(z) < 0(a;)f (w).

The following Theorem is immediately consequence of Theorem(2.5).
Theorem?2.6. Let g€ u[0, p], h be analytic in A and® € ®[h, q]. If f (w) € Dp,

0(a;)f(w) € Qo

and

@ ((0Caf (), 0(a; + Df (), 0(a; +2); 0}
It is univalent in A, then

h(w) < {8 ((0(a)f(@)),0(a; + Df(@),0(a; + 2); 0}, (218)
which implies that q(w) < 0(q;) f (w).
Theorem 2.7. Let h be analytic in A and @: C3x A x A —C.Suppose that

Al w?q" (W) + A;(20; + 1 — ADwq' (w) \

o Ajwq' (w) + (A; — a)q(w) +(A; —a)(A —a; — Dg(w) _
kq(w)l ) (U)

qa; a;(a; +1) '

= h(w),
has a solution g€ Q, . If @ € ®y[h,q], f € Dp, O(a;)f(w) € Q, and
0{(0(a)f()),0(a; + 1)f(w),6(a; + 2); w} isunivalentin A, then
h(z) < 8 ((0(a)f (@), 6(a; + Df (@), 0(a; + 2w}, (219)
implies that q(z) < ©(q;)f(w), and q is the best dominant.
Proof:The proof of this Theorem is the same asthe proof Theorem (2.4).
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Theorem (2.2) and Theorem (2.6), we obtained the following Theorem.

Theorem 2.8 Suppose that h;and g, are analytic functions in A, and h, is a univalent
functions in A,q, € Q, with q;(0) = ¢,(0) =0 with @ € ®[h,, q,] N Di[hy, q1]-

If f€Dp,6(a)f(w) € u[0,p]NQy and

{0 ((@(ai)f(w)), O(q; + 1f(w),0(a; + 2); w} is univalent in A, then

hi(w) < @ ((O(Qi)f(w)),O(ai + Df (w),0(a; + 2); a)} < hy, (2.20)
And this implies that g;(w) < @(a;)f(w) < g, (w).
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