Mahmood et al.

Iraqi Journal of Science, 2022, *Vol. 63, No. 2, pp: 675-682* DOI: 10.24996/ijs.2022.63.2.24

ISSN: 0067-2904

Differential Subordination and Superordination for Multivalent Functions Associated with Generalized Fox-Wright Functions

Zainab H.Mahmood¹*, Kassim A. Jassim², Buthyna N.Shihab³

¹Department of Physical, College of Science, University of Baghdad, Baghdad, Iraq ²Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq ³Department of Mathematics, College of Education for Pure Science Ibn Al Haitham, University of Baghdad, Baghdad, Iraq

Received: 18/2/2021

Accepted: 22/4/2021

Abstract

In this paper, we derive some subordination and superordination results for certain subclasses of p- valent analytic functions that defined by generalized Fox-wright functions using the principle of differential subordination, ------producing best dominant univalent solutions. We have also derived inclusion relations and solved majorization problem.

Keywords: analytic function ,Univalent function , Multivalent function , Differential subordination, Fox-wright functions.

التابعية التفاضلية والتفاضلية العليا لدوال متعددة التكافؤ مرتبطة مع دوال Fox-Wright المعممة

 3 زينب هادي محمود $^{1^{*}}$, قاسم عبدالحميد جاسم 2 , بثينة نجاد شهاب

¹قسم الفيزياء , كلية العلوم , جامعة بغداد, بغداد, العراق

قسم الرياضيات , كلية العلوم , جامعة بغداد, بغداد, العراق

³قسم الرياضيات , كلية التربية ابن الهيثم للعلوم الصرفة , جامعة بغداد, بغداد, العراق

الخلاصة

في هذا البحث سوف نشتق بعض نتائج التابعية والتابعية العليا لاصناف جزئية حديثة لدوال تحليلية متعددة التكافؤ من النمط p معرفة بواسطـة دوال Fox- Wright المعممة باستخدام اساسيات التابعية التفاضلية ناتجة عن افضل الحلول المتكافئة المهيمنة .ايضا تم اشتقاق العلاقات الضمنية وحل مسالتها الخاصه.

1.Introduction

Let $\Delta = \{\omega \in \mathbb{C}: |\omega| < 1\}$ be the open unit disk in the complex plane \mathbb{C} , and $\mu = \mu(\Delta)$ is the class of analytic functions defined in Δ . For a positive integer *n* and a $\in \mathbb{C}$, let $\mu[a, n] =$ $\{f \in \mu : f(\omega) = a + a_n \omega^n + a_{n+1} \omega^{n+1} + \cdots \}$, with $\mu_0 = \mu[0,1], \mu = \mu[1,1]$. Miller and Mocanu [1] assumed that *f* and *g* are functions of μ . The function *f* is said to be subordinate to *g*, written f < g or $f(\omega) < g(\omega)$, if there exists a Schwarz function w(ω)

*Email: kasimmathphd@gmail.com

analytic in \triangle , with w(0)= 0 and $|w(\omega)| < 1$ such that $f(\omega) = g(w(\omega)), (\omega \in \triangle)$. In particular, if the function g is univalent in \triangle , then $f \prec g$ if and only if f(0) = g(0) and $f(\Delta) \subset g(\Delta).$

Let $\psi : \mathbb{C}^3 \times \Delta \to \mathbb{C}$ and h is univalent in Δ . If f is analytic in Δ and satisfies the (second -order) differential subordination

$$u(f(\omega), \omega f'(\omega), \omega^2 f''(\omega); \omega) \prec h(\omega)$$
(1.1)

then f is called a solution of the differential subordination. The univalent function g is called a dominant of the solutions of the differential subordination , or more simply dominant if f < qfor all f satisfying (1.1) A dominant \hat{q} that satisfies $\hat{q} \prec q$ for all dominants q of (1.1) is said to be the best dominant of (1.1).

Definition1.1: For the parameters $a_i, b_j \in \mathbb{C}$ and $A_i, B_j \in \mathcal{R}$ (i = 1, 2, ..., p; j = 1, 2, ..., q), $\frac{a_i}{A_i} \neq 0, -1, -2, \dots, (i = 1, 2, \dots, p)$ and $\frac{b_i}{B_j} \neq 0, -1, -2, \dots, (j = 1, 2, \dots, q),$ with the generalized Fox-Wright function ${}_{p}\Psi_{q}$ is defined by

$${}_{p}\Psi_{q}\begin{bmatrix} (a_{i};A_{i})_{1,p} \\ (b_{j},B_{j})_{1,q}; & \omega \end{bmatrix} \coloneqq {}_{p}\Psi_{q}\begin{bmatrix} (a_{1},A_{1}),\dots,(a_{p},A_{q}) \\ (B_{1},B_{1}),\dots,(b_{q},B_{q}); & \omega \end{bmatrix} = \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p}\Gamma(a_{i}+nA_{i})}{\prod_{j=1}^{q}\Gamma(b_{j}+nB_{j})(1)_{n}}\omega^{n}, \quad (1.2)$$

for suitable bounded values of $\omega \in \mathbb{C}$, where Γ is the Gamma function. For more details see [2-5].

Remark1.1:

1. According to [6]. If $\sum_{j=1}^{q} B_j - \sum_{i=1}^{p} A_i > -1$, then the power series of (1.2) converges absolutely on C and the above defined function ${}_{p}\Psi_{q}$ is an entire function. If $\sum_{i=1}^{q} B_{i}$ – $\sum_{i=1}^{p} A_i = -1 \text{, then the power series of (1.2) converges absolutely on the disk} |\omega| < \frac{\prod_{j=1}^{q} |B_j|^{B_j}}{\prod_{i=1}^{p} |A_i|^{A_i}}.$

2.If $A_i = (i = 1, 2, ..., p)$ and $B_j = 1 (j = 1, 2, ..., q)$, one can find as the relationship [7]

$$\Omega\begin{pmatrix}a_1,\dots,a_p\\b_1,\dots,b_q\end{pmatrix} \cdot {}_p \Psi_q \begin{bmatrix}(a_i,1)_{1,p}\\(b_j,1)_{1,q}; & \omega\end{bmatrix} = {}_p \mathcal{F}_q \begin{pmatrix}a_1,\dots,a_p\\b_1,\dots,b_q; & \omega\end{pmatrix},$$

where ${}_{p}\mathcal{F}_{q}\begin{pmatrix}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q};\omega\end{pmatrix}$ is the generalized hypergeometric function [4], and

$$\Omega = \Omega \begin{pmatrix} a_1, \dots, a_p \\ b_1, \dots, b_q \end{pmatrix} := \frac{\prod_{j=1}^q \Gamma(b_j)}{\prod_{i=1}^p \Gamma(a_i)}$$
(1.3)

3. For $p = 1, q = 1, A_1 = 1$ and $B_1 = 1$, the Fox-Wright defined function ${}_p\Psi_q$ reduces to

$${}_{1}\Psi_{1}\begin{bmatrix} (a,1)_{1,1} \\ (b,1)_{1,1}; & \omega \end{bmatrix} = \sum_{n=0}^{\infty} \frac{\Gamma(a+n)}{\Gamma(b+n)(1)_{n}} \omega^{n}, \omega \in \Delta.$$

4. With the parameters values a = 1 and b = a > 0 ($b \ge a$), the function $_{1}\Psi_{1}$ represents the classical Mittag-Leffler function for example see [8]. Moreover ${}_{p}\Psi_{q}$ is a special case of the Fox's \mathfrak{H} -function $\mathcal{H}_{k,l}^{m,n}$ [3].

Use the generalized hypergeometric function, the authors [9] introduced a linear operator which was subsequently extended in [7] by using the Fox-Wright generalized hypergeometric

Note that for $f(\omega)$ of the form (1.1) and $p\phi_q = \Omega_p \Psi_p$, t one can obtain that

$$\Theta\begin{bmatrix} (a_i, A_i)_{1,p} \\ (b_j, B_j)_{1,q} \end{bmatrix} f(\boldsymbol{\omega}) \coloneqq \boldsymbol{\omega} + \sum_{n=2}^{\infty} \boldsymbol{\delta}_n(a_1) a_n \boldsymbol{\omega}^n, \qquad (1.4)$$

where $\delta_n(a_i)$ is given by

$$\boldsymbol{\delta}_{n}(a_{i}) = \frac{\Omega\Gamma(a_{1} + (n-1)A_{1})\dots\Gamma(a_{p} + (n-1)A_{p})}{\Gamma(b_{1} + (n-1)B_{1})\dots\Gamma(b_{q} + (n-1)B_{q})}$$

and Ω is given by (1.3).

For convenience propose the contracted notation $\Theta(a_i)f(\boldsymbol{\omega})$ can be represented as follows:

$$\Theta(a_i)f(\boldsymbol{\omega}) = \boldsymbol{\Theta} \begin{bmatrix} (a_1, A_1), \dots, (a_p, A_q) \\ (B_1, B_1), \dots, (b_q, B_q) \end{bmatrix} f(\boldsymbol{\omega})$$
(1.5)

From the equation (1.4) one can get the recursive relation that involves the operator $\Theta(a_i)f(\boldsymbol{\omega})$

$$A_{i}\omega(\boldsymbol{\Theta}(a_{i})f(\boldsymbol{\omega}))' = a_{i}\boldsymbol{\Theta}(a_{i}+1)f(\boldsymbol{\omega}) - (a_{i}-A_{i})\boldsymbol{\Theta}(a_{i})f(\boldsymbol{\omega})$$
(1.6)

Note that there are several interesting operators that are special cases of the linear operator (1.4). They have been extensively studied by researchers in [10-15], Hohlov operator and others. For more details see[16-18].

In order to prove the main results, we need the following definitions and theorem.

Definition 1.7.[19] The set of all function q hat, which is denoted by Q, are analytic and injective on $\overline{\Delta} \setminus E(q)$, where

$$E(q) = \{\xi \in \partial \Delta : \lim_{\omega \to \xi} q(\omega) = \infty\},$$
(1.7)

such that $q'(\xi) \neq 0$ for $\xi \in \partial \triangle \setminus E(q)$, Furthermore let (a), $Q(0) \equiv Q_0$ and $Q(1) = Q_1$ such that q(0) = a.

Definition 1.8[19]. Let Ω be a subset of \mathbb{C} , $q \in Q$ and n is a positive integer. The class of admissible functions $\psi[\Omega, q]$ consists function $\psi:\mathbb{C}^3 \times \Delta \to \mathbb{C}$ that satisfies the admissibility condition:

$$\psi(r, \mathcal{S}, v; \omega, \xi) \notin \Omega,$$

$$r = q(\xi), \ \mathcal{S} = k\xi q'(\xi), \text{ and}$$

$$\Re\left\{\frac{t}{\mathcal{S}} + 1\right\} \ge k\Re\left\{\frac{\xi q''(\xi)}{q'(\xi)} + 1\right\},$$
(1.8)

where $\omega \in \Delta, \xi \in \partial \Delta \setminus E(q)$ and $k \ge n$. We write $\psi_1[\Omega, q] = \psi[\Omega, q]$. In addition if $\omega \in \Delta, \xi \in \partial \Delta$ and $b \ge n \ge 1$, then in particular we write $\psi_1[\Omega, q] = \psi[\Omega, q]$.

Theorem 1.1[19].Let $\Psi \in \psi_n[\Omega, q]$, with (0) = a. If the analytic function $F \in \mu[a, n]$ satisfies $\Psi(g(\omega), \omega g'(\omega), \omega^2 g''(\omega); \omega) \in \Omega$, then $F(\omega) \prec q(\omega)$.

1. Main Results

whenever

Definition 2.1: Let Ω be a subset of \mathbb{C} with $q \in Q_0 \cap \mathcal{H}_0$. The class of admissible functions $\Phi_k[\Omega, q]$ consists of those functions $\emptyset: \mathbb{C}^3 \times \Delta \times \overline{\Delta} \to \mathbb{C}$ which satisfies the admissibility condition:

where

$$\emptyset(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w};\boldsymbol{\omega},\boldsymbol{\xi})\notin\Omega,\tag{2.1}$$

$$u = q(\xi), \quad v = \frac{kA_i\xi q'(\xi) - (A_i - a_i)q(\xi)}{a_i} , (a_i \in \mathbb{C} \setminus \mathbb{Z}_0^-, a_i \neq 0),$$

and

$$\Re\left\{\frac{\omega a_{i}(a_{i}+1)-a_{i}(2a_{i}-2A_{i}+1)\nu+(A_{i}-a_{i})^{2}u}{A_{i}(a_{i}\nu+(A_{i}-a_{i})u)}\right\} \ge k\Re\left\{\frac{\xi q^{''(\xi)}}{q'(\xi)}+1\right\},$$
(2.2)

 $\omega \in \Delta, \zeta \in \partial \Delta \setminus E(q), \xi \in \Delta$ and $k \ge 1$. **Theorem 2.1:** Let $\emptyset \in \Phi_k[\Omega, q]$. If $f \in \mathcal{D}_{\varphi}$ satisfies

$$\{ \phi(\Theta(a_i)f(\omega)), \Theta(a_i+1)f(\omega), \Theta(a_i+2)f(\omega); \ \omega \in \Delta \} \subset \Omega$$

$$\Theta(a_i)f(\omega) \prec q(\omega).$$

$$(2.3)$$

Proof: From equation (1.6) we have

$$A_{i}\omega(\Theta(a_{i})f(\boldsymbol{\omega})) = a_{i}\Theta(a_{i}+1)f(\boldsymbol{\omega}) - (a_{i}-A_{i})\Theta(a_{i})f(\boldsymbol{\omega})$$

alent to

Which is equivalent to

$$\Theta(a_i+1)f(\boldsymbol{\omega}) = \frac{A_i \omega \big(\Theta(a_i)f(\boldsymbol{\omega})\big) + (a_i - A_i)\Theta(a_i)f(\boldsymbol{\omega})}{a_i}.$$
 (2.4)

Now assume that $F(\omega) = \Theta(a_i)f(\omega)$, then

$$\Theta(a_i+1)f(\boldsymbol{\omega}) = \frac{A_i\omega F'(\omega) + (a_i - A_i)F(\omega)}{a_i}$$

Therefore,

So that

$$\Theta(a_i + 2)f(\boldsymbol{\omega}) = \frac{A_i^2 \omega^2 F'(\boldsymbol{\omega}) + A_i(2a_i - A_i + 1)\omega F'(\boldsymbol{\omega}) + (a_i - A_i)(a_i - A_i - 1)F(\boldsymbol{\omega})}{a_i(a_i + 1)} \quad (2.5)$$

and from equation (2.4), we have

$$\left(\Theta(a_i+1)f(\boldsymbol{\omega})\right)' = \frac{A_i\omega F''(\omega) + a_i F'(\omega)}{a_i}$$
(2.6)

$$\begin{split} \theta(a_{i}+2)f(\boldsymbol{\omega}) &= \frac{1}{a_{i}} \left[\frac{A_{i}\omega \left(A_{i}\omega F''(\omega) + a_{i}F'(\omega) \right)}{(a_{i}+1)} \\ &+ \left(a_{i}+1 - A_{i} \right) \left(\frac{A_{i}\omega F'(z) + (a_{i} - A_{i})F(\omega)}{(a_{i}+1)} \right) \right] \\ &= \frac{A_{i}^{2}\omega^{2}F''(\omega) + A_{i}(2a_{i}+1 - A_{i})\omega F'(z) + (A_{i} - a_{i})(A_{i} - a_{i} - 1)F(\omega)}{a_{i}(a_{i}+1)} \\ Let \, \boldsymbol{u} = \boldsymbol{r}^{*} \quad, \boldsymbol{v} = \frac{A_{i}\delta^{-}(A_{i} - a_{i})\boldsymbol{r}}{a_{i}} , \quad \boldsymbol{w} = \frac{A_{i}^{2}t + A_{i}(2a_{i}+1 - A_{i})\delta + (A_{i} - a_{i})(A_{i} - a_{i} - 1)F(\omega)}{a_{i}(a_{i}+1)} \\ (2.7) \\ \text{and} \\ let \quad \boldsymbol{\psi}(\boldsymbol{r}, \boldsymbol{\delta}, t; \omega, \boldsymbol{\xi}) = \boldsymbol{\emptyset}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}; \omega, \boldsymbol{\xi}) = \\ \boldsymbol{\varphi}\left(\boldsymbol{r}, \frac{A_{i}\delta - (A_{i} - a_{i})\boldsymbol{r}}{a_{i}}, \frac{A_{i}^{2}t + A_{i}(2a_{i}+1 - A_{i})\delta + (A_{i} - a_{i})(A_{i} - a_{i} - 1)\boldsymbol{r}}{a_{i}(a_{i}+1)}; \omega \right). \\ \text{So that by equation} (2.4) \text{ and } (2.5), \text{ we obtain} \\ \boldsymbol{\psi}(F(\omega), \omega F'(\omega), \omega^{2}F''(\omega); \omega, \boldsymbol{\xi}) = \boldsymbol{\varphi}\left(\left(\boldsymbol{\theta}(a_{i})f(\omega)\right), \boldsymbol{\theta}(a_{i}+1)f(\omega), \boldsymbol{\theta}(a_{i}+2)f(\omega); \omega\right). \end{aligned}$$
(2.8)

by using equation (2.3), we get

$$\Psi(F(\omega), \omega F'(\omega), \omega^2 F''(\omega); \omega, \xi) \in \Omega.$$
(2.10)

We also use the following equation

$$w = \frac{A_i^2 \omega^2 F''(\omega) + A_i (2a_i + 1 - A_i) \omega F'(z) + (A_i - a_i)(A_i - a_i - 1)F(\omega)}{a_i(a_i + 1)},$$

and by simple calculations we get

$$\frac{\omega a_i(a_i+1) - a_i(2a_i - 2A_i + 1)v + (A_i - a_i)^2 u}{A_i(a_iv + (A_i - a_i)u)} = \frac{t}{S} + 1.$$
(2.11)

We note that the admissibility condition for $\emptyset \in \Phi_k[\Omega, q]$ is equivalent to the admissibility condition for ψ , then $F(\omega) \prec q(\omega)$.

Example 2.1. Let the class of $\Phi_{k\nu}[\Omega, q]$ consists of those functions $\emptyset: \mathbb{C}^3 \times \Delta \to \mathbb{C}$ that satisfies the admissibility condition:

$$\boldsymbol{\upsilon} = \frac{A_i k \xi q'(\xi) + (A_i - a_i) q(\xi)}{a_i} \notin \Omega$$

$$\boldsymbol{\omega} \in \Delta, \zeta \in \partial \Delta \setminus Eq, and m \ge p. \ I \in \mathcal{D}_{\rho} \text{ satisfies } \mathcal{S}_{0,\omega}^{\lambda,\mu,\eta} f(\omega) \subset \boldsymbol{\Omega}, \text{ then}$$

$$\left(\Theta(a_i) f(\omega) \right) < q(\omega)$$

We consider the special situation when $\Omega \neq \mathbb{C}$ is a simply connected domain. Now if we assume that $\Omega \neq \mathbb{C}$ be a simply connected, so that $\Omega = h(\Delta)$ for some conformal mapping h of Δ onto Ω . The next result is an abrupt outcome of Theorem 2.1.

Theorem2.2:Let $\emptyset \in \Phi_k[h, q]$.If $f \in \mathcal{D}_{\varphi}$ satisfies

$$\emptyset\Big(\big(\Theta(a_i)f(\omega)\big), \Theta(a_i+1)f(\omega), \Theta(a_i+2); \omega \in \Delta\Big) \prec h(\omega),$$
(2.12)

Then

$$\Theta(a_i)f(\omega) \prec q(\omega).$$

The next result is an extension of Theorem (2.1) to the case where the behavior of q on Δ is not known.

Corollary 2.1.Let $\Omega \subset \mathbb{C}$, q be univalent in Δ and q(0)=0.Let $\emptyset \in \Phi_k[\Omega, q_\rho]$ for some $\rho \in (0,1)$, where $q_\rho(\omega) = q(\rho\omega)$. If $f \in \mathcal{D}_{\rho}$ satisfies

$$\emptyset\left(\left(\Theta(a_i)f(\omega)\right), \Theta(a_i+1)f(\omega), \Theta(a_i+2); \omega \in \Delta\right) \in \Omega,$$
(2.13)

Then

 $(\Theta(a_i)f(\omega)) \prec q(\omega).$

Proof. From Theorem 2.1, we have $(\Theta(a_i)f(\omega))$, $\prec q_p(\omega)$.

Theorem 2.3. Let *h* and *q* are univalent .Also $,q(0)=0, q_{\rho}(\omega) = q(\rho\omega)$ and $h_{\rho}(\omega) = h(\rho\omega)$. Let $\emptyset: \mathbb{C}^3 \times \Delta \times \overline{\Delta} \to \mathbb{C}$ satisfies one of the following conditions:

(1) $\emptyset \in \Phi_k[\Omega, q_\rho]$ for some $\rho \in (0, 1)$ or

(2) There exists $\rho_0 \in (0,1)$ such that $\emptyset \in \Phi_k[h_\rho, q_\rho]$ for all $\rho \in (\rho_0, 1)$. If $f \in \mathcal{D}\rho$ satisfies (2.12), then

$$\left(\Theta(\mathfrak{a}_i)f(\omega)\right) \prec q(\omega)$$

Proof:Case (1): By using Theorem (2.1), we get $(\Theta(\mathfrak{a}_i)f(\omega)), \prec q_\rho(\omega)$. Since $q_\rho(\omega) \prec q(\omega)$, we deduce

 $(\Theta(\alpha_i)f(\omega)) \prec q(\omega).$ **Case (2):** Assume that $F(\omega) = (\Theta(\alpha_i)f(\omega))$, and $F_{\rho}(\omega) = F(\rho\omega)$. So that

 $\emptyset(F_{\rho}(\omega), \omega F'_{\rho}(\omega), \omega^2 F''_{\rho}(\omega); \rho \omega) = \emptyset(F(\rho \omega), \rho \omega F'(\rho \omega), \rho^2 \omega^2 F''(\rho \omega); \rho \omega) \in h_{\rho}(\Delta).$ By using Theorem 2.1 with associated

 $\phi(F(\omega), \omega F'(\omega), \omega^2 F''(\omega); w(\omega)) \in \Omega$, where *w* is any function mapping from

(2.14)

 \triangle onto \triangle , with $w(\omega) = \rho \omega$, we obtain $F_{\rho}(\omega) \prec q_{\rho}(\omega)$ for $\rho \in (\rho_0, 1)$. By letting $\rho \to 1^-$, we get $F(\omega) \prec q(\omega)$.

Therefore

$$(\Theta(\mathfrak{a}_i)f(\omega)) \prec q(\omega)$$

The next theorem gives the best dominant of the differential subordination (2.12). **Theorem2.4.** Let *h* be univalent in \triangle and let $\emptyset : \mathbb{C}^3 \times \triangle \times \overline{\triangle} \to \mathbb{C}$. Suppose that the differential equation

$$\emptyset \left(q(\omega), \frac{A_i \omega q'(\omega) + (A_i - \mathfrak{a}_i)q(\omega)}{\mathfrak{a}_i}, \frac{A_i^2 \omega^2 q''(\omega) + A_i(2\mathfrak{a}_i + 1 - A_i)\omega q'(\omega) + (A_i - \mathfrak{a}_i)(A_i - \mathfrak{a}_i - 1)q(\omega)}{\mathfrak{a}_i(\mathfrak{a}_i + 1)}; \omega \right)$$

= $h(\omega),$

has a solution q with q(0)=0 and satisfies one of the following conditions: (1) $q \in Q_0$ and $\emptyset \in \Phi_k[h, q]$.

(2) *q* is univalent in \triangle and $\emptyset \in \Phi_k[h, q_\rho]$ for some $\rho \in (0, 1)$, or

(3) *q* is univalent in \triangle and there exists $\rho_0 \in (0,1)$ such that $\emptyset \in \Phi_k[h_\rho, q_\rho]$, for all $\rho_0 \in (0,1)$. If $f \in D\rho$ satisfies (2.12), then $(\Theta(a_i)f(\omega)), \prec q(\omega)$ and *q* is the bestdominant.

Proof. By using Theorem 2.2 and Theorem 2.3, we get that q is a dominant of (2.12). Since q satisfies (2.14), it is also a solution of (2.12) and therefore q will be dominant by all dominants of (2.12). Hence q is the best dominant of (2.12).

Definition 2.2.Let Ω be a set in \mathbb{C} and M > 0. The class of admissible functions $\Phi_k[\Omega, q]$ consists of functions $\emptyset: \mathbb{C}^3 \times \Delta \times \overline{\Delta} \to \mathbb{C}$ such that

Where $\lambda > 0$, $\theta \in \mathcal{R}$, $\mathcal{R}(Le^{i\theta}) \ge k(k-1)M$ for all real $\theta, k \ge 1$, $\omega \in \Delta$. **Corollary 2.2:** Let $\emptyset \in \Phi_k[\Omega, M]$. If $f \in D\rho$ satisfies that

$$\emptyset\left(\left(\Theta(\mathfrak{a}_{i})f(\omega)\right), \Theta(\mathfrak{a}_{i}+1)f(\omega), \Theta(\mathfrak{a}_{i}+2); \omega\right) \in \Omega$$
, then $\Theta(\mathfrak{a}_{i})f(\omega) \prec M\omega$.

Corollary 2.3: Let $\phi \in \Phi_k[\Omega, M]$. If $f \in \mathcal{D}\rho$ satisfies that

 $\begin{aligned} \left| \left(\Theta(\mathfrak{a}_i) f(\omega) \right), \Theta(\mathfrak{a}_i + 1) f(\omega), \Theta(\mathfrak{a}_i + 2); \omega \right| &< M, \text{then } |\Theta(\mathfrak{a}_i) f(\omega)| < M \\ \text{Corollary 2.4:LetM} > 0, \mathfrak{a}_i \in \mathbb{C} \setminus \mathbb{Z}_0^-, \mathcal{R}(\mathfrak{a}_i) \ge 0 \text{ and } f \in \mathcal{D}\rho \text{ satisfies the following inequality} \\ \left| \Theta(\mathfrak{a}_i + 1) f(\omega) \right| &< M, \text{then } \left| \Theta(\mathfrak{a}_i + 1) f(\omega) \right| < M, \omega \in \Delta. \end{aligned}$

Proof. From Corollary (2.2) one can take $\phi(u, v, w, \omega,) = v = \frac{(A_i k - (A_i - a_i))Me^{i\theta}}{a_i}$ **Corollary 2.5.** If M > 0, $a_i \in \mathbb{C} \setminus \mathbb{Z}_0^-$, If $f \in \mathcal{D}\rho$ satisfies the following inequality

$$\left| \Theta(\mathfrak{a}_{i}+1)f(\omega) - \left(\frac{A_{i}}{\mathfrak{a}_{i}}-1\right) \Theta(\mathfrak{a}_{i})f(\omega) \right| < \frac{MA_{i}}{\mathfrak{a}_{i}}$$

then $|\Theta(\alpha_i)f(\omega)| < M$, $\omega \in \Delta$. Proof. Let $\emptyset(u, v, w, \omega,) = v + (\frac{A_i}{\alpha_i} - 1)u$ and $\Omega = h(\Delta)$ where $h(\omega) = \frac{MA_i}{\alpha_i}\omega$, M > 0. From the corollary (1.3), it is enough to show that $\phi \in \Phi_k[\Omega, q]$, that means the admissibility condition (1.6) is satisfied. Hence,

$$\begin{aligned} \left| \phi \left(Me^{i\theta}, \frac{(A_ik - (A_i - a_i))Me^{i\theta}}{a_i}, \frac{A_i^2L + [A_ik(2a_i - A_i + 1) + (A_i - a_i)(A_i - a_i - 1)]Me^{i\theta}}{a_i(a_i + 1)}; \omega \right) \right| \\ \geq \left| \frac{A_iMe^{i\theta}}{a_i} \right| \geq \frac{MA_i}{|a_i|} \end{aligned}$$

Whenever $\boldsymbol{\omega} \in \Delta$. $\theta \in \boldsymbol{\mathcal{R}}$, $a_i \in \mathbb{C} \setminus \mathbb{Z}_0^-$, $a_i \neq -1$ and $k \geq 1$.

Definition 2.3.Let Ω be a set in \mathbb{C} and $q \in Q_0 \cap \mathcal{H}_0$. The class of admissible functions $\Phi_{k,1}[\Omega, q]$ consists of $\emptyset: \mathbb{C}^3 \times \Delta \to \mathbb{C}$ that satisfies

 $\emptyset(u, v, w, \omega, \xi) \notin \Omega$,

whenever

$$u = q(\xi), v = \frac{1}{a_i + 1} \left(\frac{k A \xi q'(\xi)}{q(\xi)} + a_i q(\xi) + 1 \right), a_i \in \mathbb{C} \setminus \mathbb{Z}_0^-$$

and

$$\Re\left\{\frac{\nu(a_{i}+1)((a_{i}+1)(w-v)+w-1)}{A_{i}(\nu(a_{i}+1)-a_{i}u-1)}+\frac{(\nu(a_{i}+1)-a_{i}u(A_{i}+1)-1)}{A_{i}}\right\}$$

$$\geq k\Re\left\{\frac{\xi q''(\xi)}{q'(\xi)}+1\right\},$$

is univalent in \triangle ,then

 $\Omega \subset \left\{ \emptyset \left(\left(\Theta(\mathfrak{a}_i) f(\omega) \right), \Theta(\mathfrak{a}_i + 1) f(\omega), \Theta(\mathfrak{a}_i + 2); \omega \in \Delta, \xi \in \overline{\Delta} \right) \right\} \text{ which implies that}$ $q(z) \prec \Theta(\mathfrak{a}_i) f(\omega).$

Proof: By (11) and $\Omega \subset \{ \emptyset ((\Theta(\mathfrak{a}_i)f(\omega)), \Theta(\mathfrak{a}_i+1)f(\omega), \Theta(\mathfrak{a}_i+2); \omega \in \Delta, \xi \in \overline{\Delta}) \}$, we have $\Omega \subset \{ \psi(F(\omega), \omega F'(\omega), \omega^2 F''(\omega); \omega, \xi); \omega \in \Delta, \xi \in \overline{\Delta}) \}$. from

$$u = r , w = \frac{A_i S - (A_i - a_i)r}{a_i}, w$$
$$= \frac{A_i^2 t + A_i (2a_i + 1 - A_i)S + (A_i - a_i)(A_i - a_i - 1)r}{a_i(a_i + 1)}$$

we see that the admissibility for $\emptyset \in \Phi'_k[\Omega, q]$ is equivalent to admissibility condition for ψ . Hence, $\psi \in \Psi'[\Omega, q]$ and so we have $q(z) < \Theta(\alpha_i) f(\omega)$.

The following Theorem is immediately consequence of Theorem(2.5). **Theorem2.6.** Let $q \in \mu[0, p]$, h be analytic in \triangle and $\emptyset \in \Phi'_k[h, q]$. If $f(\omega) \in D\rho$, $\Theta(\mathfrak{a}_i)f(\omega) \in Q_0$

and

$$\{\emptyset((\theta(\mathfrak{a}_i)f(\omega)),\theta(\mathfrak{a}_i+1)f(\omega),\theta(\mathfrak{a}_i+2);\omega\}$$

It is univalent in \triangle , then

$$h(\omega) \prec \{ \emptyset \left(\left(\Theta(\mathfrak{a}_i) f(\omega) \right), \Theta(\mathfrak{a}_i + 1) f(\omega), \Theta(\mathfrak{a}_i + 2); \omega \right\}, \qquad (2.18)$$

which implies that $q(\omega) \prec \Theta(\mathfrak{a}_i) f(\omega)$.

Theorem 2.7. Let *h* be analytic in \triangle and $\emptyset: \mathbb{C}^3 \times \triangle \times \overline{\triangle} \rightarrow \mathbb{C}$. Suppose that

$$\emptyset\left(q(\omega),\frac{A_{i}\omega q'(\omega)+(A_{i}-a_{i})q(\omega)}{a_{i}},\frac{A_{i}^{2}\omega^{2}q''(\omega)+A_{i}(2a_{i}+1-A_{i})\omega q'(\omega)}{+(A_{i}-a_{i})(A_{i}-a_{i}-1)q(\omega)};\omega\right)$$

 $= h(\omega),$ has a solution $q \in Q_0$. If $\emptyset \in \Phi'_k[h, q]$, $f \in \mathcal{D}\rho$, $\Theta(\mathfrak{a}_i)f(\omega) \in Q_0$ and $\emptyset\{(\Theta(\mathfrak{a}_i)f(\omega)), \Theta(\mathfrak{a}_i+1)f(\omega), \Theta(\mathfrak{a}_i+2); \omega\}$ is univalent in \triangle , then $h(z) \prec \emptyset((\Theta(\mathfrak{a}_i)f(\omega)), \Theta(\mathfrak{a}_i+1)f(\omega), \Theta(\mathfrak{a}_i+2); \omega\},$ (2.19)

implies that $q(z) \prec \Theta(a_i) f(\omega)$, and q is the best dominant. **Proof:**The proof of this Theorem is the same as the proof Theorem (2.4). Theorem (2.2) and Theorem (2.6), we obtained the following Theorem. **Theorem 2.8** Suppose that h_1 and q_1 are analytic functions in \triangle , and h_2 is a univalent functions in $\triangle, q_2 \in Q_0$ with $q_1(0) = q_2(0) = 0$ with $\emptyset \in \Phi_k[h_2, q_2] \cap \Phi'_k[h_1, q_1]$. If $f \in \mathcal{D}\rho, \Theta(\mathfrak{a}_i) f(\omega) \in \mu[0, p] \cap Q_0$ and

 $\{ \phi ((\theta(\mathfrak{a}_i)f(\omega)), \theta(\mathfrak{a}_i+1)f(\omega), \theta(\mathfrak{a}_i+2); \omega \}$ is univalent in \triangle , then

$$h_1(\omega) \prec \emptyset\left(\left(\Theta(\mathfrak{a}_i)f(\omega)\right), \Theta(\mathfrak{a}_i+1)f(\omega), \Theta(\mathfrak{a}_i+2); \omega\right\} \prec h_2, (2.20)$$

And this implies that $q_1(\omega) \prec \Theta(\alpha_i) f(\omega) \prec q_2(\omega)$.

Reference

- [1] Miller S.S., and Mocanu P.T. "Differential subordinations: Theory and Applications", *Marcel Dekker Inc., New York, Basel*, 2000.
- [2] Srivastava, H., and M. Owa, S. "Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions", *Nagoya Math. J.*, vol. 106, pp. 1–28, 1987.
- [3] Srivastava H. M., and Monacha, H. L. "A treatise on generating functions", *Ellis Horwood Series: Mathematics and its Applications, Horwood, Chichester*, 1984.
- [4] Srivastava H M., and Karlsson P. W. "Multiple Gaussian hypergeometric series", *Ellis Horwood Series: Mathematics and its Applications, Horwood, Chichester*, 1985.
- [5] Srivastava. H. M., and Attiya A. "An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination", *Integral Transforms Spec. Funct*, vol. 18, no. 3, pp. 207–216, 2007.
- [6] Kilbas A. A., Saigo M., and Trujillo J. J. "On the generalized Wright function", *Fract. Calc. Appl. Anal.*, vol. 5, no. 4, pp. 437–460, 2002.
- [7] Dziok J., and Raina. R. K. "Families of analytic functions associated with the Wright generalized hypergeometric function", *Demonstratio Math.*, vol. 37, no. 3, pp. 533–542, 2004.
- [8] Erdelyi A et al. "Higher transcendental functions", McGraw-Hill, New York, vol. 3, 1956.
- [9] Dziok J., and Srivastava H. M. "Classes of analytic functions associated with the generalized hypergeometric function", *Appl. Math. Comput.*, vol. 103, 1–13, 1999.
- [10] Dziok J., and Raina R. K. "Certain subclasses of analytic functions associated with the generalized hypergeometric function", *Integral Transforms Spec. Funct.*, vol. 14, no. 1, pp. 7–18, 2003.
- [11] Carlson B. C., and Shaffer B. C. "Starlike and prestarlike hypergeometric functions", *SIAM J. Math. Anal.*, vol. 15, no. 4, pp. 737–745, 1984.
- [12] Ruscheweyh St. "New criteria for univalent functions", *Proc. Amer. Math. Soc.*, vol. 49, pp. 109–115, 1975.
- [13] Cho N. E., and Kim J. A. "Multiplier transformations and strongly close-to-convex functions", *Bull. Korean Math. Soc.*, vol. 40, no. 3, pp. 399–410, 2003.
- [14] Cho N. E., and Srivastava H. M. "Argument estimates of certain analytic functions defined by a class of multiplier transformations", *Math. Comput. Modelling*, vol. 37, no. 1-2, pp. 39–49, 2003.
- [15] Choi J. H., Saigo M., and Srivastava H. M. "Some inclusion properties of a certain family of integral operators", *J. Math. Anal. Appl.*, vol. 276, no. 1, pp. 432–445, 2003.
- [16] Dziok J., Raina R. K., and Srivastava H. M. "Some classes of analytic functions associated with operators on Hilbert space involving Wright's generalized hypergeometric function", *Proc. Jangjeon Math. Soc.*, vol. 7, no. 1, pp. 43–55, 2004.
- [17] Waggas Galib Atshan A. H. Majeed and Kassim A. Jassim. "On a new class of univalent functions with application of fractional calculus operators defined by hohlov operator", *Journal of Asian Scientific Research*, vol. 4,no.2, 99-111, 2014.
- [18] Rafid Habib Buti., and Kassim A. Jassim. "On A Class of W-Valent Functions With Two Fixed Points Involving Hypergeomatric Function with Generalization Integral Operator", *Iraqi Journal of Science*, Vol. 60, no.8, pp.1753-1759, 2019.
- [19] S. S. Miller and P. T. Mocanu, "Differential subordinations and univalent functions", *Michigan Math. J.* vol. 28, 157-171, 1981.