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Abstract  

    This paper discusses Ree–Eyring fluid’s peristaltic transport in a rotating frame 

and examines the impacts of Magnetohydrodynamics (MHD). The results deal with  

systematically (analytically) applying each of the governing equations of Ree–Eyring 

fluid, the axial and secondary velocities, flow rate due to auxiliary stream, and bolus. 

The effects of some distinctive variables, such as Hartman number, heat source/sink, 

and amplitude ratio, are taken under consideration and illustrated through graphs. 

Keywords: Rotating frame, Ree-Eyring fluid, Non-Newtonian fluid, Heat transfer, 

Magnetic field.  

 
    حداثيات مدورةإفي ل التمعجي لمائع    اقتنعلى ال  وتأثير المجال المغناطيديانتقال الحرارة  تحليل

ايرنك -من النمط ري       
 

 عبد الهاديأحمد مولود *, بتول علاء الموسوي 

 الخياضيات, كلية العلوم, جامعة بغجاد, بغجاد, العخاق
  الخلاصة 

يان مائع تم دراسة كيفية انتقال الحخارة وتأثيخ الجيناميكا المائية المغناطيسية على جخ  البحث هحا في       
و تحت تأثيخ بعض المعاملات وتسجيل النتائج المستحصلة وحسابها تحليليا  لانيوتوني في احجاثيات مجورة

.ماتيكايبخنامج ماث بواسظة     

1. Introduction 

       A non-Newtonian fluid is a fluid that is not subject to Newton’s laws of viscosity. It has become 

important in many researches. The viscosity (the gradual deformation by shear or tensile stresses) of 

non-Newtonian fluids is dependent on shear rate or shear rate history. In a Newtonian fluid, the 

relation between the shear stress and the shear rate is linear but, in a non-Newtonian fluid, this relation 

is different. For example, many salt solutions and molten polymers are non-Newtonian fluids. Here we 

studied the Ree-Eyring model [1, 2] because it is one of the important fluids that can be converted into 

a Newtonian fluid model for high and low shear rates. Ellahi et al. [3] studied the mathematical 

analysis of peristaltic transport of an Eyring- Powell fluid through a porous rectangular duct. 

MHD is the study of the behavior of electrically conductive fluids when exposed to a magnetic field, 

that is, the study of magnetic properties and the behavior of those fluids along with the changes that 

occur. Examples of this fluid include plasma, liquid minerals, and others. The set of equations 

describing MHD is a combination of the Navier-Stokes equations of fluid dynamics and Maxwell’s 

equations of electromagnetism. Solving these equations is achieved either analytically or numerically. 
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The rotation phenomenon has vast applications in cosmic and geophysical flows and helps to better 

comprehend galaxy formation and ocean circulation. Rotational diffusion accounts for nanoparticle 

orientation in fluids. The following is a review of studies that discuss the effects of rotation. Hayat and 

Zahir [4] presented heat transfer analysis on peristaltic transport of Ree- Eyring fluid in rotating frame. 

Safa and Abdulhadi [5] performed unsteady heat transfer analysis on MHD flow of a second grade 

fluid in a channel with porous medium. Farah and Abdulhadi [6] analyzed the effect of inclined 

magnetic field on peristaltic flow of Bingham plastic fluid in an inclined symmetric channel with slip 

conditions. Khan et al. [7] studied the entropy generation in radiative flow of Ree-Eyring fluid due to 

due rotating disks. Wissam and Dheia [8] presented the influence of heat transfer on magneto 

hydrodynamics oscillatory flow for Williamson fluid through a porous medium. There have also been 

other attempts to study MHD [9-11]. 

   The aim of the present investigation is to examine the peristaltic transport of Ree-Eyring liquid in a 

rotating frame, taking into consideration the convective condition. It is worth specifying that such 

examination for Ree-Eyring liquid is critical for different applications in biomedicine and designing. 
For further clarification, this article is organized into Section 2 that presents the physical modeling 

statement for our problem. The axial velocity, secondary velocity, temperature, and stream function 

are interpreted for relevant parameters and analyzed through graphs in Section 4. Finally, conclusions 

are given in Section 5. 

 
                                                   Figure -1 Geometry graph of the flow. 

 

2. Mathematical formulation 

     Let us consider an incompressible Ree–Eyring fluid material through a channel of width (    ). 

The fluid is electrically conducting by an external magnetic field, B = (0, 0,   ), that is applied to it. 

Both the channel and fluid rotate with a uniform angular velocity  ̅ about the  ̆-axis, as shown in 

Figure-1. Mathematical expression for wave propagation along the walls of the channel at  ̆    ̆    

can be written as: 
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     in which  ̆   ̆  are the upper and lower wall, respectively,     are the amplitudes of the waves 

along the lower and upper walls, respectively,    the phase difference, and    is the non- uniform 

parameter. 

     The governing equations of continuity and energy and the momentum equation for incompressible, 

irrotational, laminar flow can be written as [12] 
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     where   , c ,  ̆ ,   ,    ,    ,    ,  ̆,  , and 
 

  ̆
   represent the wavelength, constant speed, time of the 

wave, fluid density, specific heat, thermal conductivity, heat source/sink, modified pressure, electric 

conductivity, and material time derivative, respectively. 

     The stress tensor of Ree–Eyring fluid model is defined as [13] 
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     where µ is the fluid dynamic viscosity,   and   are material constants, and  ̆ ̆  ( ̆  ̆  ̆) and  ̆ ̆  

( ̆  ̆  ̆)  Hence, the conditions are: 
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     in which  ̆  and    indicate the heat transfer coefficient and temperature at walls, respectively. 

Then, by using the wave frame transformations and conditions (9- 12), Eqs. (3)- (7) become: 
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     It is worth noting the definitions of the non-dimensional quantities [14], which are:  
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     where the  terms   ,  ,   ,  ,   ,    ,  ,   ,   ,   , and    represent the Reynolds number, 

kinematic viscosity, Taylor number, fluid parameter, Brinkman number, Prandtl number, heat 

source/sink parameter, amplitude ratio parameters, Biot number, and Hartman number, respectively. 

Now, if we use Eq. (18) and the facts of              into Eqs. (13)- (17), the following 

dimensionless equations are obtained: 
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     The dimensionless form of the boundary and boundary conditions are  
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     Eqs. (19) and (20) and the secondary flow pressure due to the rotational effect were neglected, and 

then we get: 
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3. Solutions of the problem 

     This section reviews the results of velocities, temperature, and stream function analytically. Eqs. 
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help of MATHEMATICA programming software. The solution is found in the form: 
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      Where,   ,           are constants which are found by using the boundary conditions below. 
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4. Results and Discussion 
     We demonstarte Figures- 2- 21 to monitor the resulting effects when changing the parameter values 

on the axial   and secondary   velocities as well as    against Hartmann parameter ( ), fluid 

parameter ( ), Taylor number (  ), the amplitude parameters (  ,   ), phase differences ( ), Biot 

number (  ), heat source/sink parameter ( )  and Brinkman number (  ).  
4.1. The Axial Velocity Distribution 𝒖 

      Figure- 2 shows that   is enhanced in the left side of the channel, but it is decayed in its right side 

when    increases. The same outcomes are observed for the fluid parameter  , as noted in Figure- 3. 

One can observe from Figure- 4 that when   increased, this will lead to the emergence of a force 

called “Lorentz force” due to the influence of the magnetic field exerted on the flow of the fluid. Thus, 

a resistance against the flow will be created, resulting in a diminishing   in the left side, which has an 

increasing value in the right side. In Figure- 5, we can notice that we get the same results as in the 

previous figure for  . 
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Figure 2- The axial velocity’s diversity for    

when 

  = 0.05,  = 4,   = 0.07,   = 
  

 
 ,    = 3,    = 

1.5,   = 0.5,    = 0.2,   = 0.1. 

 
Figure 3- The axial velocity’s diversity for   

when 

   = 0.4,   = 4,   = 0.07,   = 
  

 
 ,    = 3,    = 

1.5,   = 0.5,    = 0.2,   = 0.1.  

Figure 4- The axial velocity’s diversity for   

when 

   = 0.4,   = 0.5,   = 0.07,   = 
  

 
 ,    = 3,    

= 1.5,   =  0.5,   = 0.2,   = 0.1. 

 

 
Figure 5- The axial velocity’s diversity for   

when 

   = 0.4,   = 0.5,   = 4,   = 
  

 
 ,    = 3,    = 

1.5,   =  0.5,   = 0.2,   = 0.1. 

4.2. The Secondary Velocity Distribution   

      Figure- 6 shows that if   is increased, it leads to a decrease in velocity at the fluid flow center. To 

know the effect of   on the secondary velocity  , we notice that increasing the values of   leads to an 

increase in  . Figure- 7 illustrates this effect, for the same reasons of the effect of   on axial 

velocity  . Figure- 8 shows the effect of   on  . One can notice that   increases slowly by increasing 

the values of  . The influences of   and   parameters on the velocity   are portrayed 
respectively in Figure- 9 and Figure- 10. It is seen that   decreases with the increase of   and  . 
In Fig. 11, one can observe the effect of   on the secondary velocity    which increases in the 
channel. 
  

  
Figure 6-The secondary velocity’s diversity 

for    when   = 0.05, = 5,   = 0.07,   = 
  

 
 , 

   = 3, 

   = 1.5,   = 0.5,    = 0.2,   = 2. 

  
 

 

Figure 7- The secondary velocity’s diversity 

for   when   = 0.2, = 5,   = 0.07,   = 
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   = 1.5,  = 0.5,    = 0.2,   = 2. 
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Figure 8- The secondary velocity’s diversity 

for   when   = 0.2,   = 0.05,   = 0.07,   = 
  

 
, 

    = 3,  = 1.5,  = 0.5,    = 0.2,   = 2. 

      
Figure 9 -The secondary velocity’s diversity 

for   when    = 0.2,   = 0.05,  = 5,   = 
  

 
, 

   = 3, 

   = 1.5,  = 0.5,    = 0.2,   = 2. 

 
Figure 10 -The secondary velocity’s diversity 

for   when   = 0.2,   = 0.05,   = 0.3, = 

5,    = 3, 

    = 1.5,   = 0.5,    = 0.2,   = 2. 

 
Figure 11 -The secondary velocity’s diversity 

for    when   = 0.2,  = 0.05,   =0.3, 

  = 5,   = 
 

 
 ,    =3  = 1.5,   = 0.5,   = 2. 

4.3. The flow rate distribution  

    Now, figures 12- 15 are drawn to show the variance in dimensionless flow rate due to the 

secondary velocity    for some   and      when           . In Figures- 12 and 13, we notice a 
decrease in (  ) if we increase  , while in figures- 14 and 15, we observe an opposite results of 
    if we increase some values of   . 

    
Figure -12 Diversity in    for   when    = -1, 
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 ,   = 3, 

   = 1.5,   = 0.5. 

 

 
Figure -13 Diversity in    for   when   = - 
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Figure -14 Diversity in    for    when    = -

1, 

  = 0.2,   = 0.07,   = 5,   = 
  

 
 ,   = 3, 

   = 1.5,   = 0.5. 

 

 

 
 

Figure -15 Diversity in    for    when    = - 

0.5, 

   = 0.2,   = 0.07,   = 5,   = 
  

 
,    = 3, 

   = 1.5,   = 0.5.

4.4. Temperature profile  

   Now, temperature ( ) for different variables is demonstrated through Figures- 16-21. In Figure- 16, 

we observe, for fluid parameter   against    that temperature distribution increases when the fluid 

parameter increases. In Figure- 17, we observe that if    increases then   also increases. If both of   

and    increase, respectively, we notice no effect on temperature (Figures- 18 and 19). Figure- 20 

shows that if we increase   ,   decays. From Figure- 21, we notice that if   is enhanced, the 

temperature gradually decreases. The following figures are drawn for the values of    = 3,   = 0.4,   

= 0.07,   = 4,   = 
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Figure -19 Diversity in   for   ={2, 4, 6} 

  

Figure -21 Diversity in   for  ={2, 3, 6}

 

4.5. Trapping Phenomenon 
     The next interesting part of this article is trapping. This  fascinating phenomenon,  normally known 

as bolus trapping phenomenon, occurs in the peristaltic flows, where the closed stream lines entice the 

quantity of fluid which is internal to the channel/tube and close to the walls. This trapping bolus 

moves within the course of the wave  propagation. The behavior of stream function is illustrated in 

Figures- 22-30. One can observe in Figure- 22 that the value of    increments at that point when the 

value of increases. It can be delineated from Figure- 23 that if   is enhanced the value of bolus 

decreases gradually. One can notice from Figure- 24 that the size of the trapped bolus is reduced in the 

channel upon increasing the magnetic parameter  . Figure- 25 shows that there is an increase in 

trapping when   increases. Decreasing behavior in the size of the trapped bolus is seen upon rising up 

the amplitude    (Figure- 26). Figure- 27 shows that as   increases, the bolus decreases. Figure-28 

shows that as    increase the bolus tends to rise. The impact of    is illustrated in figure 29, which 

shows that as    increases, the bolus increases. While Figure- 30 shows that upon increasing the values 

of      bolus size tends to rise. 

a  b     

Figure 22- Effects of (a)   =0.5, (b)   =0.6, (c)   =0.68 on the stream lines   when  = 0.05,  = 3 

,  = 0.07,   =    ,    = 3,   = 1.5,  = 0.5,    = 0.2. 

a  b  
Figure 23-Effects of (a)  =0.05, (b)  =0.06, (c)  =0.08 on the stream lines   when   = 0.5,  = 3 

,  = 0.07,   =   ,    = 3,   = 1.5,  = 0.5,    = 0.2. 
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a b c 

Figure 24 -Effects of (a)  =2.1, (b)  =2.5, (c)  =3 on the stream lines   when   = 0.05,   = 0.5, 

 = 0.07,  =   ,    = 3,   = 1.5,  = 0.5,    = 0.2. 

 a b c 

Figure 25- Effects of (a)  =0.05, (b)  =0.07, (c)  =0.09 on the stream lines   when   = 0.05,   = 

0.5, 

  = 3,  =  ,    = 3,   = 1.5,   = 0.5,    = 0.2. 

a b c  

Figure 26- Effects of (a)   =0.3, (b)   =0.4, (c)   =0.5 on the stream lines   when   = 0.05,   = 0.5, 

 = 3, =0.07,   =  ,    = 3,   = 1.5,    = 0.2. 

a b      

Figure 27-Effects of (a)   
 

 
, (b)   

 

 
, (c)   

 

 
 on the stream lines   when    = 0.05,   = 0.5, 

 = 3,  = 0.07,    = 3,    = 1.5,   = 0.5,    = 0.2. 
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a b  

Figure 28-Effects of (a)    =3, (b)    =4, (c)    =5 on the stream lines   when   = 0.05,    = 0.5, 

 = 3,  = 0.07,  =  ,    = 1.5,   = 0.5,    = 0.2. 

a b c 

Figure 29-Effects of (a)    =1.5, (b)    =1.7, (c)    =1.9 on the stream lines   when   = 0.05,   = 0.5, 

 = 3,  = 0.07,  =   ,    = 3,   = 0.5,    = 0.2. 

a b c 

Figure 30-Effects of (a)   =0.2, (b)   =0.4, (c)   =0.6 on the stream lines   when   = 0.05,   = 0.5, 

 = 3,  = 0.07,  =  ,    = 3,    = 1.5,   = 0.5. 

 

5. Conclusions 
     In this paper, the heat transfer and the magnetic field were discussed and the equations that describe 

the motion of flow for Ree-Eyring fluid were simplified under assumptions of low Reynolds number 

and long wavelength. These equations were solved analytically; the main results of the flow problem 

are summarized as follows.   

     When increasing  , the velocity   increases in one side of the fluid course, while it decreases at 

the other; we also obtain the same results when increasing the amount of  , but when   increases the 

velocity   increases, while it decreases with the increase in  . As for the temperature it decreases 

due to the increase in the size of the magnetic field, but there is no effect on it profile for both    
and  . For    and  , when    increases,   increases in one side and decreases in the other.    and 

  increase with increasing  , but   decreases with increasing     However, opposite results are 

obtained with respect to   . The temperature increases with increasing   and   . As for the 
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phenomenon of ingestion that occurs in the fluid stream, it increases with 

increasing                 ,   ,   ,    and   , while it decreases with increasing  ,  ,     and  . 
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