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Abstract

In this paper, we define certain subclasses of analytic univalent function
associated with quasi-subordination. Some results such as coefficient bounds and
Fekete-Szego bounds for the functions belonging to these subclasses are derived.
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1.Introduction.
Let A be the class of analytic functions f (z) which are analytic in the open unit disk U={z:|z|<1},
normalized by f (0)=0 and f '(0)=1 of the form
f(@) =z +Xnl,anz" . (1.1)
Let f and g be two analytic functions in U. Then the function f is said to be subordinate to g,
written as

f<g orf(z)<g(z (ze ). (1.2)
if there exist Schwarz function w which is analytic in U, w(0)=0 and |w(z)|<1 such that f(z) =
g(w(z)).Furthermore, if the function g is univalent in U, then f(z) < g(z) is equivalent to f(0) =
g(0) and f(U) c g(U).For brief survey on the concept of subordination, see [1].

Robertson [2] introduced the concept of quasi-subordination defined as follows:
An analytic function f is quasi-subordination to analytic function g in the open unit disk is written
f(2) <4 9(2), (1.3)
if there exist analytic function ¢ and w, with |o(z)|<1, w(0) = 0 and ||w(z)]|<1 such that
f(2) = o(2)g(w(2)).
Note, when ¢(z) = 1, then f(z) = g(w(z)) so that f(z) < g(z) in U. Furthermore if w(z)= z,
then f(z) = ¢(z)g(z) and this case f is majorized to g , written f(z) < g(z) in U. Hence it is
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obvious that quasi-subordination is generalization of subordination as well as majorization. For more
information, see [3,4, 5] for works related to quasi-subordination.
Many authors have been investigated the bounds of Fekete-Szego coefficient for various classes (see
[1,4,6-11]).
Now consider the following
(Z)=1+k(z)
1-k(2)
then
k (2) 5wz + (wy — Yow?)z? + -]
Throughout this paper it is assumed that ¢ is analytic in U with ¢(0) =1 and of the form
0(z) =1+B,z + B, +B3z% + -+, Bp>0.
Also,
0(2) =CACyz + C 7%+ C323 + -
Now, we define the following subclasses of A.
Definition (1.1).A function f €A is said to be in the class Mg,y(¢) (0<a<l,ye C -{0}), if it satisfies
the following quasi-subordination

o @ + 0’ f @) <q 0(2) ~ 1

Definition (1.2).A function f €A is said to be in the class MH] (#) (O<a<1), if it satisfies following
quasi-subordination
L2+ 22" (D)} <q 0L
Definition (1.3). Let the class MH(e, A,,®) consists of functions f ecA satisfying the quasi
subordination
EDy L2 + 21 (2)) <, 0@)L, (:20)
Definition (1.4). Let the class MH9 (e, S, 7, d)consists of functions f ecA satisfying the quasi
subordination
LD LY+ 2 (af " () + 0z2f " (1)} <q 0@)-L, (820).

To discuss main results we consider the following lemmas.
Lemma(1.5) [12].Let w be analytic function in U, with w(0)=0,|w(z)|<1 and
W(2)=wyz + wyz? + wyz3 + -
Then
lw, — tw#|< max {1,t[}, teC
The result is sharp for the functions w(z)= z% or w(z)= z.
Lemma(1.6) [12]. Let o(z) be analytic function in U, with |o(z)|<1 and let
©(2) =Co+Cyz + Co7°+C32% + - .
Then |C-|<1 and |Cy|<1- |C.|? for n>0.
2. Main Results.
Theorem (2.1). If £ is given by (1.1) belong to M ay(#), then

=14+w,yz + wyz? + wazd + -

B
laol<2, lasls 5 max{By, 5 (By — B2 1)} (22)
1 3
a5 — pa3|s i max{By,3 [By — 1B, | +3 (1 + @A Iul B2}, (22)

Proof. Let f € Mg,y.Then there exist an analytic functions ¢ in U with |p(z)|<1 and
k:U — U, with k(0)=0 and |k(z)|<1 such that:

e f' @ + 0z’ [ (@) = 9@(k (2)-1. (2.3)
ly{z f'(z) + az? f’”(z)}=§ a,z + g (1 + a)azz? + - (2.4)
(p(z)d)(k(z)-l:% B,Cw;z + [%Bl(CoWZ-% Cow12)+% Byw; %] z2... (2.5)

Putting (2.4) and (2.5) in (2.3) and equating coefficient both sides, we get
1 1 1
a2 == i/BlCOW:l and a3 == [E BI(CQWZ-E C°W12)+E Bzwlz].

4
6(1+0a)
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Since ¢(z) is analytic and bounded in U, we have |C,| < 1- |C-|?> <1, n>0.Using this fact
and well known inequality lwy] <1, we get

|a2|< B1 lasl< max{B,, By + |B;|}.

12(1+ Q)
Also
as — paj = 25w, =GBy (1 + a)wy?]. (2.6)

Applying Lemma (1.5) and Lemma(l 6) for (2.6), we obtain
U max(1,2 [1+ 242 |7y (1 + @)}

I IJ'aZI 12(1+@)

a5 — ua3| < l—max(By,; [31 + By |42 |1l IABE(1 + @)]}m
For a=0 in the Theorem (2.1), we get the following corollary.
Corollary (2. 2) If f given by (1.1) be in the class Mg,y(;/ﬁ), then
A, lagi< max{Bl, (B~ 182D}

las — Ha2|§§ max {31' [By — Bz += |7||M|Bl]}
In next, if we are using the Schwarz functlon of the following form
k(2)=wiz + wyz? + wyz3 + -,
we get the following results.
Theorem (2.3). Let f €A be of the form (1.1) belongs to the class Mg,y(¢).Then

a|<

I
@221 By, las|< o2 [By + max(By , |B, [},
and for some peC:
17

lag — pa3| < 6(1+ )[Bl + max{B;, 3 (1 + )|yl [y|B1* + |B,|}.
Proof. If f € Ma_y(¢), then there exist analytic functions ¢ in U with |o(2)[<1 and k:U — U ,with
k(0)=0 and |k(z)|<1 such that:

2 f' @ + ozt £ @) = @@k @)-1) (2.7)
We have
o(k(2))- 1= Bywyz + (Byw, + Bow;2)z% + -+, B>0
0(2) (0( k (2))-1) =C-Byw,z + [CyByw; + Co(Bywy + Byw,2)]z2 ... (2.8)

Putting (2.4) and (2.8) in (2. 7) and equating coefficients in both sides, we get
az = %/BlC‘oWl and a3 [C131W1 + CO(B1W2 B2 W1 )]
Also

6(1+ a)

~uaj = T 6(+a )[ClBlwl + Co(Bywo-B, wi )] -—/J}/ZCo Bi%w; 2.

Since ¢(z) is analytic and bounded in U, we have |C,| < 1- |C-|?> <1, n>0.Using this fact
and well known inequality |w;| < 1, and applying Lemma (1.5),we obtain
|a2|§%Bl,

| 3
|3 - na3| < 1= [By + max{(By, 3 (1+ a)|ul Y|B,” + By} (29)

This is required result. Further setting u=0 in (2.9) we get the bound on |a;|m
Theorem (2.4). If f €A satisfies

"

e f' @+ oz f1 @) < (§(2) D),
then the following inequalities hold

3
o [By + By + 21 4] 718, hand lasl o= (B, + |Ba 1},
Proof. The results follows by taking w(z)=z in the proof of Theorem (2.3) m
For a=0 in the theorem (2.3), we get the following corollary.

Corollary (2.5). Iff given by (1.1) be in the class Mq (@), then

|a2|< Bl, |a3|< [B1 + max{B1 ,|B2|}.and for some peC

|a2|< By, laz — paj| <

I
las — paj| <= [B1 + max{Bl, | 4] ¥IB1* + | By}
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Theorem (2. 6) If f eA (1 1) belong to the class MHJ(¢) , then
lazl<s> B asl< —max {Bl, + |B,|}, and for any peC
|as —#a2| = E 1 EmaX{BliTlﬂ_gl +[Ba |}

Proof. If f € MH](g), then there exist analytic functions ¢ in U with |p(z)|<I and k:U - U ,with
k(0)=0 and |k (z)|<1 such that:

(L2 + 22 (D)} = 0@ @k () (210)
a {% + zsz(z)} =20,z + a(12a; — 4a,%)z? + - (2.11)
0(2)(¢( k (2))-1)= C-Byw,z + [C;Byw; + C-(Byw, + Bow;2)]z2 .. (2.12)
Putting (2.11) and (2.12) in (2.10) and equating coefficient both sides, we get
a = 5= ByCwy and ag = — [CBywy + Co(Bywy+Bywy )]+ % a3,

Since ¢(z) is analytic and bounded in U, we have |C,| < 1- |Co|2 <1, n>0.Using this fact and well
known inequality |w;| < 1, we get |0L2|§%!B1 .

Also
az — paj = [C1B1W1+C(B1W2+BZW1 )]"‘ az #C By?w,?.
1C B w
_EC1B1W1 [C°(B1W2+B2W12)] #'Eﬂc B ?w, 2.

1 B
= EC1B1W1 EC°B1 [wp — {; CoBy (u- g) ‘B_i}Wl ]

Applying Lemma (1.5) and Lemma (1.6), we get

| ,ua2| = _Bl =

|+}

|as — Ila2|<_31 +_maX{BL |/1—‘|+|Bz|}
For u=0, the above will reduce to |a3|-

For a=%2 in the Theorem (2.6), we get the following corollary.
Corollary (2. 7) If f given by (1.1) be in the class MH%(¢) (d), then

|az|<Bj, las|< gmax {B1,2B,* + |B, |},
and for any neC
1 1 1
las — paj| < - By +-max {B1,6B%| 1 — §| + |B,|}.
Theorem (2.8). If f €A satisfies
(L2 + 2f ()} « 4@,
then the following inequalities hold
1 1 1

|az|<— By, las|< E{;Blz + By +|B.[},
and for any peC,

2 1 1.9 B;?
las —uaz| < —{-B1" + B; + |Bz|+|lvl|4_a}
Proof. The result follows by taking k(z) =z in the proof of Theorem (2.6) m
Theorem (2.9). Let A>0, O<o<l, if fec/l belong to MH (e, A,, ®), Then

azls 22, sl [By + Bymax{1, 2B, + [2]3].
1
And for any complex number p,
B
|as ,ua2|<— [B: + Blmax{l B1 + |,U| Bi 3

Proof. Let f eMH(a, 4,,0), XZO ,0<oc<1.Then there exist analytic functions ¢ and k with |p(z)[<1
and k:U — U ,with k (0)=0 and |k (z)|<1 such that:

EDyia (LD 1 221"} = o) (# k @)1). 219
Since
(Zf((zz)) — ) =1t hayz + [(/12 —324)a3 + 42as]z? +....., and
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a {Z}f ,((Z)) 2 (2)}= 200,z + 01205 — 4a3) z%+...... (2.14)
Hence from (2.14), we have
2f(2) Ag (2 @ | 2.7 _ _ 21,2
(f(z) ) {f,(z) +z°f (Z)} =20a,z + [12aas; + 20(A — 2)as] z°+...... (2.15)
(I)(k(Z)) 1 Blwlz + (31W2 + Bzwlz)zz + tty B]_>0
0(2)(¢(k(2))-1) =C-Byw, z + [C;Byw; + C-(Byw, + Boyw;2)]z2 ... (2.16)
Put (2.15) and (2.16) in (2.13) and equating coefficients in both sides, we get
azzi COB]_Wl (217&)
1
a3 = E[ClBlwl + COBl{WZ ( COBI B, )le}] . (217b)
By using this fact and well-known inequality, |w;| < 1, we get
1
| a, | < ZZ Bl'
Further,
C-B B
— uaj = [C1B1W1 + CBy{w; — ( C-B; + 3#_1 - B_Z) w1}

Applylng |C |<1,|]w;|<1 and Lemma (1.5, We get
jas — waF|<qy [By + Bimax{L, 57 By + lul 1 + |2}

If we put u=0 in above mequallty, we get deswed estimate | a;| as following
|a3|<— [B, + Blmax{l B, +
Corollary (2.10). For (p(Z) 1 and (x=1/2, we get the estimate for |a,| and |a;| as
la,| < By and |as| 53—61 max{1,(1—2)B; + B
Remark (2.11). When A=0,Theorem (2.9) reduces to Theorem (2.6).
Theorem (2. 12) Let A>0, O<a<l, if f €A satisfies

(2
EDyafL D+ 22 "(2)) « fa)L

Then the following inequalities hold:

B 1 A=2
lasl< 5% lasl<o,- [By + - B1* + By l}].
And for any complex number u,
las — Ilaz|< [31 +B,? (_ + 3ul) + |B,].
Proof. The results follows by takmg w(z)=z in the proof of Theorem (2.9) m
Theorem (2.13). Let >0, if f €A belongto MH (e, 3, 7, ©), then

B4|A BilA (-1)(2+P)B1|1?

|az| < 241+ |a3|_6(1+a)+(2+ﬂ)|y| [1+ max{1 212+ /(1+P)|2

B B1|7?
a5 — a3 | <Sgrrat s max{L, s s (B= D2 + ) + 21l (6(1 + @) + (2 +

P [523-
Proof. Let f eMHY(¢e, 5,1, @), for >0 ,.then there are analytic functions ¢ and k with |p(z)|<1 and

k:U — U ,with k(0)=0 and | k (2)|<1 such that

=2}]m

ﬁ].

B

LE L2 2 {af (2 + 022" ()} = 0@ (G k @))-). (2.18)
A computation shows that
% EDy=140,(1 + pz + EL 205 + (- Day?12% +.. (2.19)

ly{zf"(z) + azzf"'(z)}=§ a,z + ]E/ 1+ a)azz? + -
Put (2.8) and (2.19) in (2.18) and equating coefficients in both sides, we get

A= ,b’ 5 CoBywy, (2.20)
[ (1-p(2+p)C-*B, 72 2 )
a3 6(1+a)+(2+ﬂ)|7| [B].Clwl + 2|2+}’(1+ﬁ)|2 W1 + C031W2 + CoBzwl ]

Applying |C,,|<1,|wq|<1 in (2.20), we get the value of |a,|
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Also,

CoB1/?
as — paj = W[B1C1W1+C°B1{Wz GararppB—DC+ P +2u6(0 + o) +

@+AD) ~ Pwil
By using |c,|<1 and |w, [<1, we obtain

CeB1 7
|as — a3 _m[31+31|{wz—(m((ﬁ— DE+p+2u61+a)+
@+~ PwiA|l

Now we shall use Lemma (1.5) to

s =B (oD@ + 261+ D+ 2+ D) - Bywny
27 QR+ 1+ P2 H )= g

yields

B B
a3 — ka3 lsgr i [mad{L| sl (B= D@+ )+ 20(6(1+ @) + 2+ HP) -

B,
L
and hence we can conclude that

Bi|A By |A?
las — ua%ISMW[HmaX{l, m (B-DC+P+2|u(6(1+ )+ 2+
B,
5 )

If we put u=0 in above inequality, we get desired estimate | a;|m

Corollary (2.14). For =1 and =0, the coefficient estimates becomes

BilA By|/ 2B; |72 B,
laz| = 200 laslsg [T+ max{l, 2222s + |23
Theorem (2.15). If f €A satisfies

M(@)ﬂ+ %/{zf"(z) + (XZZfW(Z)} K ¢(2)-1,

f(2)
then the following inequalities hold
|a | Bll]’l
2= 2+@+pn’
B1l/

05 <ot L+ | S |+
and for any complex number p

2 B[/ By |A* 6
jas — pa ISyt i [ o P (L= P2+ B — 20 (;(1 +a)l+ @2+ ﬂ))
Proof. The results follows by taking w(z)=z in the proof of Theorem (2.13) m

]
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