

ISSN: 0067-2904

Coefficient Bounds for Certain Subclass of Analytic Functions Defined By Quasi-Subordination

Abdul Rahman S. Juma ${ }^{* 1}$, Mohammed H. Saloomi ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Anbar, Ramady, Iraq
${ }^{2}$ Department of Mathematics, University of Baghdad, Baghdad, Iraq

Abstract

In this paper, we define certain subclasses of analytic univalent function associated with quasi-subordination. Some results such as coefficient bounds and Fekete-Szego bounds for the functions belonging to these subclasses are derived.

Keywords: Analytic functions, Univalent function, Quasi-subordination, Subordination, Majorization.

قيود المعاملات لفئات جزئية من الدوال التحليلية المعرفة بواسطة شبه التابعية

عبدالرحمن سلمـان جمعهُ *، محمد حسن سلومي الرياضيات، جامعة الانبار، الرمادي، العراق الرياضبات، جامعة بغداد، بغداد، العراق

الخلاصة

$$
\begin{array}{r}
\text { لقيود المعاملات هذا البحث نعرف فئات جزئيه من فئة الدوال التحليليه الاحاديه المرفقه بشبه التابعيه. بعض النتائج }
\end{array}
$$

1.Introduction.

Let \mathcal{A} be the class of analytic functions $f(\mathrm{z})$ which are analytic in the open unit disk $\mathrm{U}=\{\mathrm{z}:|\mathrm{z}|<1\}$, normalized by $f(0)=0$ and $f^{\prime}(0)=1$ of the form

$$
\begin{equation*}
f(\mathrm{z})=\mathrm{z}+\sum_{\mathrm{n}=2}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{z}^{\mathrm{n}} \tag{1.1}
\end{equation*}
$$

Let f and g be two analytic functions in U . Then the function f is said to be subordinate to g, written as

$$
\begin{equation*}
f \prec g \text { or } f(z) \prec g(z)(\mathrm{z} \in \mathrm{U}) \tag{1.2}
\end{equation*}
$$

if there exist Schwarz function w which is analytic in $\mathrm{U}, \mathrm{w}(0)=0$ and $|\mathrm{w}(\mathrm{z})|<1$ such that $f(z)=$ $g(\mathrm{w}(\mathrm{z}))$.Furthermore, if the function g is univalent in U , then $f(z) \prec g(z)$ is equivalent to $f(0)=$ $g(0)$ and $f(U) \subset g(U)$.For brief survey on the concept of subordination, see [1].
Robertson [2] introduced the concept of quasi-subordination defined as follows:
An analytic function f is quasi-subordination to analytic function g in the open unit disk is written

$$
\begin{equation*}
f(z) \prec_{q} g(z) \tag{1.3}
\end{equation*}
$$

if there exist analytic function φ and w , with $|\varphi(\mathrm{z})| \leq 1, \mathrm{w}(0)=0$ and $\|w(z)\|<1$ such that
$f(z)=\varphi(z) g(\mathrm{w}(\mathrm{z}))$.
Note, when $\varphi(z)=1$, then $f(z)=g(\mathrm{w}(\mathrm{z}))$ so that $f(z) \prec g(z)$ in U. Furthermore if $\mathrm{w}(\mathrm{z})=\mathrm{z}$, then $f(z)=\varphi(z) g(\mathrm{z})$ and this case f is majorized to g, written $f(z) \ll g(z)$ in U. Hence it is

[^0]obvious that quasi-subordination is generalization of subordination as well as majorization. For more information, see $[3,4,5]$ for works related to quasi-subordination.
Many authors have been investigated the bounds of Fekete-Szego coefficient for various classes (see [1,4,6-11]).
Now consider the following
$\mathrm{w}(\mathrm{z})=\frac{1+k(z)}{1-k(z)}=1+w_{1} z+w_{2} z^{2}+w_{3} z^{3}+\cdots$,
then
$k(\mathrm{z})=\frac{1}{2}\left[w_{1} z+\left(w_{2}-\frac{1}{2} w_{1}^{2}\right) z^{2}+\cdots\right]$.
Throughout this paper it is assumed that ϕ is analytic in U with $\phi(0)=1$ and of the form
$\phi(\mathrm{z})=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots, \quad \mathrm{B}_{1}>0$.
Also,
$\varphi(\mathrm{z})=C \circ+C_{1} z+C_{2} \mathrm{z}^{2}+C_{3} z^{3}+\cdots$.
Now, we define the following subclasses of \mathcal{A}.
Definition (1.1).A function $f \in \mathcal{A}$ is said to be in the class $M_{\alpha, \gamma}^{q}(\phi)(0 \leq \alpha<1, \gamma \in \mathbb{C}-\{0\})$, if it satisfies the following quasi-subordination
$\frac{1}{\gamma}\left\{\mathrm{z} f^{\prime \prime}(\mathrm{z})+\alpha \mathrm{z}^{2} f^{\prime \prime \prime}(\mathrm{z})\right\} \prec_{\mathrm{q}} \phi(\mathrm{z})-1$
Definition (1.2).A function $f \in \mathcal{A}$ is said to be in the class $M H_{\alpha}^{q}(\phi)(0<\alpha<1)$, if it satisfies following quasi-subordination
$\alpha\left\{\frac{z f^{\prime \prime}(\mathrm{z})}{f^{\prime}(z)}+\mathrm{z}^{2} f^{\prime \prime \prime}(\mathrm{z})\right\} \prec_{\mathrm{q}} \phi(\mathrm{z})-1$.
Definition (1.3). Let the class $M H^{q}(\alpha, \lambda, \emptyset)$ consists of functions $f \in \mathcal{A}$ satisfying the quasi subordination
$\left(\frac{z f(z)^{\prime}}{f(z)}\right)^{\lambda} \alpha\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z^{2} f^{\prime \prime \prime}(z)\right\} \prec_{q} \phi(\mathrm{z})-1,(\lambda \geq 0)$
Definition (1.4). Let the class $M H^{q}(\alpha, \beta, \gamma, \phi)$ consists of functions $f \in \mathcal{A}$ satisfying the quasi subordination
$$
\frac{z f(z)^{\prime}}{f(z)}\left(\frac{f(z)}{z}\right)^{\beta}+\frac{1}{\gamma}\left\{\mathrm{z} f^{\prime \prime}(\mathrm{z})+\alpha \mathrm{z}^{2} f^{\prime \prime \prime}(\mathrm{z})\right\} \prec_{\mathrm{q}} \phi(\mathrm{z})-1,(\beta \geq 0)
$$

To discuss main results we consider the following lemmas.
$\operatorname{Lemma}(1.5)$ [12].Let w be analytic function in U, with $w(0)=0,|w(z)|<1$ and
$\mathrm{w}(\mathrm{z})=w_{1} z+w_{2} z^{2}+w_{3} z^{3}+\cdots$.
Then
$\left|w_{2}-t w_{1}^{2}\right| \leq \max \{1,|t|\}, \mathrm{t} \in \mathbb{C}$
The result is sharp for the functions $w(z)=z^{2}$ or $w(z)=z$.
Lemma(1.6) [12]. Let $\varphi(z)$ be analytic function in U, with $|\varphi(z)|<1$ and let
$\varphi(\mathrm{z})=C_{\circ}+C_{1} z+C_{2} z^{2}+C_{3} z^{3}+\cdots$.
Then $\left|C_{\circ}\right| \leq 1$ and $\left|C_{n}\right| \leq 1-\left|C_{\circ}\right|^{2}$ for $\mathrm{n}>0$.
2. Main Results.

Theorem (2.1). If f is given by (1.1) belong to $M_{\alpha, \gamma}^{q}(\phi)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{|\gamma| B_{1}}{4},\left|a_{3}\right| \leq \frac{|\gamma|}{12(1+\alpha)} \max \left\{B_{1}, \frac{1}{2}\left(B_{1}-\left|B_{2}\right|\right)\right\} . \tag{2.2}\\
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\gamma|}{12(1+\alpha)} \max \left\{B_{1}, \frac{1}{2}\left[B_{1}-\left|B_{2}\right|+\frac{3}{2}(1+\alpha)|\gamma||\mu| B_{1}^{2}\right]\right\} . \tag{2.2}
\end{gather*}
$$

Proof. Let $f \in M_{\alpha, \gamma}^{q}$. Then there exist an analytic functions φ in U with $|\varphi(\mathrm{z})| \leq 1$ and $k: U \rightarrow U$, with $\mathrm{k}(0)=0$ and $|k(z)|<1$ such that:

$$
\begin{gather*}
\frac{1}{\gamma}\left\{\mathrm{z} f^{\prime \prime}(\mathrm{z})+\alpha \mathrm{z}^{2} f^{\prime \prime \prime}(\mathrm{z})\right\}=\varphi(\mathrm{z}) \phi(k(\mathrm{z}))-1 \tag{2.3}\\
\frac{1}{\gamma}\left\{\mathrm{z} f^{\prime \prime}(\mathrm{z})+\alpha \mathrm{z}^{2} f^{\prime \prime \prime}(\mathrm{z})\right\}=\frac{2}{\gamma} a_{2} z+\frac{6}{\gamma}(1+\alpha) a_{3} \mathrm{z}^{2}+\cdots \tag{2.4}\\
\varphi(\mathrm{z}) \phi\left(\mathrm{k}(\mathrm{z})-1=\frac{1}{2} B_{1} C_{\circ} w_{1} z+\left[\frac{1}{2} B_{1}\left(C_{\circ} w_{2}-\frac{1}{2} C_{\circ} w_{1}^{2}\right)+\frac{1}{4} B_{2} w_{1}^{2}\right] \mathrm{z}^{2} \ldots\right. \tag{2.5}
\end{gather*}
$$

Putting (2.4) and (2.5) in (2.3) and equating coefficient both sides, we get
$a_{2}=\frac{\gamma}{4} B_{1} C_{\circ} w_{1}$ and $a_{3}=\frac{\gamma}{6(1+\alpha)}\left[\frac{1}{2} B_{1}\left(C_{\circ} w_{2}-\frac{1}{2} C_{\circ} w_{1}{ }^{2}\right)+\frac{1}{2} B_{2} w_{1}{ }^{2}\right]$.

Since $\varphi(\mathrm{z})$ is analytic and bounded in U , we have $\left|C_{n}\right| \leq 1-\left|C_{0}\right|^{2} \leq 1, \mathrm{n}>0$. Using this fact and well known inequality $\left|w_{1}\right| \leq 1$, we get
$\left|a_{2}\right| \leq \frac{|\gamma|}{4} B_{1},\left|a_{3}\right| \leq \frac{|\eta|}{12(1+\alpha)} \max \left\{B_{1}, B_{1}+\left|B_{2}\right|\right\}$.
Also
$a_{3}-\mu a_{2}^{2}=\frac{B_{1} C_{\circ} \gamma}{12(1+\alpha)}\left[w_{2}-\frac{1}{2}\left\{\left(1-\frac{B_{2}}{B_{1} C_{0}}\right)-\frac{3}{2} \mu \gamma C_{\circ} B_{1}(1+\alpha)\right\} w_{1}{ }^{2}\right]$.
Applying Lemma (1.5) and Lemma(1.6) for (2.6), we obtain
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}|\gamma|}{12(1+\alpha)} \max \left\{1, \frac{1}{2}\left[1+\frac{\left|B_{2}\right|}{B_{1}}+\frac{3}{2}|\mu||\gamma| B_{1}(1+\alpha)\right]\right\}$
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\gamma|}{12(1+\alpha)} \max \left\{B_{1}, \frac{1}{2}\left[B_{1}+\left|B_{2}\right|+\frac{3}{2}|\mu||\gamma| B_{1}^{2}(1+\alpha)\right]\right\} ■$
For $\alpha=0$ in the Theorem (2.1), we get the following corollary.
Corollary (2.2). If f given by (1.1) be in the class $M_{0, \gamma}^{q}(\phi)$, then
$a_{2}\left|\leq \frac{|\gamma| B_{1}}{4},\left|a_{3}\right| \leq \frac{|\gamma|}{12} \max \left\{B_{1}, \frac{1}{2}\left(B_{1}-\left|B_{2}\right|\right)\right\}\right.$.
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\gamma|}{12} \max \left\{B_{1}, \frac{1}{2}\left[B_{1}-\left|B_{2}\right|+\frac{3}{2}|\gamma||\mu| B_{1}^{2}\right]\right\}$.
In next, if we are using the Schwarz function of the following form
$k(\mathrm{z})=w_{1} z+w_{2} z^{2}+w_{3} z^{3}+\cdots$,
we get the following results.
Theorem (2.3). Let $f \in \mathcal{A}$ be of the form (1.1) belongs to the class $M_{\alpha, \gamma}^{q}(\phi)$. Then
$\left|a_{2}\right| \leq \frac{|\gamma|}{2} B_{1},\left|a_{3}\right| \leq \frac{|\gamma|}{6(1+\alpha)}\left[B_{1}+\max \left\{B_{1},\left|B_{2}\right|\right\}\right.$,
and for some $\mu \in \mathbb{C}$:
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\gamma|}{6(1+\alpha)}\left[B_{1}+\max \left\{B_{1}, \frac{3}{2}(1+\alpha)|\mu||\gamma| B_{1}^{2}+\left|B_{2}\right|\right\}\right.$.
Proof. If $f \in M_{\alpha, \gamma}^{q}(\phi)$, then there exist analytic functions φ in U with $|\varphi(\mathrm{z})| \leq 1$ and $\mathrm{k}: U \rightarrow U$, with $\mathrm{k}(0)=0$ and $|\mathrm{k}(\mathrm{z})|<1$ such that:

$$
\begin{equation*}
\frac{1}{\gamma}\left\{\mathrm{z} f^{\prime \prime}(\mathrm{z})+\alpha \mathrm{z}^{2} f^{\prime \prime \prime}(\mathrm{z})\right\}=\varphi(\mathrm{z})(\phi(k(\mathrm{z}))-1) \tag{2.7}
\end{equation*}
$$

We have
$\phi(\mathrm{k}(\mathrm{z}))-1=B_{1} w_{1} z+\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right) \mathrm{z}^{2}+\cdots, \quad \mathrm{B}_{1}>0$

$$
\begin{equation*}
\varphi(\mathrm{z})(\phi(k(\mathrm{z}))-1)=C_{\circ} B_{1} w_{1} z+\left[C_{1} B_{1} w_{1}+C_{\circ}\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right)\right] \mathrm{z}^{2} \ldots \tag{2.8}
\end{equation*}
$$

Putting (2.4) and (2.8) in (2.7) and equating coefficients in both sides, we get
$a_{2}=\frac{\gamma}{2} B_{1} C_{\circ} w_{1}$ and $a_{3}=\frac{\gamma}{6(1+\alpha)}\left[C_{1} B_{1} w_{1}+C_{\circ}\left(B_{1} w_{2}-B_{2} w_{1}^{2}\right)\right]$.
Also
$a_{3}-\mu a_{2}^{2}=\frac{\gamma}{6(1+\alpha)}\left[C_{1} B_{1} w_{1}+C_{\circ}\left(B_{1} w_{2}-B_{2} w_{1}{ }^{2}\right)\right]-\frac{1}{4} \mu \gamma^{2} C_{\circ}{ }^{2} B_{1}{ }^{2} w_{1}{ }^{2}$.
Since $\varphi(\mathrm{z})$ is analytic and bounded in U , we have $\left|C_{n}\right| \leq 1-\left|C_{\circ}\right|^{2} \leq 1$, $\mathrm{n}>0$. Using this fact and well known inequality $\left|w_{1}\right| \leq 1$, and applying Lemma (1.5), we obtain
$\left|a_{2}\right| \leq \frac{|y|}{2} B_{1}$,

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\gamma|}{6(1+\alpha)}\left[B_{1}+\max \left\{B_{1}, \frac{3}{2}(1+\alpha)|\mu||\gamma| B_{1}^{2}+\left|B_{2}\right|\right\}\right. \tag{2.9}
\end{equation*}
$$

This is required result. Further setting $\mu=0$ in (2.9) we get the bound on $\left|a_{3}\right| ■$
Theorem (2.4). If $f \in \mathcal{A}$ satisfies
$\frac{1}{\gamma}\left\{\mathrm{z} f^{\prime \prime}(\mathrm{z})+\alpha \mathrm{z}^{2} f^{\prime \prime \prime}(\mathrm{z})\right\} \ll(\phi(\mathrm{z})-1)$,
then the following inequalities hold
$\left|a_{2}\right| \leq \frac{|\gamma|}{2} B_{1},\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\gamma|}{6(1+\alpha)}\left[B_{1}+\left|B_{2}\right|+\frac{3}{2}|\mu||\gamma| B_{1}{ }^{2}\right\}$, and $\left|a_{3}\right| \leq \frac{|\gamma|}{6(1+\alpha)}\left\{B_{1}+\left|B_{2}\right|\right\}$.
Proof. The results follows by taking $\mathrm{w}(\mathrm{z})=\mathrm{z}$ in the proof of Theorem (2.3)
For $\alpha=0$ in the theorem (2.3), we get the following corollary.
Corollary (2.5). If f given by (1.1) be in the class $M_{0, \gamma}^{q}(\phi)$, then
$\left|a_{2}\right| \leq \frac{|\gamma|}{2} B_{1},\left|a_{3}\right| \leq \frac{|\gamma|}{6}\left[B_{1}+\max \left\{B_{1},\left|B_{2}\right|\right\}\right.$.and for some $\mu \in \mathbb{C}$
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\gamma|}{6}\left[B_{1}+\max \left\{B_{1}, \frac{3}{2}|\mu||\gamma| B_{1}^{2}+\left|B_{2}\right|\right\}\right.$.

Theorem (2.6). If $f \in \mathcal{A}$ (1.1) belong to the class $M H_{\alpha}^{q}(\phi)$, then
$\left|a_{2}\right| \leq \frac{B_{1}}{2 \alpha},\left|a_{3}\right| \leq \frac{1}{12 \alpha} \max \left\{B_{1}, \frac{B_{1}{ }^{2}}{\alpha}+\left|B_{2}\right|\right\}$, and for any $\mu \in \mathrm{C}$
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{12 \alpha} B_{1}+\frac{1}{12 \alpha} \max \left\{B_{1}, \frac{3 B_{1}{ }^{2}}{\alpha}\left|\mu-\frac{1}{3}\right|+\left|B_{2}\right|\right\}$.
Proof. If $f \in M H_{\alpha}^{q}(\phi)$, then there exist analytic functions φ in U with $|\varphi(\mathrm{z})| \leq 1$ and $\mathrm{k}: U \rightarrow U$, with $\mathrm{k}(0)=0$ and $|\mathrm{k}(\mathrm{z})|<1$ such that:

$$
\begin{gather*}
\alpha\left\{\frac{z f^{\prime \prime \prime}(z)}{f^{\prime}(z)}+z^{2} f^{\prime \prime \prime}(z)\right\}=\varphi(\mathrm{z})(\phi(k(\mathrm{z}))-1) \tag{2.10}\\
\alpha\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z^{2} f^{\prime \prime \prime}(z)\right\}=2 \alpha a_{2} z+\alpha\left(12 a_{3}-4 a_{2}^{2}\right) z^{2}+\cdots \tag{2.11}\\
\varphi(\mathrm{z})(\phi(k(\mathrm{z}))-1)=C_{\circ} B_{1} w_{1} z+\left[C_{1} B_{1} w_{1}+C_{\circ}\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right)\right] \mathrm{z}^{2} \cdots \tag{2.12}
\end{gather*}
$$

Putting (2.11) and (2.12) in (2.10) and equating coefficient both sides, we get $a_{2}=\frac{1}{2 \alpha} B_{1} C_{\circ} w_{1}$ and $a_{3}=\frac{1}{12 \alpha}\left[C_{1} B_{1} w_{1}+C_{\circ}\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right)\right]+\frac{1}{3} a_{2}^{2}$.

Since $\varphi(\mathrm{z})$ is analytic and bounded in U, we have $\left|C_{n}\right| \leq 1-\left|C_{\circ}\right|^{2} \leq 1, \mathrm{n}>0$.Using this fact and well known inequality $\left|w_{1}\right| \leq 1$, we get $\left|a_{2}\right| \leq \frac{1}{2 \alpha} B_{1}$.
Also

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{1}{12 \alpha}\left[C_{1} B_{1} w_{1}+C_{\circ}\left(B_{1} w_{2}+B_{2} w_{1}{ }^{2}\right)\right]+\frac{1}{3} a_{2}^{2}-\frac{1}{4 \alpha^{2}} \mu C_{\circ}^{2} B_{1}{ }^{2} w_{1}{ }^{2} . \\
& =\frac{1}{12 \alpha} C_{1} B_{1} w_{1}+\frac{1}{12 \alpha}\left[C_{\circ}\left(B_{1} w_{2}+B_{2} w_{1}{ }^{2}\right)\right]+\frac{1}{3} \frac{C_{0}^{2} B_{1}{ }^{2} w_{1}{ }^{2}}{4 \alpha^{2}}-\frac{1}{4 \alpha^{2}} \mu C_{\circ}{ }^{2} B_{1}{ }^{2} w_{1}{ }^{2} . \\
& =\frac{1}{12 \alpha} C_{1} B_{1} w_{1}+\frac{1}{12 \alpha} C_{\circ} B_{1}\left[w_{2}-\left\{\frac{3}{\alpha} C_{\circ} B_{1}\left(\mu-\frac{1}{3}\right)-\frac{B_{2}}{B_{1}}\right\} w_{1}{ }^{2}\right]
\end{aligned}
$$

Applying Lemma (1.5) and Lemma (1.6), we get
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{12 \alpha} B_{1}+\frac{1}{12 \alpha} B_{1} \max \left\{1, \frac{3 B_{1}}{\alpha}\left|\mu-\frac{1}{3}\right|+\frac{\left|B_{2}\right|}{B_{1}}\right\}$.
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{12 \alpha} B_{1}+\frac{1}{12 \alpha} \max \left\{B_{1}, \frac{3 B_{1}{ }^{2}}{\alpha}\left|\mu-\frac{1}{3}\right|+\left|B_{2}\right|\right\}$.
For $\mu=0$, the above will reduce to $\left|a_{3}\right| ■$
For $\alpha=1 / 2$ in the Theorem (2.6), we get the following corollary.
Corollary (2.7). If f given by (1.1) be in the class $M H_{1 / 2}^{q}(\phi)(\phi)$, then
$\left|a_{2}\right| \leq B_{1},\left|a_{3}\right| \leq \frac{1}{6} \max \left\{B_{1}, 2 B_{1}{ }^{2}+\left|B_{2}\right|\right\}$,
and for any $\mu \in \mathrm{C}$
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{6} B_{1}+\frac{1}{6} \max \left\{B_{1}, 6 B_{1}{ }^{2}\left|\mu-\frac{1}{3}\right|+\left|B_{2}\right|\right\}$.
Theorem (2.8). If $f \in \mathcal{A}$ satisfies
$\alpha\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z^{2} f^{\prime \prime \prime}(z)\right\} \ll(\phi(\mathrm{z})-1)$,
then the following inequalities hold
$\left|a_{2}\right| \leq \frac{1}{2 \alpha} B_{1},\left|a_{3}\right| \leq \frac{1}{12 \alpha}\left\{\frac{1}{\alpha} B_{1}^{2}+B_{1}+\left|B_{2}\right|\right\}$,
and for any $\mu \in \mathbb{C}$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{12 \alpha}\left\{\frac{1}{\alpha} B_{1}{ }^{2}+B_{1}+\left|B_{2}\right|+|\mu| \frac{B_{1}{ }^{2}}{4 \alpha}\right\}
$$

Proof. The result follows by taking $\mathrm{k}(\mathrm{z})=\mathrm{z}$ in the proof of Theorem (2.6)
Theorem (2.9). Let $\lambda \geq 0,0<\alpha<1$, if $\mathrm{f} \in \mathcal{A}$ belong to $M H^{q}(\alpha, \lambda, \varnothing)$, Then
$\left|a_{2}\right| \leq \frac{B_{1}}{2 \alpha},\left|a_{3}\right| \leq \frac{1}{12 \alpha}\left[B_{1}+B_{1} \max \left\{1, \frac{\lambda-2}{2 \alpha} B_{1}+\left|\frac{B_{2}}{B_{1}}\right|\right\}\right]$.
And for any complex number μ,
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{12 \alpha}\left[B_{1}+B_{1} \max \left\{1, \frac{\lambda-2}{2 \alpha} B_{1}+|\mu| \frac{B_{1}}{4 \alpha^{2}}+\left|\frac{B_{2}}{B_{1}}\right|\right\}\right]$.
Proof. Let $f \in M H^{q}(\alpha, \lambda, \varnothing), \lambda \geq 0,0<\alpha<1$.Then there exist analytic functions φ and k with $|\varphi(z)| \leq 1$ and $k: U \rightarrow U$, with $k(0)=0$ and $|k(\mathrm{z})|<1$ such that:

$$
\begin{equation*}
\left(\frac{z f(z)^{\prime}}{f(z)}\right)^{\lambda} \alpha\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z^{2} f^{\prime \prime \prime}(z)\right\}=\varphi(\mathrm{z})(\phi(k(\mathrm{z}))-1) . \tag{2.13}
\end{equation*}
$$

Since
$\left(\frac{z f(z)^{\prime}}{f(z)}\right)^{\lambda}=1+\lambda a_{2} z+\frac{1}{2}\left[\left(\lambda^{2}-3 \lambda\right) a_{2}^{2}+4 \lambda a_{3}\right] z^{2}+\ldots .$, and

$$
\begin{equation*}
\alpha\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z^{2} f^{\prime \prime \prime}(z)\right\}=2 \alpha a_{2} z+\alpha\left(12 a_{3}-4 a_{2}^{2}\right) z^{2}+\ldots \ldots \tag{2.14}
\end{equation*}
$$

Hence from (2.14), we have

$$
\begin{equation*}
\left(\frac{z f(z)^{\prime}}{f(z)}\right)^{\lambda} \alpha\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z^{2} f^{\prime \prime \prime}(z)\right\}=2 \alpha a_{2} z+\left[12 \alpha a_{3}+2 \alpha(\lambda-2) a_{2}^{2}\right] z^{2}+\ldots \ldots \tag{2.15}
\end{equation*}
$$

$\phi(k(\mathrm{z}))-1=B_{1} w_{1} z+\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right) \mathrm{z}^{2}+\cdots, \quad \mathrm{B}_{1}>0$

$$
\begin{equation*}
\varphi(\mathrm{z})(\phi(k(\mathrm{z}))-1)=C_{\circ} B_{1} w_{1} z+\left[C_{1} B_{1} w_{1}+C_{\circ}\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right)\right] \mathrm{z}^{2} \ldots \tag{2.16}
\end{equation*}
$$

Put (2.15) and (2.16) in (2.13) and equating coefficients in both sides, we get

$$
\begin{align*}
& a_{2}=\frac{1}{2 \alpha} C_{\circ} B_{1} w_{1} \tag{2.17a}\\
a_{3}= & \frac{1}{12 \alpha}\left[C_{1} B_{1} w_{1}+C_{\circ} B_{1}\left\{w_{2}-\left(\frac{\lambda-2}{2 \alpha} C_{\circ} B_{1}-\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right\}\right] . \tag{2.17b}
\end{align*}
$$

By using this fact and well-known inequality, $\left|w_{1}\right| \leq 1$, we get
$\left|a_{2}\right| \leq \frac{1}{2 \alpha} B_{1}$.
Further,
$a_{3}-\mu a_{2}^{2}=\frac{1}{12 \alpha}\left[C_{1} B_{1} w_{1}+C_{\circ} B_{1}\left\{w_{2}-\left(\frac{\lambda-2}{2 \alpha} C_{\circ} B_{1}+3 \mu \frac{C_{\circ} B_{1}}{\alpha}-\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right\}\right]$.
Applying $\left|C_{n}\right| \leq 1,\left|w_{1}\right| \leq 1$ and Lemma (1.5), we get
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{12 \alpha}\left[B_{1}+B_{1} \max \left\{1, \frac{\lambda-2}{2 \alpha} B_{1}+|\mu| \frac{B_{1}}{4 \alpha^{2}}+\left|\frac{B_{2}}{B_{1}}\right|\right\}\right]$.
If we put $\mu=0$ in above inequality, we get desired estimate $\left|a_{3}\right|$ as following
$\left|a_{3}\right| \leq \frac{1}{12 \alpha}\left[B_{1}+B_{1} \max \left\{1, \frac{\lambda-2}{2 \alpha} B_{1}+\left|\frac{B_{2}}{B_{1}}\right|\right\}\right]$ ■
Corollary (2.10). For $\varphi(\mathrm{z})=1$ and $\alpha=1 / 2$, we get the estimate for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ as
$\left|a_{2}\right| \leq B_{1}$ and $\left|a_{3}\right| \leq \frac{B_{1}}{6} \max \left\{1,(\lambda-2) B_{1}+\left|\frac{B_{2}}{B_{1}}\right|\right\}$.
Remark (2.11). When $\lambda=0$,Theorem (2.9) reduces to Theorem (2.6).
Theorem (2.12). Let $\lambda \geq 0,0<\alpha<1$, if $f \in \mathcal{A}$ satisfies
$\left(\frac{z f(z)^{\prime}}{f(z)}\right)^{\lambda} \alpha\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z^{2} f^{\prime \prime \prime}(z)\right\} \ll \phi(\mathrm{z})-1$.
Then the following inequalities hold:
$\left.\left|a_{2}\right| \leq \frac{B_{1}}{2 \alpha},\left|a_{3}\right| \leq \frac{1}{12 \alpha}\left[B_{1}+\frac{\lambda-2}{2 \alpha} B_{1}{ }^{2}+\left|B_{2}\right|\right\}\right]$.
And for any complex number μ,
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{12 \alpha}\left[B_{1}+B_{1}{ }^{2}\left(\frac{\lambda-2}{2 \alpha}+3|\mu|\right)+\left|B_{2}\right|\right]$.
Proof. The results follows by taking $\mathrm{w}(\mathrm{z})=\mathrm{z}$ in the proof of Theorem (2.9)
Theorem (2.13). Let $\beta \geq 0$, if $f \in \mathcal{A}$ belong to $M H^{q}(\alpha, \beta, \gamma, \varnothing)$, then
$\left|a_{2}\right| \leq \frac{B_{1}|\gamma|}{2+(1+\beta)|\gamma|},\left|a_{3}\right| \leq \frac{B_{1}|\gamma|}{6(1+\alpha)+(2+\beta)|\gamma|}\left[1+\max \left\{1, \frac{(\beta-1)(2+\beta) B_{1} \mid \gamma \gamma^{2}}{2|2+\chi(1+\beta)|^{2}}+\left|\frac{B_{2}}{B_{1}}\right|\right\}\right]$.
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}|\eta|}{6(1+\alpha)+(2+\beta) \mid \eta}\left[1+\max \left\{1, \frac{B_{1}|\eta|^{2}}{2|2+\gamma(1+\beta)|^{2}}((\beta-1)(2+\beta)+2|\mu|(6(1+\alpha)+(2+\right.\right.$
$\left.\left.\beta)|\gamma|)\left|\frac{B_{2}}{B_{1}}\right|\right\}\right]$.
Proof. Let $f \in M H^{q}(\alpha, \beta, \gamma, \emptyset)$, for $\beta \geq 0$,.then there are analytic functions φ and k with $|\varphi(\mathrm{z})| \leq 1$ and $k: U \rightarrow U$, with $\mathrm{k}(0)=0$ and $|k(\mathrm{z})|<1$ such that

$$
\begin{equation*}
\frac{z f(z)^{\prime}}{f(z)}\left(\frac{f(z)}{z}\right)^{\beta}+\frac{1}{\gamma}\left\{\mathrm{z} f^{\prime \prime}(\mathrm{z})+\alpha \mathrm{z}^{2} f^{\prime \prime \prime}(\mathrm{z})\right\}=\varphi(\mathrm{z})(\phi(k(\mathrm{z}))-1) . \tag{2.18}
\end{equation*}
$$

A computation shows that

$$
\begin{equation*}
\frac{z f(z)^{\prime}}{f(z)}\left(\frac{f(z)}{z}\right)^{\beta}=1+a_{2}(1+\beta) z+\frac{(2+\beta)}{2}\left[2 a_{3}+(\beta-1) a_{2}^{2}\right] z^{2}+\ldots \tag{2.19}
\end{equation*}
$$

$\frac{1}{\gamma}\left\{\mathrm{z} f^{\prime \prime}(\mathrm{z})+\alpha \mathrm{z}^{2} f^{\prime \prime \prime}(\mathrm{z})\right\}=\frac{2}{\gamma} a_{2} z+\frac{6}{\gamma}(1+\alpha) a_{3} \mathrm{z}^{2}+\cdots$.
Put (2.8) and (2.19) in (2.18) and equating coefficients in both sides, we get

$$
\begin{equation*}
a_{2}=\frac{1}{1+\beta+\frac{2}{\gamma}} C_{\circ} B_{1} w_{1} \tag{2.20}
\end{equation*}
$$

$a_{3}=\frac{|\gamma|}{6(1+\alpha)+(2+\beta)|\gamma|}\left[B_{1} C_{1} w_{1}+\frac{(1-\beta)(2+\beta) C_{\circ}{ }^{2} B_{1}{ }^{2} \gamma^{2}}{2|2+\gamma(1+\beta)|^{2}} w_{1}{ }^{2}+C_{\circ} B_{1} w_{2}+C_{\circ} B_{2} w_{1}{ }^{2}\right]$.
Applying $\left|C_{n}\right| \leq 1,\left|w_{1}\right| \leq 1$ in (2.20), we get the value of $\left|a_{2}\right|$

Also,
$a_{3}-\mu a_{2}^{2}=\frac{\gamma}{6(1+\alpha)+(2+\beta) \gamma}\left[B_{1} C_{1} w_{1+} C_{\circ} B_{1}\left\{w_{2}-\left(\frac{C_{\circ} B_{1} \gamma^{2}}{2[2+\chi(1+\beta)]^{2}}((\beta-1)(2+\beta)+2 \mu(6(1+\alpha)+\right.\right.\right.$ $\left.\left.\left.(2+\beta) \gamma))-\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right\}\right]$.
By using $\left|c_{n}\right| \leq 1$ and $\left|w_{1}\right| \leq 1$, we obtain
$\left|a_{3}-\mu a_{2}^{2}\right|=\frac{|\gamma|}{6(1+\alpha)+(2+\beta)|\gamma|}\left[B_{1}+B_{1} \left\lvert\,\left\{w_{2}-\left(\frac{C_{\circ} B_{1} \gamma^{2}}{2[2+\chi(1+\beta)]^{2}}((\beta-1)(2+\beta)+2 \mu(6(1+\alpha)+\right.\right.\right.\right.$ $\left.\left.\left.(2+\beta) \gamma))-\frac{B_{2}}{B_{1}}\right) w_{1}{ }^{2}\right\} \mid\right]$.
Now we shall use Lemma (1.5) to

$$
\left|\left\{w_{2}-\left(\frac{C_{\circ} B_{1} \gamma^{2}}{2[2+\gamma(1+\beta)]^{2}}((\beta-1)(2+\beta)+2 \mu(6(1+\alpha)+(2+\beta) \gamma))-\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right\}\right|
$$

yields
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}|\gamma|}{6(1+\alpha)+(2+\beta)|\gamma|} \quad\left[1+\max \left\{1, \left\lvert\, \frac{B_{1} \gamma^{2}}{2[2+\chi(1+\beta)]^{2}}((\beta-1)(2+\beta)+2 \mu(6(1+\alpha)+(2+\beta) \gamma))-\right.\right.\right.$ $\left.\frac{B_{2}}{B_{1}}\right) \mid$,
and hence we can conclude that
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}|\gamma|}{6(1+\alpha)+(2+\beta)|\gamma|}\left[1+\max \left\{1, \frac{B_{1}|\nmid|^{2}}{2|2+\gamma(1+\beta)|^{2}}((\beta-1)(2+\beta)+2|\mu|(6(1+\alpha)+(2+\right.\right.$
$\left.\left.\beta)|\gamma|)\left|\frac{B_{2}}{B_{1}}\right|\right\}\right]$.
If we put $\mu=0$ in above inequality, we get desired estimate $\left|a_{3}\right|$
Corollary (2.14). For $\beta=1$ and $\alpha=0$, the coefficient estimates becomes
$\left|a_{2}\right| \leq \frac{B_{1}|\gamma|}{2+|\gamma|},\left|a_{3}\right| \leq \frac{B_{1}|\gamma|}{6+2|\gamma|}\left[1+\max \left\{1, \frac{2 B_{1}|\gamma|^{2}}{2 \mid 2+\gamma^{2}}+\left|\frac{B_{2}}{B_{1}}\right|\right\}\right]$.
Theorem (2.15). If $f \in \mathcal{A}$ satisfies
$\frac{z f(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{\beta}+\frac{1}{\gamma}\left\{\mathrm{z} f^{\prime \prime}(\mathrm{z})+\alpha \mathrm{z}^{2} f^{\prime \prime \prime}(\mathrm{z})\right\} \ll \phi(\mathrm{z})-1$,
then the following inequalities hold
$\left|a_{2}\right| \leq \frac{B_{1}|\gamma|}{|2+(1+\beta) \gamma|}$,
$\left|a_{3}\right| \leq \frac{B_{1}|\gamma|}{|6(1+\alpha)+(2+\beta) \gamma|}\left[1+\left|\frac{(\beta-1)(2+\beta) B_{1} \gamma^{2}}{2(2+\chi(1+\beta))^{2}}\right|+\left|\frac{B_{2}}{B_{1}}\right|\right]$,
and for any complex number μ
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}|\gamma|}{|6(1+\alpha)+(2+\beta) \gamma|}\left[1+\frac{B_{1}|\gamma|^{2}}{2|2+\gamma(1+\beta)|^{2}}\left|(1-\beta)(2+\beta)-2 \mu\left(\frac{6}{\gamma}(1+\alpha)\right)\right|+(2+\beta)\right)\left|+\left|\frac{B_{2}}{B_{1}}\right|\right]$.
Proof. The results follows by taking $\mathrm{w}(\mathrm{z})=\mathrm{z}$ in the proof of Theorem (2.13)

References

1. Duren, P. 1977. "Subordination," in complex analysis .Lecture Note in mathematics,Springer, Berlin. Germany, 599: 22-29.
2. M.S.Robertson, M.S. 1970. " Quasi-subordination and coefficient conjectores", Bulletin of the American Mathematical Soceity,76: 1-9
3. Altmtas, O. and Owa, S. 1970. "Majorization and Quasi-subordination for certain of analytic functions" Proceeding of the Japan Academy A, 68(76): 1-9.
4. Lee, S.Y. 1975. " Quasi-subordination functions and coefficient conjectores" Journal of the Korem Mathematical Soceity, 12(1): 43-50.
5. Ren, F. Y., Owa, S. and Fukui, S. 1991. "Some Inequalities on Quasi-subordination functions" Bulletin of the Australian Mathematical Soceity, 34(2): 317-324,1991.
6. Shanmugam, T.N., Sivasubramanian, S. and Darus, M. 2007. Fekete-Szego inequality forcertain classes of analytic functions, Mathematica, 34: 29-34.
7. Shareef, Z., Hussain, S. and Darus, M. 2012. Convolution operators in geometric function theory, Journal of Inequalities and Applications, 2012 (213), 11 pages.
8. Srivastava, H.M., Mishra, A.K. and Das, M.K. 2001. The Fekete-Szego problem for subclass of close-to-convex functions, Complex Variables Theory Appl., 44(2): 145-163.
9. Srivastava, H.M. and Owa, 1984. An application of the fractional derivative, Math. Japon 29 (1984): 383-389.
10. Tuneski, N. and Darus, M. 2002. Fekete-Szego functional for non-Bazilevi functions, Act Math. Acad. Paedagog. Nyházi. (N.S.), 18 (2): 63-65.
11. Juma,A.R.S. 2016. Coefficient bounds for quasi-subordination classes, Diyala Journal for pure sciences, 12(3): 68-82.
12. Keogh, F.R. and Merkes, E.P. 1969. A coefficient Inequality for certain classes of analytic functions,Proc.Amer.Math.Soc.20: 8-12.

[^0]: *Email: dr_juma@hotmail.com

