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Abstract

A submodule F of an R-module E is called small in E if whenever F+ W = E , for
some submodule W of E , implies W = E . In this paper , we introduce the notion of
Z-small submodule , where a proper submodule F of an R-module E is said to be Z-
small in E if F+ W = E , such that W 2 Z,(E) , then W = E , where Z,(E) is the
second singular submodule of E . We give some properties of Z-small submodules
. Moreover , by using this concept , we generalize the notions of hollow modules ,
supplement submodules, and supplemented modules into Z-hollow modules, Z-
supplement submodules, and Z-supplemented modules. We study these concepts
and provide some of their relations .

Keywords: small submodules , hollow modules ,supplement submodules ,essential
ideals .
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1. Introduction
In this paper , all rings are associative with identity and all modules are unital left R-modules,
unless otherwise specified . Let R be a ring and E be a module . A proper submodule F of E is called
small (FKE),if F+W=E, where W<E implies W=E [1], [ 2]. As a generalization of this

concept , we introduce Z-small submodule , where a proper submodule F of E is said to be Z-small of
E (F «,E),if F+ W=E and W 2 Z,(E), then W = E , where Z,(E) is the second singular

submodule of E (or Goldie torsion ) defined by Z(%) = ZZZ((;) , where Z(E) = {x € E: xI = 0, for

some essential ideal I of R}. In fact, Z(E) = {x € E:ann(x) <__ R} where ann(x) = {r € R:rx = 0}
[3].

In section two of this paper , we study this concept and provide some examples and basic properties of
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these submodules and other related concepts .

In section three, we introduce and study the notions of Z-hollow modules and Z-supplement modules
as generalizations of hollow modules and supplement modules, respectively , where a non zero R-
module E is called Z-hollow module if every proper submodule is Z-small and a submodule F of an R-
module E is called Z-supplement of a submodule Win Eif F+W=Eand FNW <«, F. We give
some examples and properties for these two concepts .

2 . Z-small submodules

In this section , we introduce the notion of Z-small submodule and give its basic properties .

Let E be an R-module. Recall that Z(E) = {x € E:ann(x) <__ R} is called singular submodule of E ,
where ann(x) = {r € R: rx = 0} . If Z(E) = E, then E is called a singular module . If Z(E) = 0, then
E is called a nonsingular module [3].

Definition (2.1) : Let E be an R-module and N be a submodule of E . N is said to be Z-small in E
(briefly N <, E) , if N+ B = E, such that B 2 Z,(E), thenB = E ,

where Z,(E) is the second singular submodule defined by Z(%) = % [3].

Remarks and Examples (2.2)

1) (0)«,E.

Proof : Suppose that (0) +B = E, B 2 Z,(E), hence B = E . Therefore, (0) <, E .

2) It is clear that every small submodule is Z-small , but the converse is not true in general; for
example: in the Z-module Z¢ , every proper submodule of Zs is Z-small since, for every proper
submodule A of Zg, there is a submodule B of Zg such that A + B = Z¢ with B 2 Z,(Zs) = Z¢ and
Ze #+ B . But every proper submodule of Zg is not small in Zg .

3) In the Z-module, N = 3Z is not Z-small , since if we take B = 2Z as a submodule of Z, then
N+B=ZandB27Z,(Z) =0.ButB#7Z.

4) If NK,EandA <N ,thenA <, E.

Proof : Assume that A+ B = E andB 2 Z,(E), hence N + B = E. Since N «, E , then we have B =E
. Therefore, A <, E .

5) If X, Y are submodules of a module E such that X <, Y ,then X <, E .

Proof : suppose that X # 0 and X + B = E, such that B 2 Z,(E) , where B < E . Therefore, (X+ B =
E)YnY , thus X+BnNnY =Y . Now , since B2 Z,(E) , then we have BNY 2Z,(E)nY . But
Z,(E)nY =7Z,(Y) [4] , hence BNY 2 Z,(Y) . Since X K, Y, thus BNY =Y , which implies that
YcB,soXcB.ThereforeX+B=B.ButX+ B =E,thusB=Eandhence X «, E .

6) If KSL<E and K<, L, thenitis not necessarily that L <, E, as the following example
shows:

Consider the Z-module Z . If K = 0 and L = 2Z, thenK «, Z, but L is not Z-small in Z .

7) Let A<E and B <E, where E is an R-module . Then A «, E and B «, E if and only if A+
B<«,E.

Proof : (=) Suppose that A «, E and B «, E and suppose that A + B + C = E with C2 Z,(E) . Thus
A+ (B+C)=E.Since C27Z,(E),thenC+B2Z,(E) . ButA «, E, thus E = C+ B . Also, since
C(2Z;(E)andB «, E ,wehave C=E.

(<) Now suppose that A+ B «, E . To prove that A «, E , suppose that A+ C=E and C 2 Z,(E) .
Then A+ B+ C=E.But A+ B«,E , thus E = C and hence A «, E . Similarly, we can prove
B<«,E.

8) Let A; be proper submodule of an R-module E,i=1,2,3,....,n.Then, A; &, E, forevery i
Jifandonlyif ¥t A; <, E.

Proof : Itis clear by (7) .

Proposition (2.3):

Let f : E — E be an R-homomorphism and N «, E , then f(N) «, E .

Proof: Let f(N) + B = E with B2 Z,(E) . Now, for every €E, f(x) € E , so f(x)= f(n) +b ,
where n € N and b € B . Thus b = f(x) — f(n) = f(x —n) € B, then (x —n) € f(B) . Therefore
=n+@x-n)EN+f7(B) , hence E=N+f"(B) . Now , B2Z,(E) we have f'(B)2
f ' (Z2(E)) . But £7'(Z,(E)) 2 Z,(E) (One can easily show this ) . Therefore f~'(B) 2 Z,(E), so
f~'(B) =E (since N <<, E).ff (B) = f(E) N B, so that f(E) = f(E) N B, that is f(E) € B . Since
f(N) € f(E), then f(N) € B . On the other hand , we have f(N) + B = E , hence B = E and hence
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f(N) «, E .
Corollary (2.4) :
Let N, K be submodules of an R-module E , such that K < Nand N «, E. Theng &, E .

Proof : Let m:E — E be an R-homomorphism . Since N «, E, then by proposition (2.3) , m(N) <, E

which implies that g«zg .

Corollary (2.5) :

Let E be an R-moduleand H< N < L < E, such that% <, 5 , then % <, %

Proof : Let f :E—>§ be a map defined by f(x + H) =x+ N,vx € E . It is clear that f is an
. . . L E L E . . . L E

epimorphism . Since 5 Kz g then f(ﬁ) NI which implies that N <2y

Remark (2.6) :

If H is a proper submodule of an R-module E and K «, E , where K < H and % &, g , then it is not

necessarily that H <, E , as the following example shows :
Consider the Z-module Z . IfH=<2> ,K=<4>,<4>4+<2>=<2>with< 2 >27Z,((2))
H <2> E

vA . H E .
,then K «, H, T Zo , T Z4. One can easily show that A But H is not Z-small

of E,since<2>+<3>=Zand<3>27Z,(Z)=0,but Z#<3>.
Proposition (2.7) :
Let E = E;®E, and N <E, such that N = H;®H, , where H; < E; and H, < E, . Then N «, E if and
only if H; «, E; and H, <, E, .
Proof : (=) Let p,: E;®E, — E; be the natural projection and suppose that N <, E . Then
p1 (N) «, E; (by proposition 2.3) . Thus, H; <, E; . Similarly, H, <, E, .
(&) Let i;: E; — E{@®E, be the inclusion map . Thus, #1(E;) <, E;®E, , which implies that H1<<E,
by proposition (2.3) . Also, i,: E; — E;@E,, 2(E;) = H, <, E ( by proposition 2.3) . Thus H; +
H, «, E ( by remark and example 2.2 ,7) . Thus N «, E.
Lemma (2.8) :
Let E be an R-moduleand H < N < E . If N «, E and N is a direct summand of E , then H <, N .
Proof : Since N is a direct summand of E , then E = N@L , for some L<E . But H «, E and
H = H®(0) , thus by proposition (2.7) ,H «, N .
Proposition (2.9) :
Let E be an R-module and T < H < E, such that T «, E, and H is a direct summand of E , then
T «, H.
Proof : Let T+ B =H and B2 Z,(H) , where B S H . Since H <®E , then H®(= E . Hence,
E=(T+B)®C=T+ (B®C)and (B () 2 Z(H)® C. But Z,(H)®C 2 Z,(H)DZ(C) = Z2(E)
[7 and 4 , proposition 2.2.13 ], so (B®(C) 2 Z,(E)and , since T «, E , then E = B@(C. But
H®(C=E,B € H, therefore B=Hand T «, H.
Proposition (2.10) :
Let A be a singular submodule of an R-module E . Then A isa Z-small in E .
Proof : Let A+ B = E and B 2 Z,(E) . Since A is singular , then A = Z,(A) . But Z,(A) = Z,(E) n A
,SOA € Z,(E) . Hence AS B.Then B = E, therefore A «<, E .
We need the following definition for the following proposition .
Recall that " an R-module E is said to be prime if ann(x) = ann(y) , for every non-zero element x , y
inE"[5].
Definition (2.11) : [6]

A submodule H of E is said to be t-essential in E ( denoted by H < (sE ) , if for every submodule L
of E,HNL < Z,(E) implies that L. < Z,(E) .
Remark (2.12) : [7]
"Z,(E) = {x € E:anng < (sR}, where anng(x) = {r e Rizx = 0} ".
Proposition (2.13) :
If E is prime and Z,(E) # 0, then A <, E , for every proper submodule A of E .
Proof : Let A+ B = E and B 2 Z,(E) . Since Z,(E) # 0, then there exists x € Z,(E) , hence
ann(x) < (s E . But E is prime , so for every a € Aand a € Z,(E) , ann(a) = ann(x), hence
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ann(a) < s Eand a € Z,(E) . This implies that A € Z,(E) , thusA+ B < Z,(E) + B.ButE=A +
Band B2 Z,(E),sothatB=E.Hence A <, E.

Example (2.14) :

The last Proposition is not true for small submodules; for example : let E = Z,@®Z, as Z-module is
prime and Z,(E) # 0 . All proper submodules of E are Z-small, but note that N = Z,@®(0) is not small
In the following proposition, we show that the two concepts of small submodules and Z-small
submodules are equivalent if the module is nonsingular.

Proposition (2.15) :

Let E be a nonsingular module and H < E , then H « E if and only if H is Z-small submodule of E .
Proof : (=) Itis clear by remarks and examples (2.2, 2) .

(=)LetH+L=E,L<E,L=z (0). Since E is nonsingular , then Z,(E) = 0, hence L > Z,(E) . But
H «, E,sothat L=E, therefore H < E .

Note (2.16) :

If f:E — Eis epimorphism , then it is not necessarily that f ~'(Z,(E)) = Z,(E); for example : Let

7 — é—) =~ 7, , where Z and Z. are Z-modules and = is epimorphism . Notice that Z,(Z) = 0 and

Z,(Z,) =7, ,but w'(Z,) =Z + 7Z,(Z) = 0.
Hence , in general, if we have f:E — E being an epimorphism, such that E is nonsingular module,
and E is singular module, then f~'(Z,(E)) # Z,(E) .
Recall that " a module E is a multiplication, if for every submodule H of E, H = (H:E)E , where
(H:E) = {re RixE € H} " [8].
Proposition (2.17) : [9, p 18]
Let E be a finitely generated faithful multiplication module over a commutative ring R , and I, be
ideals of R, then
1) EZx(R) =Z(E).
2) HfI<(sR,thenEI< (E.
3) K< sEandK=EIthenl < ;R .
4) IfI<i(es),thenEI < (s EJ, and the converse is hold if R is regular .
Proposition (2.18) :
Let E be a finitely generated faithful multiplication R-module and H < E . Then H «, E if and only if
(H:E) <, R.
Proof : (=) Suppose that H «, E . To prove that (H: E) <, R , suppose that (H: E) + I = R, where |
is anideal of Rand I 2 Z,(R) . Then (H: E)E + IE = E and hence H + IE = E . Now , since Z,(R) S |
, then Z,(R)E € IE . But by proposition (2.17) we have Z,(R)E = Z,(E) , so Z,(E) € IE . Since
H<«, E,thenE=IEandhence R=1,[8].Thus (H:E) «, R.
(<) suppose that H + K = E and K 2 Z,(E). We want to prove that K = E . Since E is multiplication,
then H = (H: E)E and K = (K:E)E . Thus, (H: E)E + (K: E)E = E . Also, since E is finitely generated
faithful multiplication module , then we have (H:E) + (K:E) =R [8] and Z,(E) = Z,(R)E, by
proposition (2.17). Thus, Z,(R)E € K , which implies that Z,(R)E < (K:E)E . Therefore Z,(R) <
(K:E) and since (H:E) <, R, thenR = (K:E) . Hence E = (K: E)E = K and therefore H <, E .
Remark (2.19) :
The condition that E is faithful cannot be dropped from the part (=) of proposition (2.18) , as the
following example shows : If E is the Z-module Z,, and H = (4) , then H «, E, but (H:E) = 4Z is
not Z-smallinZ.
3. Z-Hollow modules
In this section, we introduce the Z-hollow module as a generalization of hollow module and study
some of its basic properties .

Recall that an R-module E # 0 is called hollow module if every proper submodule of E is small in
E[1].
Now , we define the Z-hollow modules.
Definition (3.1) :
An R-module E # 0 is called Z-hollow if every proper submodule of E is Z-small.
Remarks and Examples (3.2) :
1) Ze as Z-module is Z-hollow since every proper submodule of Zs is Z-small .
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Z as Z-module is not Z-hollow since 3Z is not Z-small in Z , as we show in remarks and examples (
22,3).

2) It is clear that every hollow module is Z-hollow , but the convers is not true; for example the Z-
module Ze is Z-hollow but not hollow .

Proposition (3.3) :

The epimorphic image of Z-hollow module is Z-hollow module .

Proof : Let E be a Z-hollow module , E be a module , and f : E — E be an epimorphism. Suppose that
A is a proper submodule of E, such that H" + K" = E" and K’ 2 Z,(E"). Since f is an epimorphism, then
f(Z2(E)) € Z,(E) . Now, notice that ™! (H) <E because if ™' (H) =E, then f(f'(H)) = f(E) =E
and hence H = E’, which is a contradiction . Thus f™! (H) <E . Also, Z»(E) € ™' (f(Z»(E))) € [
(Zo(E))< 7' (K) . Hence f71 (K') 2 Z,(E) . Now, since E is Z-hollow, thus ™! (H) «, E and we get
E = 71 (K). Hence f(f(K)) = f(E) = E, since f is epimorphism f(f(K)) =K. Thus K = E and
hence E is Z-hollow module .

Corollary (3.4) :

Let E be an R-module . If E is Z-hollow module , then 5 is Z-hollow for every proper submodule H of

E.

Corollary (3.5) :

A direct summand of a Z-hollow module is Z-hollow module .

Proof : Let E be a Z-hollow R-module and H be a direct summand of E . Hence E = H®K , for some

submodule K of E . Then by the second isomorphism theorem E =~ H . By corollary (3.4), H is Z-

hollow .

Proposition (3.6) :

Let E be a finitely generated faithful multiplication R-module . Then E is Z-hollow if and only if R is
Z-hollow .

Proof: It follows by proposition (2.18) .

Proposition (3.7) :

Let E be an R-module E # 0. Then E is Z-hollow module if and only if there exists H «, E and %

is Z-hollow .
Proof : (=) It follows directly by taking H =0 .
(&) To prove that E is Z-hollow , let A < E and assume that A + B = E with B 2 Z,(E) . We must

prove that B = E . Now, £=A+“+ﬂ but B+ H # E ( since H «, E ) and so = # = . Then
%2@ But ZZ(E)+HDZZ( =). To show that let x+HeZZ( ), S0 ann(x + H) < s R

Butx+(0)Sx+H, hence ann(x + (0)) 2 ann(x + H)[10] . Therefore ann(x + (0)) = ann(x) <
tesR , and hence € Z,(E) . Thus +H € ZZ(E)+H , then — B+H E

DZZ( ), but— is Z-hollow , so—=ﬁ.
Hence B+H=E ,butH «, E,soB=E. Therefore Eis Z- hOIIOW module
Recall that " a submodule H of E is called fully invariant if for each endomorphism from E to E , f (H)
cCH",[3,p4].
" An R-module E is called duo if every submodule of E is fully invariant " [11].
Proposition (3.8) :
Let E; and E, be R-modules , E = E; @®E,, such that E is a duo module . Then E is Z-hollow if and
only if E; and E; are Z-hollow modules , provided that H N E; # E; foreachi=12H<E.
Proof : (=) It follows directly by (3.5) .
(&) Let H< E . Since H is fully invariant , then H = (HNE;)®(HNE;) by [11, lemma 3.1] .
Now, (H N E,) and (H N E;) are proper submodules of E: and E: respectively . But E; and E, are Z-
hollow modules , thus HNE; «, E; and HNE, «, E, . Then by proposition (2.7), H =
(HNE)®HNE,) «,E . Thus E is a Z-hollow module .
Recall that " an R-module E is called distributive if for all H,K,L<E ,Hn(L+K)=(HNL) +
(HnK)"[12].
Proposition (3.9) :
Let E = E;@E; be a distributive R-module such that E; , E; < E . Then E is a Z-hollow if and only if
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E: and E: are Z-hollow, provided that foreachH<E,HNE; #E;,Vi=1, 2

Proof : (=) It follows by corollary (3.5) .

(&) LetH < E.. Since E is distributive , then H = (H n E;)@®(H N E;) and then by the same proof of
proposition (3.8), H«,E . Thus E is Z-hollow .

Recall that a submodule K of an R-module E is called supplement of VifE=K+Vand Visa
minimal element in the set of submodules H, where H < E with V+H = E . Equivalently , a
submodule K of E is called supplement of VifK+V =Eand KNV « K[13, 14].

An R-module E is called supplemented if every submodule of E is supplement .

Let E be an R-module , then E is called amply supplemented module if, for any two submodules H
and F of E with H 4+ F = E , F has asupplement of Hin E .

Definition (3.10) :

A submodule K of an R-module E is called Z-supplementof VIfK+V=Eand KNV «, K.

An R-module E is called Z-supplemented if every submodule of E is Z-supplement .

Let E be an R-module , then E is called amply Z-supplemented module if, for any two submodule H
and F of Ewith H+ F = E , F has a Z-supplement of Hin E .

It is clear that every supplement submodule is Z-supplement , but the converse is not true; for example
:K=<2>,V=<3>inthe Z-module Z,, . K+ V=27Z,, , KNV =< 6 > and is Z-small in K , but
it is not small in K .

An R-module E is called Z-lifting if for any submodule N of E , there exist submodules K , H of E
such that E = KGH with K < Nand NN H «, N [15] .

Proposition (3.11) :

Every Z-hollow module is amply Z-supplemented .

Proof : Let E be a Z-hollow , then E is Z-lifting [15] . Also, since every Z-lifting is Z-amply
supplemented , thus E is Z-amply supplemented.
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