Hamad and Elewi

Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2708-2713 DOI: 10.24996/ijs.2021.62.8.24





ISSN: 0067-2904

# **Z-Small Submodules and Z-Hollow Modules**

Amina T. Hamad, Alaa A. Elewi

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 7/2/2021

Accepted: 17/5/2021

#### Abstract

A submodule F of an R-module E is called small in E if whenever F + W = E, for some submodule W of E, implies W = E. In this paper, we introduce the notion of Z-small submodule, where a proper submodule F of an R-module E is said to be Zsmall in E if F + W = E, such that  $W \supseteq Z_2(E)$ , then W = E, where  $Z_2(E)$  is the second singular submodule of E . We give some properties of Z-small submodules . Moreover, by using this concept, we generalize the notions of hollow modules, supplement submodules, and supplemented modules into Z-hollow modules, Zsupplement submodules, and Z-supplemented modules. We study these concepts and provide some of their relations.

Keywords: small submodules , hollow modules , supplement submodules , essential ideals .

المقاسات الجزئية الصغيرة من النمط –Z و المقاسات المجوفة من النمط –Z

امنه طعمه حمد ، ألاء عباس عليوي

قسم الرياضيات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق

الخلاصة

يقال للمقاس الجزئي F من المقاس E متى ما كان W+F=E لمقاس جزئي ما W من E يؤدي الى W=E . في بحثنا هذا أعطينا تعريف المقاس الجزئي الصغير من النمط Z ، حيث المقاس الجزئي الفعلي F من المقاس E يقال له انه مقاس جزئي صغير من النمط Z في E اذا كان F+W=E و W⊇(Z<sub>2</sub>(E) فأن W=E ، حيث (Z<sub>2</sub>(E هو المقاس الجزئي المنفرد الثاني في E . كذلك اعطينا تاعماما للمفاهيم : المقاس المجوف ، المقاسات الجزئية ، المقاس الجزئي المكمل والمقاسات المكملة الى المقاسات المجوفة من النمط Z و المقاسات الجزئية المكملة من النمط Z والمقاسات المكملة من النمط Z . تم دراسة هذه المفاهيم وقد أعطينا بعض العلاقات المتعلقة بهم.

#### 1. Introduction

In this paper, all rings are associative with identity and all modules are unital left R-modules, unless otherwise specified. Let R be a ring and E be a module. A proper submodule F of E is called small (F  $\ll$  E), if F + W = E, where W  $\leq$  E implies W = E [1], [2]. As a generalization of this concept, we introduce Z-small submodule, where a proper submodule F of E is said to be Z-small of E (F  $\ll_z E$ ), if F + W = E and W  $\supseteq Z_2(E)$ , then W = E, where  $Z_2(E)$  is the second singular submodule of E ( or Goldie torsion ) defined by  $Z(\frac{E}{Z(E)}) = \frac{Z_2(E)}{Z(E)}$ , where  $Z(E) = \{x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x \in E : xI = 0, \text{ for } x$ some essential ideal I of R}. In fact,  $Z(E) = \{x \in E: ann(x) \leq_{ess} R\}$  where  $ann(x) = \{r \in R: rx = 0\}$ [3].

In section two of this paper, we study this concept and provide some examples and basic properties of

<sup>\*</sup>Email: amnatima92@gmail.com

these submodules and other related concepts .

In section three, we introduce and study the notions of Z-hollow modules and Z-supplement modules as generalizations of hollow modules and supplement modules, respectively, where a non zero R-module E is called Z-hollow module if every proper submodule is Z-small and a submodule F of an R-module E is called Z-supplement of a submodule W in E if F + W = E and  $F \cap W \ll_z F$ . We give some examples and properties for these two concepts.

#### 2. Z-small submodules

In this section , we introduce the notion of Z-small submodule and give its basic properties .

Let E be an R-module. Recall that  $Z(E) = \{x \in E: ann(x) \leq_{ess} R\}$  is called singular submodule of E, where  $ann(x) = \{r \in R : rx = 0\}$ . If Z(E) = E, then E is called a singular module . If Z(E) = 0, then E is called a nonsingular module [3].

**Definition** (2.1) : Let E be an R-module and N be a submodule of E. N is said to be Z-small in E (briefly  $N \ll_z E$ ), if N + B = E, such that  $B \supseteq Z_2(E)$ , then B = E,

where  $Z_2(E)$  is the second singular submodule defined by  $Z(\frac{E}{Z(E)}) = \frac{Z_2(E)}{Z(E)}$  [3].

#### **Remarks and Examples (2.2)**

1) (0)  $\ll_z E$ .

**Proof**: Suppose that (0) +B = E,  $B \supseteq Z_2(E)$ , hence B = E. Therefore, (0)  $\ll_z E$ .

2) It is clear that every small submodule is Z-small, but the converse is not true in general; for example: in the Z-module  $Z_6$ , every proper submodule of  $Z_6$  is Z-small since, for every proper submodule A of  $Z_6$ , there is a submodule B of  $Z_6$  such that  $A + B = Z_6$  with  $B \not\supseteq Z_2(Z_6) = Z_6$  and  $Z_6 \neq B$ . But every proper submodule of  $Z_6$  is not small in  $Z_6$ .

3) In the Z-module, N = 3Z is not Z-small, since if we take B = 2Z as a submodule of Z, then N + B = Z and B  $\supseteq$  Z<sub>2</sub>(Z) = 0. But B  $\neq$  Z.

4) If  $N \ll_z E$  and A < N , then  $A \ll_z E$  .

**Proof :** Assume that A + B = E and  $B \supseteq Z_2(E)$ , hence N + B = E. Since  $N \ll_z E$ , then we have B = E. Therefore,  $A \ll_z E$ .

5) If X, Y are submodules of a module E such that  $X \ll_z Y$ , then  $X \ll_z E$ .

**Proof :** suppose that  $X \neq 0$  and X + B = E, such that  $B \supseteq Z_2(E)$ , where B < E. Therefore,  $(X + B = E) \cap Y$ , thus  $X + B \cap Y = Y$ . Now, since  $B \supseteq Z_2(E)$ , then we have  $B \cap Y \supseteq Z_2(E) \cap Y$ . But  $Z_2(E) \cap Y = Z_2(Y)$  [4], hence  $B \cap Y \supseteq Z_2(Y)$ . Since  $X \ll_z Y$ , thus  $B \cap Y = Y$ , which implies that  $Y \subset B$ , so  $X \subset B$ . Therefore X + B = B. But X + B = E, thus B = E and hence  $X \ll_z E$ .

6) If  $K \le L \le E$  and  $K \ll_z L$ , then it is not necessarily that  $L \ll_z E$ , as the following example shows:

Consider the Z-module Z. If K = 0 and L = 2Z, then  $K \ll_z Z$ , but L is not Z-small in Z.

7) Let A < E and B < E , where E is an R-module . Then A  $\ll_z$  E and B  $\ll_z$  E if and only if A + B  $\ll_z$  E .

**Proof :** ( $\Rightarrow$ ) Suppose that A  $\ll_z E$  and B  $\ll_z E$  and suppose that A + B + C = E with C  $\supseteq Z_2(E)$ . Thus A + (B + C) = E. Since C  $\supseteq Z_2(E)$ , then C + B  $\supseteq Z_2(E)$ . But A  $\ll_z E$ , thus E = C + B. Also, since C  $\supseteq Z_2(E)$  and B  $\ll_z E$ , we have C = E.

(⇐) Now suppose that A + B  $\ll_z E$ . To prove that A  $\ll_z E$ , suppose that A + C = E and C  $\supseteq Z_2(E)$ . Then A + B + C = E. But A + B  $\ll_z E$ , thus E = C and hence A  $\ll_z E$ . Similarly, we can prove B  $\ll_z E$ .

8) Let A<sub>i</sub> be proper submodule of an R-module E, i = 1, 2, 3, ..., n. Then, A<sub>i</sub>  $\ll_z E$ , for every i, if and only if  $\sum_{i=1}^{n} A_i \ll_z E$ .

**Proof**: It is clear by (7).

**Proposition** (2.3):

Let  $f : E \to \acute{E}$  be an R-homomorphism and  $N \ll_z E$ , then  $f(N) \ll_z \acute{E}$ .

**Proof:** Let f(N) + B = E with  $B \supseteq Z_2(E)$ . Now, for every  $\in E$ ,  $f(x) \in E$ , so f(x) = f(n) + b, where  $n \in N$  and  $b \in B$ . Thus  $b = f(x) - f(n) = f(x - n) \in B$ , then  $(x - n) \in f^{-1}(B)$ . Therefore  $= n + (x - n) \in N + f^{-1}(B)$ , hence  $E = N + f^{-1}(B)$ . Now,  $B \supseteq Z_2(E)$  we have  $f^{-1}(B) \supseteq$  $f^{-1}(Z_2(E'))$ . But  $f^{-1}(Z_2(E)) \supseteq Z_2(E)$  (One can easily show this). Therefore  $f^{-1}(B) \supseteq Z_2(E)$ , so  $f^{-1}(B) = E$  (since  $N \ll_z E$ ).  $ff^{-1}(B) = f(E) \cap B$ , so that  $f(E) = f(E) \cap B$ , that is  $f(E) \subseteq B$ . Since  $f(N) \subseteq f(E)$ , then  $f(N) \subseteq B$ . On the other hand, we have f(N) + B = E, hence B = E and hence  $f(N) \ll_z E$ .

Corollary (2.4) :

Let N, K be submodules of an R-module E, such that  $K \leq N$  and  $N \ll_z E$ . Then  $\frac{N}{K} \ll_z \frac{E}{K}$ .

**Proof**: Let  $\pi: E \longrightarrow \frac{E}{K}$  be an R-homomorphism. Since  $N \ll_z E$ , then by proposition (2.3),  $\pi(N) \ll_z \frac{E}{K'}$ which implies that  $\frac{N}{K} \ll_z \frac{E}{K}$ 

# Corollary (2.5) :

Let E be an R-module and H  $\leq$  N  $\leq$  L  $\leq$  E, such that  $\frac{L}{H} \ll_z \frac{E}{H}$ , then  $\frac{L}{N} \ll_z \frac{E}{N}$ .

**Proof**: Let  $f: \frac{E}{H} \to \frac{E}{N}$  be a map defined by f(x + H) = x + N,  $\forall x \in E$ . It is clear that f is an epimorphism. Since  $\frac{L}{H} \ll_z \frac{E}{H}$ , then  $f(\frac{L}{H}) \ll_z \frac{E}{H}$ , which implies that  $\frac{L}{N} \ll_z \frac{E}{N}$ .

# **Remark (2.6) :**

If H is a proper submodule of an R-module E and K  $\ll_z E$ , where K  $\leq$  H and  $\frac{H}{\kappa} \ll_z \frac{E}{\kappa}$ , then it is not necessarily that  $H \ll_z E$  , as the following example shows :

Consider the Z-module Z. If  $H = \langle 2 \rangle$ ,  $K = \langle 4 \rangle$ ,  $\langle 4 \rangle + \langle 2 \rangle = \langle 2 \rangle$  with  $\langle 2 \rangle \supseteq Z_2(\langle 2 \rangle)$ , then  $K \ll_z H$ ,  $\frac{H}{K} = \frac{\langle 2 \rangle}{\langle 4 \rangle} \simeq Z_2$ ,  $\frac{E}{K} = \frac{Z}{\langle 4 \rangle} \simeq Z_4$ . One can easily show that  $\frac{H}{K} \ll_z \frac{E}{K}$ . But H is not Z-small of E, since  $\langle 2 \rangle + \langle 3 \rangle = Z$  and  $\langle 3 \rangle \supseteq Z_2(Z) = 0$ , but  $Z \neq \langle 3 \rangle$ .

#### **Proposition** (2.7):

Let  $E = E_1 \oplus E_2$  and  $N \le E$ , such that  $N = H_1 \oplus H_2$ , where  $H_1 \le E_1$  and  $H_2 \le E_2$ . Then  $N \ll_z E$  if and only if  $H_1 \ll_z E_1$  and  $H_2 \ll_z E_2$ .

**Proof**:  $(\Rightarrow)$  Let  $\rho_1: E_1 \oplus E_2 \to E_1$  be the natural projection and suppose that  $N \ll_z E$ . Then  $\rho_1$  (N)  $\ll_z E_1$  (by proposition 2.3). Thus,  $H_1 \ll_z E_1$ . Similarly,  $H_2 \ll_z E_2$ .

 $(\Leftarrow)$  Let  $i_1: E_1 \rightarrow E_1 \oplus E_2$  be the inclusion map . Thus,  $i_1(E_1) \ll_z E_1 \oplus E_2$ , which implies that  $H^{1 \ll_z} E_1$ , by proposition (2.3). Also,  $i_2: E_2 \rightarrow E_1 \oplus E_2$ ,  $i_2(E_2) = H_2 \ll_z E$  (by proposition 2.3). Thus  $H_1 + H_2$  $H_2 \ll_z E$  ( by remark and example 2.2 , 7 ) . Thus  $N \ll_z E$  .

#### Lemma (2.8) :

Let E be an R-module and H < N < E . If N  $\ll_z$  E and N is a direct summand of E , then H  $\ll_z$  N .

**Proof :** Since N is a direct summand of E , then  $E = N \oplus L$  , for some L < E . But  $H \ll_z E$  and  $H = H \oplus (0)$ , thus by proposition (2.7),  $H \ll_z N$ .

#### **Proposition** (2.9) :

Let E be an R-module and T  $\leq$  H  $\leq$  E, such that T  $\ll_z$  E, and H is a direct summand of E, then  $T \ll_7 H$ .

**Proof** : Let T + B = H and  $B \supseteq Z_2(H)$ , where  $B \subseteq H$ . Since  $H \leq \oplus E$ , then  $H \oplus C = E$ . Hence,  $E = (T + B) \oplus C = T + (B \oplus C)$  and  $(B \oplus C) \supseteq Z_2(H) \oplus C$ . But  $Z_2(H) \oplus C \supseteq Z_2(H) \oplus Z_2(C) = Z_2(E)$ [7 and 4, proposition 2.2.13], so  $(B \oplus \mathbb{C}) \supseteq Z_2(E)$  and , since  $\mathbb{T} \ll_z \mathbb{E}$ , then  $E = B \oplus \mathbb{C}$ . But  $H \oplus C = E$ ,  $B \subseteq H$ , therefore B = H and  $T \ll_z H$ .

# **Proposition (2.10) :**

Let A be a singular submodule of an R-module E . Then A is a Z-small in E .

**Proof :** Let A + B = E and  $B \supseteq Z_2(E)$ . Since A is singular, then  $A = Z_2(A)$ . But  $Z_2(A) = Z_2(E) \cap A$ , so  $A \subseteq Z_2(E)$ . Hence  $A \subseteq B$ . Then B = E, therefore  $A \ll_z E$ .

We need the following definition for the following proposition .

Recall that " an R-module E is said to be prime if ann(x) = ann(y), for every non-zero element x, y in E " [5].

# **Definition (2.11) :** [6]

A submodule H of E is said to be t-essential in E (denoted by  $H \leq tesE$ ), if for every submodule L of E,  $H \cap L \leq Z_2(E)$  implies that  $L \leq Z_2(E)$ .

#### **Remark (2.12) :** [7]

"  $Z_2(E) = \{x \in E: ann_R \le tesR\}$ , where  $ann_R(x) = \{r \in R: rx = 0\}$ ".

# **Proposition** (2.13):

If E is prime and  $Z_2(E) \neq 0$ , then A  $\ll_z E$ , for every proper submodule A of E.

**Proof**: Let A + B = E and  $B \supseteq Z_2(E)$ . Since  $Z_2(E) \neq 0$ , then there exists  $x \in Z_2(E)$ , hence

 $\operatorname{ann}(x) \leq \operatorname{tes} E$ . But E is prime, so for every  $a \in A$  and  $a \in \mathbb{Z}_2(E)$ ,  $\operatorname{ann}(a) = \operatorname{ann}(x)$ , hence

 $\operatorname{ann}(a) \leq \operatorname{tes} E$  and  $a \in Z_2(E)$ . This implies that  $A \subseteq Z_2(E)$ , thus  $A + B \subseteq Z_2(E) + B$ . But  $E = A + B \subseteq Z_2(E)$ . B and B  $\supseteq$  Z<sub>2</sub>(E), so that B = E. Hence A  $\ll_z E$ .

# Example (2.14) :

The last Proposition is not true for small submodules; for example : let  $E = Z_2 \bigoplus Z_2$  as Z-module is prime and  $Z_2(E) \neq 0$ . All proper submodules of E are Z-small, but note that  $N = Z_2 \oplus (0)$  is not small In the following proposition, we show that the two concepts of small submodules and Z-small submodules are equivalent if the module is nonsingular.

# **Proposition** (2.15) :

Let E be a nonsingular module and H < E, then  $H \ll E$  if and only if H is Z-small submodule of E. **Proof**: ( $\Rightarrow$ ) It is clear by remarks and examples (2.2, 2).

 $(\Leftarrow)$  Let H + L = E,  $L \leq E$ ,  $L \gtrless (0)$ . Since E is nonsingular, then  $Z_2(E) = 0$ , hence  $L > Z_2(E)$ . But  $H \ll_z E$ , so that L = E, therefore  $H \ll E$ .

# Note (2.16) :

If  $f: E \to \acute{E}$  is epimorphism, then it is not necessarily that  $f^{-1}(Z_2(\acute{E})) = Z_2(E)$ ; for example : Let  $\pi: Z \longrightarrow \frac{Z}{\langle 2 \rangle} \simeq Z_2$ , where Z and  $Z_2$  are Z-modules and  $\pi$  is epimorphism. Notice that  $Z_2(Z) = 0$  and  $Z_2(Z_2) = Z_2$ , but  $\pi^{-1}(Z_2) = Z \neq Z_2(Z) = 0$ .

Hence, in general, if we have  $f: E \rightarrow \acute{E}$  being an epimorphism, such that E is nonsingular module, and É is singular module, then  $f^{-1}(\mathbb{Z}_2(E)) \neq \mathbb{Z}_2(E)$ .

Recall that " a module E is a multiplication, if for every submodule H of E, H = (H: E)E, where  $(H: E) = \{r \in R: rE \subseteq H\} " [8].$ 

# **Proposition (2.17) :** [9, p 18]

Let E be a finitely generated faithful multiplication module over a commutative ring R, and I, I be ideals of R, then

1)  $E Z_2(R) = Z_2(E)$ .

2) If  $I \leq tes R$ , then  $E I \leq tes E$ .

3) If  $K \leq tes E$  and K = E I, then  $I \leq tes R$ .

4) If  $I \leq tes J$ , then  $E I \leq tes E J$ , and the converse is hold if R is regular.

# **Proposition (2.18):**

Let E be a finitely generated faithful multiplication R-module and  $H \le E$ . Then  $H \ll_z E$  if and only if  $(H:E) \ll_{\tau} R$ .

**Proof :** ( $\Rightarrow$ ) Suppose that  $H \ll_z E$ . To prove that (H: E)  $\ll_z R$ , suppose that (H: E) + I = R, where I is an ideal of R and I  $\supseteq$  Z<sub>2</sub>(R). Then (H: E)E + IE = E and hence H + IE = E. Now, since Z<sub>2</sub>(R)  $\subseteq$  I , then  $Z_2(R)E \subseteq IE$ . But by proposition (2.17) we have  $Z_2(R)E = Z_2(E)$ , so  $Z_2(E) \subseteq IE$ . Since  $H \ll_z E$ , then E = IE and hence R = I, [8]. Thus  $(H : E) \ll_z R$ .

 $(\Leftarrow)$  suppose that H + K = E and  $K \supseteq Z_2(E)$ . We want to prove that K = E. Since E is multiplication, then H = (H: E)E and K = (K: E)E. Thus, (H: E)E + (K: E)E = E. Also, since E is finitely generated faithful multiplication module, then we have (H: E) + (K: E) = R [8] and  $Z_2(E) = Z_2(R)E$ , by proposition (2.17). Thus,  $Z_2(R)E \subseteq K$ , which implies that  $Z_2(R)E \subseteq (K:E)E$ . Therefore  $Z_2(R) \subseteq$ (K: E) and since (H: E)  $\ll_z R$ , then R = (K: E). Hence E = (K: E)E = K and therefore  $H \ll_z E$ . **Remark (2.19) :** 

The condition that E is faithful cannot be dropped from the part  $(\Rightarrow)$  of proposition (2.18), as the following example shows : If E is the Z-module  $Z_{12}$  and  $H = \langle \overline{4} \rangle$ , then  $H \ll_z E$ , but (H: E) = 4Z is not Z-small in Z.

# **3. Z-Hollow modules**

In this section, we introduce the Z-hollow module as a generalization of hollow module and study some of its basic properties.

Recall that an R-module  $E \neq 0$  is called hollow module if every proper submodule of E is small in E[1].

Now, we define the Z-hollow modules.

#### **Definition (3.1) :**

An R-module  $E \neq 0$  is called Z-hollow if every proper submodule of E is Z-small.

# **Remarks and Examples (3.2) :**

1)  $Z_6$  as Z-module is Z-hollow since every proper submodule of  $Z_6$  is Z-small.

Z as Z-module is not Z-hollow since 3Z is not Z-small in Z , as we show in remarks and examples ( 2.2, 3 ).

2) It is clear that every hollow module is Z-hollow , but the convers is not true; for example the Z-module  $Z_6$  is Z-hollow but not hollow .

# **Proposition (3.3) :**

The epimorphic image of Z-hollow module is Z-hollow module .

**Proof :** Let E be a Z-hollow module , É be a module , and  $f : E \to \hat{E}$  be an epimorphism. Suppose that  $\hat{H}$  is a proper submodule of É, such that  $\hat{H}' + K' = E'$  and  $K' \supseteq Z_2(E')$ . Since f is an epimorphism, then  $f(Z_2(E)) \subseteq Z_2(\hat{E})$ . Now, notice that  $f^{-1}(\hat{H}) < E$  because if  $f^{-1}(\hat{H}) = E$ , then  $f(f^{-1}(\hat{H})) = f(E) = \hat{E}$  and hence  $\hat{H} = E'$ , which is a contradiction . Thus  $f^{-1}(\hat{H}) < E$  . Also,  $Z_2(E) \subseteq f^{-1}(f(Z_2(E))) \subseteq f^{-1}(Z_2(\hat{E})) \subseteq f^{-1}(K)$ . Hence  $f^{-1}(K') \supseteq Z_2(E)$ . Now , since E is Z-hollow, thus  $f^{-1}(H) \ll_z E$  and we get  $E = f^{-1}(K)$ . Hence  $f(f^{-1}(K)) = f(E) = \hat{E}$ , since f is epimorphism  $f(f^{-1}(K)) = K$ . Thus  $K = \hat{E}$  and hence  $\hat{E}$  is Z-hollow module .

# Corollary (3.4) :

Let E be an R-module . If E is Z-hollow module , then  $\frac{E}{H}$  is Z-hollow for every proper submodule H of E .

# Corollary (3.5) :

A direct summand of a Z-hollow module is Z-hollow module .

**Proof :** Let E be a Z-hollow R-module and H be a direct summand of E. Hence  $E = H \bigoplus K$ , for some submodule K of E. Then by the second isomorphism theorem  $\frac{E}{K} \simeq H$ . By corollary (3.4), H is Z-hollow.

**Proposition (3.6) :** 

Let  $\bar{E}$  be a finitely generated faithful multiplication R-module . Then  $\bar{E}$  is Z-hollow if and only if R is Z-hollow .

**Proof:** It follows by proposition (2.18).

**Proposition (3.7) :** 

Let E be an R-module  $E \neq 0$ . Then E is Z-hollow module if and only if there exists  $H \ll_z E$  and  $\frac{E}{H}$  is Z-hollow.

**Proof :**  $(\Longrightarrow)$  It follows directly by taking H = 0.

(⇐) To prove that E is Z-hollow, let A < E and assume that A + B = E with B ⊇ Z<sub>2</sub>(E). We must prove that B = E. Now,  $\frac{E}{H} = \frac{A+H}{H} + \frac{B+H}{H}$ , but B + H ≠ E (since H  $\ll_z$  E) and so  $\frac{B+H}{H} \neq \frac{E}{H}$ . Then  $\frac{B+H}{H} \supseteq \frac{Z_2(E)+H}{H}$ . But  $\frac{Z_2(E)+H}{H} \supseteq Z_2(\frac{E}{H})$ . To show that let  $x + H \in Z_2(\frac{E}{H})$ , so  $\operatorname{ann}(x + H) \le \operatorname{tes} R$ . But  $x + (0) \subseteq x + H$ , hence  $\operatorname{ann}(x + (0)) \supseteq \operatorname{ann}(x + H)[10]$ . Therefore  $\operatorname{ann}(x + (0)) = \operatorname{ann}(x) \le \operatorname{tes} R$ , and hence  $\in Z_2(E)$ . Thus  $+H \in \frac{Z_2(E)+H}{H}$ , then  $\frac{B+H}{H} \supseteq Z_2(\frac{E}{H})$ , but  $\frac{E}{H}$  is Z-hollow, so  $\frac{B+H}{H} = \frac{E}{H}$ . Hence B + H = E, but H  $\ll_z$  E, so B = E. Therefore E is Z-hollow module.

Recall that " a submodule H of E is called fully invariant if for each endomorphism from E to E ,  $f(H) \subseteq H$  " , [3 , p.4] .

" An R-module E is called duo if every submodule of E is fully invariant " [11].

Proposition (3.8) :

Let  $E_1$  and  $E_2$  be R-modules,  $E = E_1 \bigoplus E_2$ , such that E is a duo module. Then E is Z-hollow if and only if  $E_1$  and  $E_2$  are Z-hollow modules, provided that  $H \cap E_i \neq E_i$  for each i = 1, 2, H < E. **Proof :** ( $\Longrightarrow$ ) It follows directly by (3.5).

(⇐) Let H < E. Since H is fully invariant, then  $H = (H \cap E_1) \oplus (H \cap E_2)$  by [11, lemma 3.1]. Now,  $(H \cap E_1)$  and  $(H \cap E_2)$  are proper submodules of  $E_1$  and  $E_2$  respectively. But  $E_1$  and  $E_2$  are Z-hollow modules, thus  $H \cap E_1 \ll_z E_1$  and  $H \cap E_2 \ll_z E_2$ . Then by proposition (2.7),  $H = (H \cap E_1) \oplus (H \cap E_2) \ll_z E$ . Thus E is a Z-hollow module.

Recall that " an R-module E is called distributive if for all H, K,  $L \le E$ ,  $H \cap (L + K) = (H \cap L) + (H \cap K)$ " [12].

# **Proposition (3.9) :**

Let  $E = E_1 \oplus E_2$  be a distributive R-module such that  $E_1$ ,  $E_2 \le E$ . Then E is a Z-hollow if and only if

E1 and E2 are Z-hollow, provided that for each H < E , H  $\cap$  E i  $\neq$  E i ,  $\forall$  i=1 , 2.

**Proof**:  $(\Rightarrow)$  It follows by corollary (3.5).

(⇐) Let H < E. Since E is distributive, then  $H = (H \cap E_1) \oplus (H \cap E_2)$  and then by the same proof of proposition (3.8),  $H \ll_z E$ . Thus E is Z-hollow.

Recall that a submodule K of an R-module E is called supplement of V if E = K + V and V is a minimal element in the set of submodules H, where  $H \le E$  with V + H = E. Equivalently, a submodule K of E is called supplement of V if K + V = E and  $K \cap V \ll K$  [13, 14].

An R-module E is called supplemented if every submodule of E is supplement.

Let E be an R-module , then E is called amply supplemented module if, for any two submodules H and F of E with H + F = E, F has asupplement of H in E.

#### **Definition (3.10) :**

A submodule K of an R-module E is called Z-supplement of V If K + V = E and  $K \cap V \ll_z K$ .

An R-module E is called Z-supplemented if every submodule of E is Z-supplement.

Let E be an R-module , then E is called amply Z-supplemented module if, for any two submodule H and F of E with H + F = E, F has a Z-supplement of H in E.

It is clear that every supplement submodule is Z-supplement , but the converse is not true; for example : K = <2 >, V = <3 > in the Z-module  $Z_{12}$ .  $K + V = Z_{12}$ ,  $K \cap V = <6 >$  and is Z-small in K , but it is not small in K .

An R-module E is called Z-lifting if for any submodule N of E , there exist submodules K , H of E such that  $E = K \oplus H$  with  $K \le N$  and  $N \cap H \ll_z N$  [15].

#### **Proposition (3.11) :**

Every Z-hollow module is amply Z-supplemented .

**Proof :** Let E be a Z-hollow , then E is Z-lifting [15] . Also, since every Z-lifting is Z-amply supplemented , thus E is Z-amply supplemented.

#### References

- 1. Fleury P. 1974. "Hollow Modules and Local endomorphism Rings ", Pac. J. Math , 53:379-385.
- 2. Fandi, F.SH. and Yaseen, S.M. 2019." ET-Coessential and ET-Coclosed submodules", *Iraqi* Journal of Science, 60(12): 2706-2710
- **3.** Goodearl , K. R. **1976** , "*Ring Theory* , *Nonsingular Rings and Modules* ", Marcel Dekker , Inc. New York and Basel .
- **4.** L. H. Sahib and B. H AL-Bahraany, **2012**, "Extending, Injectivity and Chain Conditions On y-closed Submodules", M. Sc Thesis, College of Science, University of Baghdad.
- 5. Desale G. and Nicholoson W. K., 1981, "Endoprimitive Rings ", J., Algebra, 70: 548-560.
- 6. Asgari, sh., Haghany, A. 2010 " Densely Co-Hopfian modules ", *Journal of Algebra and Its Applications*, 9: 989-1000.
- 7. Asgari , sh. , Haghany , A. 2011 " t-Extending Modules and t-Baer Modules ", *Comm. Algebra* , 39: 1605-1623 .
- 8. Elbast, Z.A. and Smith, P.F. 1988 "Multiplication Modules ", Comm. In Algebra, 10(4):755-779.
- **9.** F. D. Shyaa , and I. M. A. Hadi. **2018** " A Study of Modules Related With T-semisimple Modules ", Ph. D. , College of Education Ibn AL-Haitham , University of Baghdad .
- **10.** Al-Hurmuzy , H. and Al-Bahrany , B. **2016**. "R-Annihilator-Small Submodules", M. Sc theses , College of Science , University of Baghdad.
- 11. Ozcan , A. C. A. Harmanci and Smith , 2006 " Duo Modules ", *Clasgow Math. J. Trust* 48: 533-545 .
- **12.** C. Faith , **1973** " *Rings Modules and Categories I* ", *Springer Verlage* , Berline , Heidelberg , New York .
- M. A. Hadi and L. S. Mahmood , 2009 " Semi small Submodules and Semi-lifting Modules ", Proceeding of 3<sup>rd</sup> Scientific conference of the coll. of Sci., Univ. of Baghdad 24 to 26 March.
- 14. Kabban, A. and Khalid, W., 2019, "On Jacobson-Small Submodules", *Iraqi Journal of Science*, 60(7): 1584-1591.
- 15. Amina T. Hamad and Alaa A. Elewi, "-Radical of Modules and Z-Lifting modules", to paper.