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Abstract

Fractional calculus has paid much attention in recent years, because it plays an
essential role in many fields of science and engineering, where the study of stability
theory of fractional differential equations emerges to be very important. In this
paper, the stability of fractional order ordinary differential equations will be studied
and introduced the backstepping method. The Lyapunov function is easily found by
this method. This method also gives a guarantee of stable solutions for the
fractional order differential equations. Furthermore it gives asymptotically stable.
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1. Introduction:

The beginning of fractional calculus was in 1695 with classical calculus together, but it is
widely developed in the twentieth century since the life became more complected and the
researcher found that the fractional order differential equations are more accurate for
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representing and modeling real life problems as in biology, bioengineering, astrum, physics,
and engineering, etc. [1-3]. That reason made the fractional calculus very important subject of
applied mathematics [4]. Stability analysis for all solutions of the fractional order ordinary
differential equations (FODESs) are more complicated than the study of stability of ordinary
differential equations (ODEs), because fractional derivatives are nonlocal and have weakly
singular kernels [5-7]. Sstability is also an equivalent concept to the uniformly continuity for
the solutions of the function of system with initial conditions on all point in neighborhood of
the equilibrium point in time [8].

It is known that the dynamical system can be stable where the system is permitted to execute
persistent small oscillations about the state of motion, or about the system equilibrium. There
are many approaches in which this concept can be used to investigate stability of ODEs, first
of them is to use the eigenvalues. During the second method (approach) was enshrined at the
end of the 19™ century by Lyapunov which is called Lyapunov method, it is effectively
applied to wholly new problems. The second method is also called the direct method [9]. This
method can be applied straightforwardly to differential condition with no information about
the solution. The idea beyond this technique is to create a scalar function say V which
satisfies all the given conditions to check the stability of the system of ODEs [10].

The use of the trajectories to prove the asymptotic stability is not all time possible due to the
complexity of the FODEs. For this reason we intend in this paper to find the Lyapunov
characterization function for the asymptotic stability for the solution of the FODEs which is
defined by adaptive backstepping method.

Matignon in 1994 was the first researcher who introduced in his Ph.D. thesis some stability
results that relate to a restrictive modelling of FDEs. [6 , 11]. There are many important
results that relate to linear system of FODEs with Caputo fractional derivative of order a,
where 0 < a < 1, such as Qian et al. in 2012 [12], they investigated the linear FODEs with
Riemann-Liouville fractional order derivative. After that, many researchers have been
investigated the stability of nonlinear and linear FODEs with fractional order derivative o
between 0 and 1, for more details see [13],

The backstepping technique methods are to be a good method to find controllers design for a
large class of the nonlinear systems, which often used to nonlinear control technique to
stabilize the system of ordinary differential equations which depends on the idea of the
definition of a set of intermediate variables and the few steps are exactly given negative of
Lyapunov functions derivative that leads to build a common control Lyapunov function for
the system. Because of this nature, the backstepping technique is easy applied method to
different classes of systems, that contain many engineering systems, physics, and
bioengineering, etc. There are few studies for using the backstepping methods to find the
controller function for dynamic systems of fractional order differential equations, we refer to
these references [14-17].

In this paper, a backstepping stabilization method will modify and improve in order to be
applicable for system of Caputo FODEs ,and to find solutions which are asymptotically
stable. Some of theorems to connected between the concepts of ordinary differential
equations, fractional order differential equations and Lyapunov functions.

2. Preliminaries:

In some real-life problems, the issues of stability, controlling, and solving certain systems are
of great interest. Therefore, some basic concept seems to be necessary to understand are given
in this section, we will also present some of them which are necessary for the rest of this
paper.

2.1. Fractional calculus:

We start with the most elementary and most useful definitions in fractional calculus which is
the Caputo derivative.
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Definition 1: [5, 18] The Caputo left—handed and the right- handed fractional derivatives of
ordera € R*,n—1 < a < n,n € N of a function f are defined as follows:

a 1 x 1 n
ngf(x) = I—-(n_a) fa (x_y)a—n f( )(y)dy ( l )
and
-D* b 1
ED5F(X) = 1o [y oo ™ () dy (2)

The statement of the problem is established as a system of FODEs which has to be stabilized
and solved. In the next section we use the backstepping method that takes the form of Caputo
fractional order derivative of nonautonomous system

LDEx(t) = f(t,x(D)), x(to) = %o (3)
where a € (0,1], f:[ty, 0] X Q@ = R™ is a piecewise continuous function in t and locally
Lipschitz in x and Q € R™ is a certain domain that contains the origin. The constant x, is an
equilibrium point of the dynamic system ( 3 ), if and only if f(t,x,) = 0.

The equilibrium state not always be single [19]. for example, the position of the two balls is in
the equilibrium position, and the two points are all the equilibrium points of the system,
where one of which governs the drift of the system’s equilibrium position and is identifies as
the dynamic relaxation—retardation operations shows in the system, [18-22]

2.2. Lyapunov Function:

Among the basic tools in these backstepping method is based on constructing the Lyapunov
function, which must guarantee the asymptotic stability of this system. Lyapunov A.M. in
1890 [25] considered the stability of a model of the dynamical systems described by nonlinear
ODEs. Lyapunov functions, if there exist, and when exist not unique, are scalar functions
used to prove and establish stability of solutions or an equilibrium point of a system of ODEs.
Recall that a continuous function V(x) > 0 for all x # 0 is called positive definite, however
if V(x) <0,Vx #0,then V is called negative definite. The stability of any solution is given
in the next theorem.

Theoreml : [23-26] Consider V (x) be a scalar continuous real valued function of the state
variables x4, x,, ..., x,, and if:

i. V(x) is positive definite i that means V(x) > 0,x € Q , and V(x) is negative semi-
definite i.e. V(x) <0,x €Q onsome region Q containing the origin, then the zero
solution is stable.

ii. V(x) is positive definite and V (x) is negative definite i.e. (V(x) < 0,x € Q) on some
region ( containing the origin, then the zero solution is asymptotically stable.

iii. V (x) is positive definite and V(x) is positive definite on some region €, then the zero
solution is unstable.

We will give in the following some theorems that we need to link differential equations with
fractional orders with some concepts and methods of solutions that are used in ordinary
differential equations, which will allow to use many theorems that are related to ordinary
differential equations.

Theorem?2:[15] Let the Lyapunov function which is given by V' = %zz, where the variable of

interest is z. If zz#) < 0, where 0 < # < 1 isensured, then zz < 0 is satisfied.

The mean result for the previous theorem that it makes relations between ordinary and
fractional differential equations. Next theorem it gives the connection between Lyapunov
function and Caputo fractional order derivative.

Theorem3: [26] Let V(t) € R is a derivable function. Then

~EpfV2(6) < V(D)§DEV(t) where 0 < a <1 (4)

for any instant ¢ > 0.
Theorem4:
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Suppose that the Caputo fractional order equation
cpFx(t) = F(x()) (5)
where 0 < 8 <1, x(t) € R™ and x= 0 is an equilibrium point. Then
a) If x(t)ngx(t) < 0, then the equilibrium point is stable.
b) If x(t) SDfx(t) < 0, then the equilibrium point is asymptotically stable.
Proof:
If we suppose the positive definite Lyapunov function V(x(t)) = %xz(t), then by using
r(2)

theorem (4) we get the result
1 B 1 B _I(5) _ _ i B
Eth Vz(x(t)) _Eth X4(t) —mx4 B SX(t)F(Z—_ﬁ)Xl ﬁ(t) —X(t)SDt x(t) (6)

in case that x(t)ngx(t) < 0 that means equation( 6 ) is negative semi-definite since
V(x@®) = %xz(t) < %xZ(O) vx, then the origin point is stable. Another case when
x(£)$DFx(t) < 0 and the equation ( 6 ) is negative definite, which implies that V(x(t)) <
V(x(O)) that gives as the origin point asymptotically stable.

3. The Backstepping Method:

To apply the backstepping method for system FODEs with control functions u,, u,, ..., u, of
the form:

DV %y = f1(x1, 25, 0, %) + g )
thﬁzxz = fz(xlleI ---;xn) + Uy

(7)

ng3x3 = f3(x1, X2, ..., Xp) + U3

thﬁnxn = fn(xpxz: ---'xn) + unJ
where x(t)eR™ is the state vector of the system, g; € (0,1], f;,i = 1,2, ..., n are continuous
functions and u;, is = 1,2, ...,n are the controller input functions, which will be introduced
for the purpose of stabilizing the original system of FODEs asymptotically as well as to find
its solution [27-29].
Now the objective is to apply the backstepping method in order to design a state feedback
control function, which asymptotically stabilizes the origin. The design procedure may divide
for simplify into steps. It is given in the next theorem.

Theorem 5: Consider the system of FODEs ( 7 ) with state variable
x € R™ and controller function u;:[0,1] - R,i = 1,2, ...,n. If the Lyapunov functions of the
subsystems of the FODES system (7) are supposed to be:
Vi(z1) = z"p1z, ,p1 ERY,z;(t) ER

Vi(z1,22, ... 2) = Vi_1(21, 23, ..., Zi_1) + 2, P12 (8)

piERY, z,(t) ER,i=2,3,..,n

Then there exists nonlinear controller function u,, u,, ..., u,,which make system

(7)) asymptotically stable and solvable, where

a;(z1,25, -, Z;) = i(21, Z3, o) Zi) Xig1s o) Xp) + Ui (1) — Z;
Proof:
It is followed in the backstepping method, the proof will be breakdown into steps, for
simplicity and comparison purpose. The outline of the proof will be braked into steps as
follows:
Step (1): First, consider the stability of the first equation of system (7
), namely:

nglﬁq = f1(x1,x2, ..., x0) +uq )
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where x, represents a virtual controller which is introduced for stabilizability, and we define
x; = z;then we derive this transform both sides with fractional order g, by using Caputo
derivative with respect to time t, and we get:

607z, = §D{'xy = f1(z1, %z o X)) + Uy (10)
Now, construct the first Lyapunov function in quadratic form as:
Vi(zy) = ‘Z1 = z,p1z,  p1€R* (11)
The derivative with respect to time t is:
Vi(z1) = 2121 = —2,"Q12z; < 0 (12)

where Q, is a positive definite matrix. But we need z,Z; < 0 to get V;(z,) is a negative
definite function in R™. To prove that let

Z1Z§B1) = Z10Dﬁ121 =21(f1(21, %2, ..., X5) + Uy) (13)
So that we can choose suitable u,like uy = —f1(24, x5, ..., X)) — k124 , if we substitute the
uilin zZ1z1<z1z141 (14), we get
z Zgﬂl) —k, z wherek; €R ,k; >0

(B1)

that means rz,;z;"* < 0 everywhere.
and by using theorem (2 ), we know that:

2,7, < 2,2V (14)
by using theorems (3) and (4), and by Lyapunov stability theory, then the system ( 9 ) will be
asymptotically stable. It is clear that if we take the virtual control x, = a,(z;) and the state
feedback input function u,; will render the system ( 9 ) asymptotically stable. The function
a4 (z;) ought to be assessed while z, is regarded as a controller.

Step (2): To stabilize the second equation of system (7 ) we
define the error variable between x, and a,(z;) as follows:
_ Zzz_ﬂfz_—a1(21) _ o (15)
hence the time derivative of the error dynamics of subsystem ( 15) is given by:
81)5121 = f1(z1, %2, %3 ..., Xp) + Uy
ngzzz = f1(z1, 22+ a,(21), x3 ..., Xp) — ngZ“ (z1) +u (16)

where x5 is a virtual controller of subsystem ( 16 ), which is chosen to stabilize this subsystem
and consider that it is equal to a4 (24, z,), which makes the subsystem ( 16 ) asymptotically
stable.

In order to find the second Lyapunov function V, , that stabilizes asymptotically equation ( 16
), we suppose that V, as follows :

1 1
Vy(24,2;) = EZ% + EZ% =V +2,"p,z,,p,eR? (17)
then the time derivative of V; is:
V2(21,23) = 2121 + 225 = — Z1TQ1Z1 - ZzTszz <0 (18)

where Q;and Q, are positive definite matrices. In order to prove that z,7;, + z,7, < 0
let
lel(ﬁﬂ + z, Z('BZ) =z 0Dﬁlz1 + z, 0Dﬁzz2 = —k,z? + z,(f5(x1, X3, oo, X)) + Uy) (19)
If we choose u, = —f,(xq, X2, ..., Xxp) — k22z, and substituted in equation (23) we get
(1) B2) — _k, 22 — k,z2where k, € R, ky > 0

z Z1 +z Z2
(51) (B2)
that means z;z,""" + z,z,"* < 0 everywhere.

And by using theorem (2), we know that:

2174 + 227, < legﬁl) +z ZéﬂZ) <0 (20)

by theorems (3) and (4), we get V,(z,2,) is a negative definite function in R™ and by using
Lyapunov stability theory we have subsystem ( 16 ) is asymptotically stable. Similarly, if the
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virtual control is taken to be x; = a,(z4,2,) and the state feedback input u, is evaluated to
make subsystem ( 16 ) asymptotically stable.

Step (n): Continuing in the same approach that is given in the above steps, we arrive at the n
step by defining the error variable z, as:

Zp = Xp — An_1(21, 29, ., 27) (21)

and suppose that z;, z,, ..., z, State variables of the subsystem is given by:
nglzl = f1(21, %2, x3 ..., Xp) + U4 )
ngzzz = f1(z1, 22+ a1(21), x3 ..., xp) — ngzal(zl) +u;

3
§DV 23 = f3(21, 22+ @1(21), 23+ X221, 22), .., Xn) — §DF° 221, 2,) + U3 Y (22)

CDPrz, = fulzy, 23401 (29), ..., Zy ¥ Q1 (21, 23, ., Zp_q)) —
i CDPrar, 1 (21,22, ..., Zy) + Uy J
Therefore, the "™ Lyapunov function is defined as:
1 9 1 9 1 2 1
Va(21,2, .., 2,) =521 +525++ 525 4 + Ez,% =V,_1(21,23, ... Zy_1) +

Z,' PnZn  ,Pn€R” _ o (23)
Also, we derive 1}, with respect to time t, this gives:
V. (21,22, ..., 2,) = 2121 + 232 + - + ZpZ)p

=—21"Q121 — 2,7Q22, — -~ — 2," Qu2,, < 0 (24)
where Q,,0,,Q3, ...,Q,be a positive definite matrix, we will also prove that z,7; + z,7, +
ot 2,7, < 0.
let
zlzgﬁl) + zzzgﬁZ) + .t znz,(f") = zlnglzl + zngfzzz 4+t znng"zn ....(25)

= _klZl2 - kzzg -t Zn(fn(xl'xz'_---'xn_) + un)_

If we choose u,, = —f,, (x4, x5, ..., x,) — k,, when we substituted in equation (29) we get
zlzgﬁl) + zzzgﬁz) 4ot 2,2 P = —jy 22 — kyz? — - — kyz2 < Owhere k, € R, k, > 0

that is mean zlziﬁl) + zzz§B2) + -+ znz,(f”) < 0 everywhere.

And by using theorem (3), we know that:

Z1Z1+ Z3Zy + -+ 2,7, < zlzgﬂl) + zzngZ) + 4 znz,(f") <0 (26)
By using theorems (3) and (4), then V,, is a negative definite function in R™ and similarly by
Lyapunov stability theory subsystem  (22) is asymptotically stable. The virtual
control Xp = Up_1(21,23, ..., Zn—1) and the state feedback input u,,may be
evaluated which makes subsystem  (22) is asymptotically stable.
Thus, from the result of the previous steps, we get that the system (7)

is globally asymptotically stable for all initial conditions x;(0)eR™, i = 1,2, ...,n.
4. Illustrative Examples
In this section, two examples are considered in order to illustrate the proposed an approach
of stabilizability for systems of fractional order.
Example 1:
Consider the Caputo fractional order differential system

nglxl(t) = le
(C)'sz xZ(t) = —X1— 3x2 ( 27 )
where B4, 8, € (0,1),x,, x, € R™ by using backstepping method, and in order to stabilize the

system asymptotically, either it is stable or not, we introduce the controller functions u; and
u, as follows:

ngl xl(t) = le + uq
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§DY2 x,(8) = —x1 — 3%, + (28)
Stepl: Suppose z; = x;, then the Caputo derivative of order S, with respect to t for the first
equation of( 28 ) will be

CDPL z,(t) = 224 + uy (29)
and
Zlnglzl =Zl(221+u1) (30)
(B1)

To prove that z,z;"*"is negative definite, we will choose the controller function u; = —2z; —
k,z,. If we substitute in ( 29 ) then equation ( 30 ) will be

2,6D{" 21 = ~ky 7] (31)
which is negative everywhere when k;is positive constant.
since that and by using theorem (2), we know that:

217, < 2;§DF'z, = —k,22 < 0 (32)
By using theorem (3) with equation (36) that gives z, z, will be also negative everywhere, then
if we choose the Lyapunov function V; = %zf and V; = z,Z, since z,Z; < 0 that means it is
asymptotically stable. The function a,(z;)should be estimated while z, is considered as a
controller.
Step (2): Suppose z, = x, — a1(z,) or equivalent x, = z, + a4(z;), then
8Dtﬁzxz =z + thﬁz ay(z1)
Thus sz,szzz = 22(21 — 3z, — 3a,(z) — 8Dtﬁ2a1(zl) + uz)
to make z, ﬁDf 2z, negative, we choose
U, = —zy +3a,(z,) + $0P? a1 (2)) — kyz, , ky € R*
Then the equation is as: z, 8szzz = -3 +ky)zs
because that: z, ngzzz is negative and by using by theorem (2), then
Zy7, < 2,502, < 0
That gives
2121 + Zp2, < Zlnglzl + ZngtBZZZ <0
then we can choose Lyapunov function V as
V= %212 + %z%
such that
V=221 + 2,2, < 2,5DP 2, + 2,§DF22, = —ky22 — k22 < 0
IS negative everywhere which means that solution of the system is asymptotically stable.
Then the equivalent system will be:

cp¥ x(t) = AXx (33)

where X(6) = [72(8) 22017 8 = [B1. Bl A= | g . | kuks € R*0)

Figure (1) presents the solution of the system of fractional order (31), in which one may see
the asymptotic stability of the solutions.
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Graph 1

x,(1)
x,(1)

e b
K = N

value of solution

©C o Qo
NoB o

o

0O 05 1 15 2 25 3 35 4 45
time( sec)
Figure 1-Solution of example 1, where 81 =0.9,6, =0.7 ,k;y = 1 and k, = 2.

Example 2:
Consider the Caputo Fractional differential system

CDPL x(t) = 3x — 4y + u,

ngzy(t)=4x—7y+u2 (34)

Where x(o) * 0;}’(0) * 010 < 31132 < 1;BIiBZ € R:x'y ER

Stepl: let z; = x; then the first equation of the system (34) will be as

ngl z(t) =3z, — 4y +uy
such that
ZlthBlZl = Z1(3Z1 — 4‘y + ul)
to do it negative define we choose u, as:
u = _321 + 4y — k121
then
ZlthﬁlZl = —k1212 <0
which is negative everywhere when k; is positive constant..
because that z; nglz1 IS negative everywhere and by using theorems (2) then
7217 < Zlnglzl <0
that gives z,z; < zlf,Dflz1 = —k,z? < 0 will be also negative everywhere then if we chose
the Lyapunov function V; = %212 and V, = z, 7, since z,Z; < 0 by theorem (1) that means the

solutions will be asymptotically stable. The function a;(z;)should be estimated while z, is
considered as a controller.
Step2: let the error between z, and a,(z;) be

Z, =y — a1(21)
then

SDf2z, = §Df? y — §DP2a (2)
that gives as:
8Dtﬁ2 y = th'BZZZ + ((‘;szal
= 4‘Z1 — 722 — 7(11(21) + U, — Sszal(Zl)
to evaluate
Zy ngzzz = 7, (421 — 72, — 7a,(z1) + uy — Sszal(zl))
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to do that it is negative definite we choose u, = —4z; + 7a,(z;) + 8sza1(z1) -
k,z, ,k, € RY

then z,$DF2z, = —k, 22

because that z, ngzzz IS negative everywhere and by using by theorem (2), then

ZyZy < ZngtBZZZ = —k,z5 < 0 that gives

2121 + 2y7, < zlnglz1 + ngszzz = —k,z? —k,z2 < 0. Now we can choose Lyapunov
functionVasV = %212 + %222 such that V = z,2, + z,2, is negative definte by using theorem

(1) that mean the system is asymptotically stable.
Then the equivalent system will be:

cpf x(t) = Ax (35)
Where X(9) = [7,(0) (17,8 = [Bu Bl A = | 0% ) |kks € R

Figure (2) presents the solutions of the system of fractional order (37), in which one may see
the asymptotic stability of the solutions.

value of solutions

0 04 08 12 16 2 24 28 32 36 4

time ( sec)
Figure 2-Solution of example 2 where 1 =0.8,8, = 0.7 ,k; = 2 and k, = 2.[21]

Conclusion:

Relation between backstepping of ordinary differential equations and fractional order
differential equations are found, as well as some useful theorems are given . We first discuss
theoretical side to use the backstepping for fractional order differential equation. We also find
the relation between Lyapunov function and fractional order differential equations by helping
of previous studied and proved theorem (6). Then after we use the backstepping method for
Caputo Fractional order Differential equations. The relation among fractional order
differential equations, backstepping method and Lyapunov function are found. We here found
the Lyapunov function by iteration few steps ( using Backstepping method ) to give the
controller function that makes all solutions asymptotically stable.
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