
Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

 DOI: 10.24996/ijs.2022.63.3.37

* Email: mahwadud@gmail.com

1349

Word Embedding Methods for Word Representation in Deep Learning for

Natural Language Processing

Md. Anwar Hussen Wadud
1
*, M. F. Mridha

2
, Mohammad Motiur Rahman

3

 1
Department of Computer Science and Engineering

1,2
Bangladesh University of Business and Technology, Dhaka, Bangladesh

1,3
Mawlana Bhashani Science and Technology University, Tangail, Bangladesh

Received: 1/2/2021 Accepted: 21/5/2021

Abstract

 Natural Language Processing (NLP) deals with analysing, understanding and

generating languages likes human. One of the challenges of NLP is training

computers to understand the way of learning and using a language as human. Every

training session consists of several types of sentences with different context and

linguistic structures. Meaning of a sentence depends on actual meaning of main

words with their correct positions. Same word can be used as a noun or adjective or

others based on their position. In NLP, Word Embedding is a powerful method

which is trained on large collection of texts and encoded general semantic and

syntactic information of words. Choosing a right word embedding generates more

efficient result than others. Most of the papers used pretrained word embedding

vector in deep learning for NLP processing. But, the major issue of pretrained word

embedding vector is that it can‟t use for all types of NLP processing. In this paper, a

local word embedding vector formation process have been proposed and shown a

comparison between pretrained and local word embedding vectors for Bengali

language. The Keras framework is used in Python for local word embedding

implementation and analysis section of this paper shows proposed model produced

87.84% accuracy result which is better than fastText pretrained word embedding

vectors accuracy 86.75%. Using this proposed method NLP researchers of Bengali

language can easily build the specific word embedding vectors for word

representation in Natural Language Processing.

Keywords: Word embedding; NLP; FastText; Deep Learning, local and pretrained

word vector.

1. Introduction

 Word embedding is the most important topic in natural language processing, known as

distributed word representation to represent words in natural language processing and

information retrieval applications [1- 6]. Most of the Machine Learning algorithms also Deep

Learning Algorithms cannot process string or plain text in their raw form. Their input requires

numbers or list of numbers to perform any type of job such as regression, classification etc.

Word Embedding generally map a word to a vector using a dictionary.

Word Embeddings or Distributional vectors follow distributional hypothesis where similar

context occur according to similar meaning of all words. Distributional vectors try to capture

the properties of the adjacent word. Generally, word embedding used as the first data

processing layer in machine learning or deep learning model [7- 11].

ISSN: 0067-2904

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1350

Figure 1-Simple Word Embedding Scheme for nine-word vocabulary

Valid word vector can be any set of numbers where vocabularies capture specific meanings,

relationship between words etc. In word embedding, every word has a unique number of

vector and embeddings are multidimensional vectors typically 50 to 500 in length. Simplest

word embedding scheme is one-hot encoding where embedding space has the same size as

total number of words in the vocabulary as shown in Figure 1. Main drawback of one-hot

embedding is dimension size linearly depends on vocabulary size which consume huge

amount of memory. If vocabulary size increase, then linearly increase number of dimensions.

To reduce the dimension size, we can use categories for all vocabulary as shown in Figure 2,

where similar word has similar embeddings and embedding matrix is less empty space or

zeros. Creating N dimensional word embedding vector which contains relationship between

similar word and neighbour‟s word is very difficult for most of researcher. They use

pretrained word embedding vectors like as Word2Vec created from Google, Glove word

embedding vector created from Stanford or fasttext word embedding vector created form

Facebook. This pretrained word embedding vector have their own algorithm to create this

vector. During creating word embedding locally, we have to consider similarity between

recognize words and relationship between words.

Figure 2-Lower dimensional Word Embedding

The main goal of this research is to discuss how to create local word embedding methods for

Bengali text processing. Word Embedding methods in English language processing is very

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1351

familiar but in Bengali language usages of this methods is very rare. The key contributions of

our research are:

 Identify all stop words in Bengali language

 Perform frequency based local word embedding generation process in Bengali language

 Perform prediction based local word embedding generation process

 Apply Random Forest machine learning classifiers on local word embedding vector and

pretrained word embedding vector

 Made a Comparison between local and pretrained word embedding vector.

2. Related Works

Hinton [7], 1986 proposed first linear relational word representation scheme using binary

relations between words by leaning distributed representation. Then other researchers

improved word embedding vectors by adding different factors. Mikolov et al. (2013c) [2, 12]

proposed a word embedding method based on input layer weights which captures syntactic

and semantic scheme and relation-specific vector offset used to characterized semantic

relationship. Their given example demonstrates male-female relationship learned by

representing word vector by vector equation “king – queen = man – woman”. Hermann and

Blunsom work for multilingual setting from distributional representation of an input sentences

that is same sentences in different language [13, 14, 15].

Kiros [16] explained different notation of learning from context sentence using recurrent

neural network. Yih [17] proposed a method for text similarity measure where short texts are

represented by TF-IDF vectors. Hill [18] also present a liner model where relationship

between sentences is not consider. Global vectors for word representing (GloVE) is another

vector representation for words based on unsupervised learning algorithm which is crated for

English language [19]. Most of the pretrained word embeddings are based on English

language. Recently Facebook introduced new word embeddings named fastText which have

word vector for 157 languages [20]. FastText also have word vector for Bengali language and

each vector have 300 dimensions in size. But the major problem of using fastText is large

data size and need huge memory and high configurable machine for processing also have

limited number of Bengali words. All of word embedding related research used pretrained

word embedding vectors or recurrent neural network to skip word pre-processing or used own

word embedding with limited properties. So, in this paper word embedding creating process

has been discussed for the Bengali language also discussed how to use pretrained word vector

for the Bengali language.

Kumar et. al [21] discussed pretrained word embeddings for 14 languages including Bengali

language. They apply different word embedding methods on 14 languages and find out their

performance result but they didn‟t discuss the local embedding generation process for all

languages. They use pretrained word embedding methods to generate word vector for specific

language.

3. Word Embedding Method

Creating local Word Embedding methods depends on aims of our NLP research. Word

Embedding methods can be broadly classified into two categories- Frequency based

Embedding and Prediction based Embedding. Frequency based embedding methods are easy

to understand and mainly used for text classification, sentiment analysis and many more [22].

There have several frequency-based methods such as Count Vector, TF-IDF Vector, Co-

occurrence Matrix etc. On the other hand, prediction-based word embedding methods predicts

a target word by mapping words in the vocabulary. Most usable prediction-based methods are

Continuous bag of words (CBOW) and Skip-Gram model. Both of these techniques learn

weights by applying backpropagation neural network [23]. Following are short discussion of

different word embedding methods and their use cases.

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1352

3.1 Count Vector

This method learns vocabularies form all of the documents then form a matrix by counting

number of times each word occurs in each document. If total unique word number is T and

number of documents is D then count matrix size will be T X D as shown in Figure 3. Using

count vector methods any one can prepare embedding vector by choosing high frequency

word from vocabulary list.

3.2 TF-IDF Vector

Term Frequency-Inverse Document Frequency (TF-IDF) [24] reflect how important a word

for a specific document from a collection of documents which used in information retrieval

and text mining. Formal equation of TF-IDF is:

 (1)

 Where, = (Number of times term t appears in a document d) / (Number of terms in the

document d) and = log (Number of documents N) / (Number of documents a term t has

appeared in)

 If a word has appeared in all the document, then value of will be 0 and probably the

word is not relevant to a particular document.

Figure 3-Embedding vector with size T X D using Count Vector

3.3 Co-occurrence Matrix

Used for identify semantic relationship between words by using factorization which is a most

common problem for word embedding and can be solved efficiently. This matrix is computed

by counting how two or more words occur altogether in a given corpus.

 is a formula to count neighboring word which

represent how many times word follows the current word [25].

3.4 Continuous Bag of Words (CBOW)

 Used to predict a word by learning the context which is very effective to find out missing

word in a corpus. Context words becomes Neural Network input layer and missing word is

predicted at the output layer. Error between the output layer and input layer is used to re-

adjust the weights. The architecture of CBOW is shown in Figure 4(a), where we can use

several hidden layers between input and output layer in order to maximize the conditional

probability of actual output word from input words.

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1353

(a)

(b)

Figure 4-Architecture of (a) CBOW model and (b) Skip Gram Model

3.5 Skip Gram Model

This model is completely reverse of continuous bag of words model used to predict a target

context by learning words. Words becomes Neural Network input layer and context of a word

predicted at the output layer. Error between the output layer and input layer is used to re-

adjust the weights. The architecture of Skip Gram is shown in Figure 4(b).

3.6 FastText

FastText [20] pretrained embedding vectors is a large collection of word vector with four

types of dimension size such as 50, 100 and 200 and 300. FastText used Skip Gram and

CBOW model for generating the word matrix. In word to vector generation process fastText

set minimum frequency count is 2 that means if any important word is appear only once in a

whole document it will be automatically discard from this vector generation process.
4. Performance Analysis and Discussion

For experiment purposes, a sports-related Bengali data set collected from the open-source free

Bengali dataset corpus [26] is used which contains a total of 12,086 text files and each file

contains more than 6500 words. So, there have almost 78,500,000 Bengali words processed to

create word embedding vector which work as first input layer in deep learning neural

network. Most of the Bengali researcher use count vector to count word frequency for their

research but the limitation is that huge memory size and time consuming to process Bengali

text processing. we used Python Anaconda 3.6 machine learning platform and Jupyter

Notebook tool for this implementation.

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1354

Figure 5-Pre-processing steps

4.1 Pre-processing

Before word embedding method implementation, we need to preprocessing our corpus,

because collected data is not suitable for processing. It contains huge amount of punctuation

marks, stemming and stop word etc. Preprocessing as shown in Figure 5 is the most important

step during implementation. At first, we have to clean data by removing punctuation, stop

words and stemming.

4.1.1 Tokenization and Punctuation Removal

Tokenization means breaking up a given sentence into smaller meaningful units. Each unit is

called token which may be number, punctuation marks or words. Words have been identified

based on the spaces and remove unnecessary items in words such as punctuation marks, hash

tag, emoji, emoticon, etc.

4.1.2 Stop Word Removal

Every text contains some unimportant word which is known as stop word. These words have

no importance during processing documents. In English language stop words are “the”, “a”,
“an”, “of”, “my” etc. Similarly, in Bengali language stop words are “এই”, “঑”, “তাই ”,

“অথএফ”, “অথচ” etc shown in Table 1. These stop words have been identified after analyzing

huge Bangla data sets for a long time. For example, consider a sentence “You are still talking

riddles, the real work has not started yet” where stop words are „you‟, „are‟, „still‟, „the‟,
„has‟, „not‟. After translating the sentence into Bengali format it is “আ঩নি কিন্তু এখন঑

঴ েঁয়ারি কয কথা ফরছ ন আ঳র কাজটি এখনো ঱ুয ুকয ন নাই” where stop words are different

from English language. By removing stop word the token list will be [঴ েঁয়ারি, কথা, ফরছ ন,

আ঳র, কাজটি, ঱ুয,ু নাই] which are the most powerful words for this sentence.

Table-1 Some Stop words in Bengali Language

Bengali Stop Words

অফ঱্ম, গুরি, ফিলয়টি, অন ক, গিয় , ফ্মফ঴ায, অন ক , গিয় ছ , ফ্মা঩ায , অন ক ই, গ ছ , বাফ ,

অন্তত, গ র, বাফ ই, অথফা, গ র , ভধ্ম , অথচ, গোটা, ভধ্ম ই, অয্থাত, চর , ভধ্ম ঑, অন্ম,

ছাড়া, ভধ্মবাগ , আজ, ছাড়া঑, ভাধ্মভ , আছ , ছির ন, ভাত্য, আ঩নায, ছির, ভতো, আ঩নি, জন্ম,

ভতোই, আফায, জানা, ভোট ই, আভযা, ঠিক, মখন, আভাক , তিনি, মদি, আভাদ য, তিন, ঐ, মদি঑,

আভায, তিনি঑, মাফ , আভি, তখন, মায়, আয঑, তফ , মাক , আয, তফু, মা঑য়া, আগ , তােঁদ য,

মা঑য়ায, আগ ই, তােঁা঴াযা, মত, আই, তােঁযা, মতটা, অতএফ, তােঁয, মা, আগাভী, তােঁক , মায, অফধি,

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1355

তাই, মাযা, অনুমায়ী, ত ভন, মােঁয, আদ্মবাগ , তাক , মােঁযা, এই, তা঴া, মাদ য, একই, তা঴াত , মান,

এক , তা঴ায, মাচ্ছ , একটি, তাদ য, ম ত , এখন, তায঩য, মাত , এখন঑, তাযা, ম ন, এখান , তাযৈ,

ম ভন, এখান ই, তায, ম খান , এটি, তা঴র , মিনি, এটা, তিনি, ম , এটাই, তা, য খ , এতটাই, তা঑,

যাখা, এফং, তাত , যয় ছ , একফায, তো, যকভ, এফায, তত, ঱ুধ,ু এদ য, তুভি, ঳ঙ্গ , এেঁদ য,

তোভায, ঳ঙ্গ ঑, এভন, তথা, ঳ভ঳্ত, এভনকী, থাক , ঳ফ, এর, থাকা, ঳ফায, এয, থাকায়, ঳঴,

এযা, থ ক , ঳ুতযাং, এেঁযা, থ ক ঑, ঳঴িত, এ঳, থাকফ , ঳ ই, এত, থাক ন, ঳ টা, এত , থাকফ ন,

঳ টি, এ঳ , থ ক ই, ঳ টাই, এক , দিক , ঳ টা঑, এ, দিত , ঳ভ্঩্যতি, ঐ, দিয় , ঳ খান, ই, দিয় ছ ,

঳ খান , ই঴া, দিয় ছ ন , ঳ , ইত্মাদি, দির ন, ঳্঩ল্ট, উনি, দ,ু ঳্ফয়ং, উ঩য, দুটি, ঴ইত , উ঩য ,

দুটো, ঴ইফ , উচিত, দ য়, ঴ৈর , ঑, দ ঑য়া, ঴ইয়া, ঑ই, দ ঑য়ায, ঴চ্ছ , ঑য, দ খা, ঴ত, ঑যা, দ খ ,

঴ত , ঑েঁয, দ খত , ঴ত ই, ঑েঁযা, দ্ফাযা, ঴ফ , ঑ক , ধয , ঴ফ ন, ঑দ য, ধযা, ঴য় ছির, ঑েঁদ য, নয়,

঴য় ছ , ঑খান , নানা, ঴য় ছ ন, কত, না, ঴য় , কফ , নাকি, ঴য়নি, কযত , নাগাদ, ঴য়, কয় ক, নিত ,

঴য় ই, কয় কটি, নিজ , ঴য়তো, কযফ , নিজ ই, ঴র, কযর ন, নিজ য, ঴র , কযায, নিজ দ য, ঴র ই,

কায঑, নিয় , ঴র ঑, কযা, ন ঑য়া, ঴রো, কযি, ন ঑য়ায, ঴ি঳াফ , কযিয় , ন ই, ঴঑য়া, কযায,

঴঑য়ায, কযাই, ঩ক্ল , ঴঑য়ায়, কযর , ঩য্মন্ত, ঴ন, কযর ন, ঩া঑য়া, ঴োক, কযিত , ঩ায ন, জন,

কযিয়া, ঩াযি, জনক , কয ছির ন, ঩ায , জন য, কযছ , ঩য , জানত , কযছ ন, ঩য ই, জানায়,

কয ছ ন, ঩য ঑, জানিয় , কয ছ , ঩য, জানানো, কয ন, ঩ য় , জানিয় ছ , কযফ ন, ঩্যতি, জন্ম,

কযায়, ঩্যবৃতি, জন্ম঑জ , কয , ঩্যায়, জ , কয ই, প য, ফ ঱, কাছ, পর , দ ন, কাছ , পিয , তুর ,

কাজ , ফ্মফ঴ায, ছির ন, কাযণ, ফরত , চান, কিছু, ফরর ন, চায়, কিছুই, ফর ছ ন, চ য় , কিন্তু,

ফরর, ভোট, কিংফা, ফরা, মথ ল্ট, কি, ফর ন, টি, কী, ফর , ক উ, ফ঴ু, ক উই, ফ঳ , কাউক , ফায,

ক ন, ফা, ক , ফিনা, কোন঑, ফযং, কোনো, ফদর , কোন, ফাদ , কখন঑, ফায, ক্ল ত্য , ফি঱ ল,

খুফ, ফিবিন্ন ।

4.1.3 Stemming

The process of reducing variation of a word is called stemming. There can be different forms
of a word based on the context it is being used. For example, "কযা", "কযছি", "কযছিরাভ",

"কযছির ", "কয ছ ","কয ছি" etc. for all these words, "কয" is the root word. Python

Regulation Expression library was used for reducing variation.

Table 2-Top 5 word with corresponding Weight using TF-IDF methods
Word Weight

খ রা 0.67518

঳ভয় 0.67003

গ্মারাযী 0.49186

পরাপর 0.45575

঳ভয্থ 0.41561

4.2 TF-IDF word embedding method

TF-IDF word embedding method discussed in section 3 and in this section, only

implementation process has been discussed here. Scikit-learn library in Python provide a

TfidfVectorizer function to create TF-IDF word embedding vectors. At first import

TfidfVectorizer from sklean.feature_extraction.text then call fit and transform to calculate the

TF-IDF score for the text. Finally, top 5 words have print as shown in Table 2 with their

weight through the given document.

After TF-IDF operation produces following results:

Total unique words are: 5430

Highest word weight is: 0.67518

Lowest word weight is: 0.00451

4.3 Local Word Embedding using Skip Gram

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1356

Word2Vec can be generated using either Continuous Bag-Of-Words or Skip-gram model

which is discussed in section 3. In this paper, the Skip-gram model with a negative sample

have chosen for Local word vector generation and implemented on Python using NumPy then

Keras Python framework is used to implement deep learning neural network for NLP

processing. After pre-processing a clean dataset has found then set the value of some

hyperparameters such as learning rate, epochs, embedding size, window size, etc. and

generate training data by building vocabulary also build dictionaries that map word to id or

vice versa. Then use Skip-gram model to training vocabulary by forward propagation and

backpropagation network. Finally get word vector and their similar words in word

embedding. Full process shown in Figure 6.

Figure 6-Local Word Embedding for Bengali Language implementation process

4.4 Experimental Evaluation

Table 3 shows the data demography to check the performance of proposed local word

embedding compare with pretrained fastText word embedding.

Table 3- Dataset Statistics
Terminology Values

Total number of Documents 12086

Total Words before pre-processing 78,500,000

Total unique words before preprocessing 12354672

Number of words after preprocessing 25467890

Number of Unique Words after preprocessing 164765

The whole data set has pre-processed and trimmed before sending it to the word vector

generation process. The complete datasets have categorized into 5 different features and

applied the proposed local word embedding model separately in each proposed feature as

shown in Table 4.

Table 4-Measurement Features
Features Window Size Negative sample Vector Dimension size

F1 5 10 300

F2 10 15 300

F3 15 20 300

F4 20 25 300

F5 25 30 300

For training and testing purpose 80% datasets have used for train the model and rest of 20%

dataset is used to evaluate the model using Random Forest [27] machine learning classifiers.

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1357

The model has been trained in five separate features F1 to F5 as shown in Table 4 and tests

the model in each feature. The size of epochs is 100 and verbose size is 2 and train the model

using fit function. Google Colab open-source platform has used to execute the experiment

entirely in the Jupyter notebook. Python 3.7, TensorFlow 2.2.1, Panda 1.0.3, Nvidia K80s

GPUs have used to implement the research. Panda data frame has used for dataset handling

and scikit-learn 0.22.2 for training and testing the model. First, the proposed local word

embedding model has tested for all features and trained and evaluated the model. Then use the

fastText pretrained word embedding model to train and test based on different features. After

the implementation of skip-gram based local word embedding following results have been

produced as shown in Figure 7 for the semantic relationship of different words.

Figure 7-Semantic relationship between Male-Female

If we want to find out relationship based on equation like:
ফাফা + ভ য় – ছ র = ? (2)

Probable result is shown in Table 5:

Table 5-Output of ফাফা + ভ য় – ছ র = ?

Probable Output Word Proposed/ Local Word Embedding fastText Word Embeddings

ভা 0.9142267107 (91.42%) 0.8956247434 (89.56%)

঳ন্তান 0.7938171625 (79.38%) 0.7865468544 (78.65%)

ফাফাভা 0.7937164306 (79.37%) 0.8037171625 (80.37%)

঳্ত্যী 0.7889907360 (78.89%) 0.7967107976 (79.67%)

঳্ফাভী 0.7878202795 (78.78%) 0.7937536805 (79.37%)

Proposed word embedding and fastText word embedding produce the closest neighbors to this

equation. The top 5 closest neighbors are shown in Table 5 with their probability scores.

Local word embedding model produce probability that is semantic related to other words

which and accuracy is better than pretrained word vector fastText.

Table 6-performance result of Proposed & fastText word embedding
Method Features Accuracy (%) Precision (%) Recall (%)

Proposed

word

Embedding

F1 87.84 87.16 90.51

F2 63.75 63.59 67.84

F3 72.71 73.09 76.01

F4 79.35 79.31 82.58

F5 71.51 71.58 76.50

fastText

pre-trained

word

embedding

F1 86.75 86.17 89.49

F2 62.96 62.86 67.09

F3 72.00 72.48 75.23

F4 83.47 83.13 86.34

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1358

F5 69.38 69.83 74.12

Performance result of proposed & fastText word embedding shown in Table 6. The local

word embedding model produces different scores for different features whereas the F1 feature

produces better performance than the other four features. The proposed model achieves a

maximum accuracy score of 87.84% for feature F1. FastText pretrained word embedding

model produces 86.75% accuracy for feature F1 which is minimum than proposed word

embedding model. Figure 8 shows the graphical representation of proposed and fastText

model.

(a)

(b)

Figure 8-Graphical representation of local embedding and fastText embedding (a) Accuracy

score (b) Recall score

Figure 9 shows the F1 score of the local word embedding model and the fastText pretrained

word embedding model. The first and third features for both models produce a more advanced

F1 score where the proposed model F1 score is higher than the fastText model.

Table 7-Confusion matrix

Confusion matrix

Local word embedding
fastText pre-trained word

embedding

Predicted Positive Predicted negative
Predicted

Positive

Predicted

negative

Actually positive 48.21% 05.05% 47.66% 05.61%

Actually negative 07.11% 39.63% 07.65% 39.08%

8
7

.8
4

6
3

.7
5

7
2

.7
1

7
9

.3
5

7
1

.5
1

8
6

.7
5

6
2

.9
6

7
2

.0
0

8
3

.4
7

6
9

.3
8

0.00

20.00

40.00

60.00

80.00

100.00

F1 F2 F3 F4 F5

A
cc

u
ra

cy

Features

Local Embedding FastText
9

0
.5

1

6
7

.8
4

7
6

.0
1

8
2

.5
8

7
6

.5
0

8
9

.4
9

6
7

.0
9

7
5

.2
3

8
6

.3
4

7
4

.1
2

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

F1 F2 F3 F4 F5

R
e

ca
ll

Local Embedding FastText

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1359

Figure 9-F1-Score of Local and fastText word embedding

(a)

(b)

Figure 10-Graphical representation of confusion matrix (a) Local word embedding (b)

fastText pretrained word embedding

Confusion matrix for local word embedding model and fastText word embedding model

shown in Table 7 and graphical representation shown in Figure 10. The positive prediction of

the proposed model is 48.21% of the total test dataset that means it can correctly identify the

48.21% dataset as a positive class among the 53% dataset. Only 05.05% dataset was actually

positive but the proposed model predicts this as a negative class. For negative classes, the

proposed model predicts the negative class of 39.33% of the 47% of total negative datasets.

Compared to fastText, our proposed model actually has higher scores of positive and negative

probabilities that the fastText model. For false positive and false negative score fastText

model probabilities is higher than proposed local word embedding model. The fast text word

vector is unique and produces good results in most cases but in Bengali language processing

local word vector output can be made based on requirements and shows better performance

than other pre-trained word vectors.

5. Conclusion and Future work

48.21%

5.05%
7.11%

39.63%

Local word embedding

Confusion Matrix

True positive True negative

False positive False negative

47.66%

5.61%
7.65%

39.08%

fastText pretrined word embedding

Confusion Matrix

True positive True negative

False positive False negative

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1360

This research explores different word embedding methods than can be used to create local

word embedding vector for Bengali language processing which is very important for deep

learning neural network. We perform the most useful two word embedding methods for

generating embedding vector. IF-IDF method used to count frequency of word which is used

for classification, clustering of NLP sentiment analysis and Word2Vec method used to predict

word which is used for regression or prediction analysis. After generating word embedding

vector, we fed this vector to deep learning neural network as input-to-input layer. Then we

used several hidden layers also CNN layers to successfully train the machine using this word

embedded data set. Finally, we compared proposed local word embedding model with

fastText pretrained word embedding model. Experimental result shows that proposed model

accuracy is 87.84% whereas fastText model accuracy is 86.75% for Bengali language

processing. In the future, we have a plan to identify all stop words during pre-processing and

to consider misspelling or vocabulary out of words to calculate their word vectors for Bangla

language processing.

References
[1] Ronan Collobert and Jason Weston, “A unified architecture for natural language processing:

Deep neural networks with multitask learning,” In Proceedings of ICML. 160–167, 2008.

[2] Tomas Mikolov, Wen-tau Yih, and Georey Zweig, “Linguistic Regularities in Continuous Space

Word Representations,” In Proceedings of NAACL. 746–751, 2013.

[3] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. , “Glove: Global Vectors for

Word Representation,” In Proceedings of EMNLP. 1532–1543, 2014.

[4] Md. Anwar Hussen Wadud and Md. Rashadul Hasan Rakib, “Text Coherence Analysis based on

Misspelling Oblivious Word Embeddings and Deep Neural Network,” International Journal of

Advanced Computer Science and Applications(IJACSA), vol. 12, no. 1, 2021.

[5] Peter D Turney, Patrick Pantel, and others, “From frequency to meaning: Vector space models of

semantics,” Journal of Artificial Intelligence Research, vol. 37, no. 1(2010), pp. 141–188, 2010.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin, “A Neural Probabilistic

Language Model,” Journal of Machine Learning Research, vol. 3, no. (2003), pp. 1137–115,

2010.

[7] G.E. Hinton, “Learning distributed representations of concepts,” In Proceedings of the eighth

annual conference of the cognitive science society, pages 1–12, 1986, Amherst, MA.

[8] Tom Kenter and Maarten de Rijke, “Short text similarity with word embeddings,” In Proceedings

of the 24th ACM International on Conference on Information and Knowledge Management

(CIKM 2015), pages 1411–1420, 2015.

[9] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen, “Convolutional neural network

architectures for matching natural language sentences,” In Advances in Neural Information

Processing Systems (NIPS 2014), pp.2042–2050, 2014.

[10] Aliaksei Severyn and Alessandro Moschitti, “Learning to rank short text pairs with convolutional

deep neural networks,: In Proceedings of the 38th International ACM SIGIR Conference on

Research and Development in Information Retrieval (SIGIR 2015), pages 373–382, 2015.

[11] Wenpeng Yin and Hinrich Sch ¨ utze, “Convolutional neural network for paraphrase

identification,” In Proceedings of the North American Chapter of the Association for

Computational Linguistics (NAACL 2015), pages 901–911, 2015.

[12] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu, “Towards universal paraphrastic

sentence embeddings,” Proceedings of the International Conference on Learning Representations

(ICLR 2016).

[13] Karl Moritz Hermann and Phil Blunsom, “Multilingual distributed representations without word

alignment,” In Proceedings of the International Conference on Learning Representations (ICLR

2014).

Wadud et al. Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361

1361

[14] Karl Moritz Hermann and Phil Blunsom, ”Multilingual models for compositional distributed

semantics,” In Proceeedings of the 52nd Annual Meeting of the Association for Computational

Linguistics (ACL 2014), pages 58–68.

[15] Stanislas Lauly, Hugo Larochelle, Mitesh Khapra, Balaraman Ravindran, Vikas C Raykar, and

Amrita Saha, “An autoencoder approach to learning bilingual word representations,” In Advances

in Neural Information Processing Systems (NIPS 2014), pp. 1853–1861, 2014.

[16] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio

Torralba, and Sanja Fidler, “Skipthought vectors,” In Advances in Neural Information Processing

Systems 28 (NIPS 2015), pp. 3294– 3302. Curran Associates, Inc.

[17] Wentau Yih, Kristina Toutanova, John C. Platt, and Christopher Meek, “Learning discriminative

projections for text similarity measures,” In Proceedings of the Fifteenth Conference on

Computational Natural Language Learning, pages 247–256, 2016.

[18] Felix Hill, Kyunghyun Cho, and Anna Korhonen, “Learning distributed representations of

sentences from unlabelled data,” In Proceedings of the North American Chapter of the

Association for Computational Linguistics (NAACL 2016).

[19] Pennington, Jeffrey & Socher, Richard & Manning, Christoper. (2014). Glove: Global Vectors

for Word Representation. EMNLP. 14. 1532-1543. 10.3115/v1/D14-1162.J. Clerk Maxwell, A

Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[20] Joulin, Armand & Grave, Edouard & Bojanowski, Piotr & Douze, Matthijs & Jégou, Hervé &

Mikolov, Tomas. (2016). FastText.zip: Compressing text classification models.

[21] Kumar, S., Kumar, S., Kanojia, D., & Bhattacharyya, P, “A Passage to India: Pre-trained Word

Embeddings for Indian Languages,” In Proceedings of the 1st Joint Workshop on Spoken

Language Technologies for Under-resourced languages (SLTU) and Collaboration and

Computing for Under-Resourced Languages (CCURL) (pp. 352-357), (2020, May).

[22] B. Jiang, Z. Li, H. Chen and A. G. Cohn, "Latent Topic Text Representation Learning on

Statistical Manifolds," in IEEE Transactions on Neural Networks and Learning Systems, vol. 29,

no. 11, pp. 5643-5654, Nov. 2018.

[23] W. Liang, R. Feng, X. Liu, Y. Li and X. Zhang, "GLTM: A Global and Local Word Embedding-

Based Topic Model for Short Texts," in IEEE Access, vol. 6, pp. 43612-43621, 2018.

[24] H. Wu and R. Luk and K. Wong and K. Kwok, "Interpreting TF-IDF term weights as making

relevance decisions," ACM Transactions on Information Systems, vol. 26, no. 3, 2008.

[25] Cochez, M., Garofalo, M., Lenßen, J., & Pellegrino, M. A. (2018). A first experiment on

including text literals in KGloVe. arXiv preprint arXiv:1807.11761.

[26] www.scdnlab.com/corpus/

[27] Xu, B., Guo, X., Ye, Y., & Cheng, J., “An Improved Random Forest Classifier for Text

Categorization,” JCP, vol. 7, no. 12, pp. 2913-2920, 2012.

