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Abstract  

    Natural Language Processing (NLP) deals with analysing, understanding and 

generating languages likes human. One of the challenges of NLP is training 

computers to understand the way of learning and using a language as human.  Every 

training session consists of several types of sentences with different context and 

linguistic structures. Meaning of a sentence depends on actual meaning of main 

words with their correct positions. Same word can be used as a noun or adjective or 

others based on their position. In NLP, Word Embedding is a powerful method 

which is trained on large collection of texts and encoded general semantic and 

syntactic information of words. Choosing a right word embedding generates more 

efficient result than others. Most of the papers used pretrained word embedding 

vector in deep learning for NLP processing. But, the major issue of pretrained word 

embedding vector is that it can‟t use for all types of NLP processing. In this paper, a 

local word embedding vector formation process have been proposed and shown a 

comparison between pretrained and local word embedding vectors for Bengali 

language. The Keras framework is used in Python for local word embedding 

implementation and analysis section of this paper shows proposed model produced 

87.84% accuracy result which is better than fastText pretrained word embedding 

vectors accuracy 86.75%. Using this proposed method NLP researchers of Bengali 

language can easily build the specific word embedding vectors for word 

representation in Natural Language Processing. 

Keywords: Word embedding; NLP; FastText; Deep Learning, local and pretrained 

word vector. 

1. Introduction 

    Word embedding is the most important topic in natural language processing, known as 

distributed word representation to represent words in natural language processing and 

information retrieval applications [1- 6]. Most of the Machine Learning algorithms also Deep 

Learning Algorithms cannot process string or plain text in their raw form. Their input requires 

numbers or list of numbers to perform any type of job such as regression, classification etc. 

Word Embedding generally map a word to a vector using a dictionary.  

Word Embeddings or Distributional vectors follow distributional hypothesis where similar 

context occur according to similar meaning of all words. Distributional vectors try to capture 

the properties of the adjacent word. Generally, word embedding used as the first data 

processing layer in machine learning or deep learning model [7- 11]. 

                                                           
 

ISSN: 0067-2904 

 



Wadud et al.                                Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361 

1350 

 
Figure 1-Simple Word Embedding Scheme for nine-word vocabulary 

 

Valid word vector can be any set of numbers where vocabularies capture specific meanings, 

relationship between words etc. In word embedding, every word has a unique number of 

vector and embeddings are multidimensional vectors typically 50 to 500 in length. Simplest 

word embedding scheme is one-hot encoding where embedding space has the same size as 

total number of words in the vocabulary as shown in Figure 1. Main drawback of one-hot 

embedding is dimension size linearly depends on vocabulary size which consume huge 

amount of memory. If vocabulary size increase, then linearly increase number of dimensions. 

To reduce the dimension size, we can use categories for all vocabulary as shown in Figure 2, 

where similar word has similar embeddings and embedding matrix is less empty space or 

zeros. Creating N dimensional word embedding vector which contains relationship between 

similar word and neighbour‟s word is very difficult for most of researcher. They use 

pretrained word embedding vectors like as Word2Vec created from Google, Glove word 

embedding vector created from Stanford or fasttext word embedding vector created form 

Facebook. This pretrained word embedding vector have their own algorithm to create this 

vector. During creating word embedding locally, we have to consider similarity between 

recognize words and relationship between words. 

 
Figure 2-Lower dimensional Word Embedding 

 

The main goal of this research is to discuss how to create local word embedding methods for 

Bengali text processing. Word Embedding methods in English language processing is very 
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familiar but in Bengali language usages of this methods is very rare. The key contributions of 

our research are:  

 Identify all stop words in Bengali language 

 Perform frequency based local word embedding generation process in Bengali language 

 Perform prediction based local word embedding generation process 

 Apply Random Forest machine learning classifiers on local word embedding vector and 

pretrained word embedding vector 

 Made a Comparison between local and pretrained word embedding vector. 

2. Related Works 

Hinton [7], 1986 proposed first linear relational word representation scheme using binary 

relations between words by leaning distributed representation. Then other researchers 

improved word embedding vectors by adding different factors. Mikolov et al. (2013c) [2, 12] 

proposed a word embedding method based on input layer weights which captures syntactic 

and semantic scheme and relation-specific vector offset used to characterized semantic 

relationship. Their given example demonstrates male-female relationship learned by 

representing word vector by vector equation “king – queen = man – woman”. Hermann and 

Blunsom work for multilingual setting from distributional representation of an input sentences 

that is same sentences in different language [13, 14, 15].  

Kiros [16] explained different notation of learning from context sentence using recurrent 

neural network. Yih [17] proposed a method for text similarity measure where short texts are 

represented by TF-IDF vectors. Hill [18] also present a liner model where relationship 

between sentences is not consider. Global vectors for word representing (GloVE) is another 

vector representation for words based on unsupervised learning algorithm which is crated for 

English language [19]. Most of the pretrained word embeddings are based on English 

language. Recently Facebook introduced new word embeddings named fastText which have 

word vector for 157 languages [20]. FastText also have word vector for Bengali language and 

each vector have 300 dimensions in size. But the major problem of using fastText is large 

data size and need huge memory and high configurable machine for processing also have 

limited number of Bengali words. All of word embedding related research used pretrained 

word embedding vectors or recurrent neural network to skip word pre-processing or used own 

word embedding with limited properties. So, in this paper word embedding creating process 

has been discussed for the Bengali language also discussed how to use pretrained word vector 

for the Bengali language. 

Kumar et. al [21] discussed pretrained word embeddings for 14 languages including Bengali 

language. They apply different word embedding methods on 14 languages and find out their 

performance result but they didn‟t discuss the local embedding generation process for all 

languages. They use pretrained word embedding methods to generate word vector for specific 

language. 

3. Word Embedding Method 

Creating local Word Embedding methods depends on aims of our NLP research. Word 

Embedding methods can be broadly classified into two categories- Frequency based 

Embedding and Prediction based Embedding. Frequency based embedding methods are easy 

to understand and mainly used for text classification, sentiment analysis and many more [22]. 

There have several frequency-based methods such as Count Vector, TF-IDF Vector, Co-

occurrence Matrix etc. On the other hand, prediction-based word embedding methods predicts 

a target word by mapping words in the vocabulary. Most usable prediction-based methods are 

Continuous bag of words (CBOW) and Skip-Gram model. Both of these techniques learn 

weights by applying backpropagation neural network [23]. Following are short discussion of 

different word embedding methods and their use cases. 
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3.1 Count Vector 

This method learns vocabularies form all of the documents then form a matrix by counting 

number of times each word occurs in each document. If total unique word number is T and 

number of documents is D then count matrix size will be T X D as shown in Figure 3. Using 

count vector methods any one can prepare embedding vector by choosing high frequency 

word from vocabulary list.  

3.2 TF-IDF Vector  

Term Frequency-Inverse Document Frequency (TF-IDF) [24] reflect how important a word 

for a specific document from a collection of documents which used in information retrieval 

and text mining. Formal equation of TF-IDF is: 

                                                                         (1) 

      Where,      = (Number of times term t appears in a document d) / (Number of terms in the 

document d) and       = log (Number of documents N) / (Number of documents a term t has 

appeared in) 

     If a word has appeared in all the document, then value of      will be 0 and probably the 

word is not relevant to a particular document. 

 
Figure 3-Embedding vector with size T X D using Count Vector 

 

3.3 Co-occurrence Matrix 

Used for identify semantic relationship between words by using factorization which is a most 

common problem for word embedding and can be solved efficiently. This matrix is computed 

by counting how two or more words occur altogether in a given corpus. 

                                        is a formula to count neighboring word which 

represent how many times word               follows the current word                  [25].  

3.4 Continuous Bag of Words (CBOW) 

     Used to predict a word by learning the context which is very effective to find out missing 

word in a corpus. Context words becomes Neural Network input layer and missing word is 

predicted at the output layer. Error between the output layer and input layer is used to re-

adjust the weights. The architecture of CBOW is shown in Figure 4(a), where we can use 

several hidden layers between input and output layer in order to maximize the conditional 

probability of actual output word from input words. 
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(a) 

 
(b) 

Figure 4-Architecture of (a) CBOW model and (b) Skip Gram Model 

 

3.5 Skip Gram Model 

This model is completely reverse of continuous bag of words model used to predict a target 

context by learning words. Words becomes Neural Network input layer and context of a word 

predicted at the output layer. Error between the output layer and input layer is used to re-

adjust the weights. The architecture of Skip Gram is shown in Figure 4(b). 

3.6 FastText 

FastText [20] pretrained embedding vectors is a large collection of word vector with four 

types of dimension size such as 50, 100 and 200 and 300. FastText used Skip Gram and 

CBOW model for generating the word matrix. In word to vector generation process fastText 

set minimum frequency count is 2 that means if any important word is appear only once in a 

whole document it will be automatically discard from this vector generation process.   
4. Performance Analysis and Discussion 

For experiment purposes, a sports-related Bengali data set collected from the open-source free 

Bengali dataset corpus [26] is used which contains a total of 12,086 text files and each file 

contains more than 6500 words. So, there have almost 78,500,000 Bengali words processed to 

create word embedding vector which work as first input layer in deep learning neural 

network. Most of the Bengali researcher use count vector to count word frequency for their 

research but the limitation is that huge memory size and time consuming to process Bengali 

text processing. we used Python Anaconda 3.6 machine learning platform and Jupyter 

Notebook tool for this implementation.  
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Figure 5-Pre-processing steps 

 

4.1 Pre-processing 

Before word embedding method implementation, we need to preprocessing our corpus, 

because collected data is not suitable for processing. It contains huge amount of punctuation 

marks, stemming and stop word etc. Preprocessing as shown in Figure 5 is the most important 

step during implementation. At first, we have to clean data by removing punctuation, stop 

words and stemming. 

4.1.1 Tokenization and Punctuation Removal  

Tokenization means breaking up a given sentence into smaller meaningful units. Each unit is 

called token which may be number, punctuation marks or words. Words have been identified 

based on the spaces and remove unnecessary items in words such as punctuation marks, hash 

tag, emoji, emoticon, etc. 

4.1.2 Stop Word Removal 

Every text contains some unimportant word which is known as stop word. These words have 

no importance during processing documents. In English language stop words are “the”, “a”, 
“an”, “of”, “my” etc. Similarly, in Bengali language stop words are “এই”, “঑”, “তাই ”,  

“অথএফ”, “অথচ” etc shown in Table 1. These stop words have been identified after analyzing 

huge Bangla data sets for a long time. For example, consider a sentence “You are still talking 

riddles, the real work has not started yet” where stop words are „you‟, „are‟, „still‟, „the‟, 
„has‟, „not‟. After translating the sentence into Bengali format it is “আ঩নি কিন্তু এখন঑ 

঴ েঁয়ারি কয  কথা ফরছ ন আ঳র কাজটি এখনো ঱ুয ুকয ন নাই” where stop words are different 

from English language. By removing stop word the token list will be [ ঴ েঁয়ারি,  কথা,  ফরছ ন, 

আ঳র, কাজটি, ঱ুয,ু নাই] which are the most powerful words for this sentence. 

 

Table-1 Some Stop words in Bengali Language 

Bengali Stop Words 

অফ঱্ম, গুরি, ফিলয়টি, অন ক, গিয় , ফ্মফ঴ায, অন ক , গিয় ছ , ফ্মা঩ায , অন ক ই, গ ছ , বাফ , 

অন্তত, গ র, বাফ ই, অথফা, গ র , ভধ্ম , অথচ, গোটা, ভধ্ম ই, অয্থাত, চর , ভধ্ম ঑, অন্ম, 

ছাড়া, ভধ্মবাগ , আজ, ছাড়া঑, ভাধ্মভ , আছ , ছির ন, ভাত্য, আ঩নায, ছির, ভতো, আ঩নি, জন্ম, 

ভতোই, আফায, জানা, ভোট ই, আভযা, ঠিক, মখন, আভাক , তিনি, মদি, আভাদ য, তিন, ঐ, মদি঑, 

আভায, তিনি঑, মাফ , আভি, তখন, মায়, আয঑, তফ , মাক , আয, তফু, মা঑য়া, আগ , তােঁদ য, 

মা঑য়ায, আগ ই, তােঁা঴াযা, মত, আই, তােঁযা, মতটা, অতএফ, তােঁয, মা, আগাভী, তােঁক , মায, অফধি, 



Wadud et al.                                Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361 

1355 

তাই, মাযা, অনুমায়ী, ত ভন, মােঁয, আদ্মবাগ , তাক , মােঁযা, এই, তা঴া, মাদ য, একই, তা঴াত , মান, 

এক , তা঴ায, মাচ্ছ , একটি, তাদ য, ম ত , এখন, তায঩য, মাত , এখন঑, তাযা, ম ন, এখান , তাযৈ, 

ম ভন, এখান ই, তায, ম খান , এটি, তা঴র , মিনি, এটা, তিনি, ম , এটাই, তা, য খ  , এতটাই, তা঑, 

যাখা, এফং, তাত , যয় ছ , একফায, তো, যকভ, এফায, তত, ঱ুধ,ু এদ য, তুভি, ঳ঙ্গ , এেঁদ য, 

তোভায, ঳ঙ্গ ঑, এভন, তথা, ঳ভ঳্ত, এভনকী, থাক , ঳ফ, এর, থাকা, ঳ফায, এয, থাকায়, ঳঴, 

এযা, থ ক , ঳ুতযাং, এেঁযা, থ ক ঑, ঳঴িত, এ঳, থাকফ , ঳ ই, এত, থাক ন, ঳ টা, এত , থাকফ ন, 

঳ টি, এ঳ , থ ক ই, ঳ টাই, এক , দিক , ঳ টা঑, এ, দিত , ঳ভ্঩্যতি, ঐ, দিয় , ঳ খান, ই, দিয় ছ , 

঳ খান , ই঴া, দিয় ছ ন , ঳ , ইত্মাদি, দির ন, ঳্঩ল্ট, উনি, দ,ু ঳্ফয়ং, উ঩য, দুটি, ঴ইত , উ঩য , 

দুটো, ঴ইফ , উচিত, দ য়, ঴ৈর , ঑, দ ঑য়া, ঴ইয়া, ঑ই, দ ঑য়ায, ঴চ্ছ , ঑য, দ খা, ঴ত, ঑যা, দ খ , 

঴ত , ঑েঁয, দ খত , ঴ত ই, ঑েঁযা, দ্ফাযা, ঴ফ , ঑ক , ধয , ঴ফ ন, ঑দ য, ধযা, ঴য় ছির, ঑েঁদ য, নয়, 

঴য় ছ , ঑খান , নানা, ঴য় ছ ন, কত, না, ঴য় , কফ , নাকি, ঴য়নি, কযত , নাগাদ, ঴য়, কয় ক, নিত , 

঴য় ই, কয় কটি, নিজ , ঴য়তো, কযফ , নিজ ই, ঴র, কযর ন, নিজ য, ঴র , কযায, নিজ দ য, ঴র ই, 

কায঑, নিয় , ঴র ঑, কযা, ন ঑য়া, ঴রো, কযি, ন ঑য়ায, ঴ি঳াফ , কযিয় , ন ই, ঴঑য়া, কযায, 

঴঑য়ায, কযাই, ঩ক্ল , ঴঑য়ায়, কযর , ঩য্মন্ত, ঴ন, কযর ন, ঩া঑য়া, ঴োক, কযিত , ঩ায ন, জন, 

কযিয়া, ঩াযি, জনক , কয ছির ন, ঩ায , জন য, কযছ , ঩য , জানত , কযছ ন, ঩য ই, জানায়, 

কয ছ ন, ঩য ঑, জানিয় , কয ছ , ঩য, জানানো, কয ন, ঩ য় , জানিয় ছ , কযফ ন, ঩্যতি, জন্ম, 

কযায়, ঩্যবৃতি, জন্ম঑জ , কয , ঩্যায়, জ , কয ই, প য, ফ ঱, কাছ, পর , দ ন, কাছ , পিয , তুর , 

কাজ , ফ্মফ঴ায, ছির ন, কাযণ, ফরত , চান, কিছু, ফরর ন, চায়, কিছুই, ফর ছ ন, চ য় , কিন্তু, 

ফরর, ভোট, কিংফা, ফরা, মথ ল্ট, কি, ফর ন, টি, কী, ফর , ক উ, ফ঴ু, ক উই, ফ঳ , কাউক , ফায, 

ক ন, ফা, ক , ফিনা, কোন঑, ফযং, কোনো, ফদর , কোন, ফাদ ,  কখন঑, ফায, ক্ল ত্য , ফি঱ ল, 

খুফ, ফিবিন্ন ।  

4.1.3 Stemming 

The process of reducing variation of a word is called stemming. There can be different forms 
of a word based on the context it is being used. For example, "কযা", "কযছি", "কযছিরাভ", 

"কযছির ", "কয ছ ","কয ছি" etc. for all these words, "কয" is the root word. Python 

Regulation Expression library was used for reducing variation. 

 

Table 2-Top 5 word with corresponding Weight using TF-IDF methods 
Word Weight 

খ রা 0.67518 

঳ভয় 0.67003 

গ্মারাযী 0.49186 

পরাপর 0.45575 

঳ভয্থ 0.41561 

4.2 TF-IDF word embedding method 

TF-IDF word embedding method discussed in section 3 and in this section, only 

implementation process has been discussed here. Scikit-learn library in Python provide a 

TfidfVectorizer function to create TF-IDF word embedding vectors. At first import 

TfidfVectorizer from sklean.feature_extraction.text then call fit and transform to calculate the 

TF-IDF score for the text. Finally, top 5 words have print as shown in Table 2 with their 

weight through the given document. 

After TF-IDF operation produces following results: 

Total unique words are: 5430 

Highest word weight is: 0.67518 

Lowest word weight is: 0.00451 

4.3 Local Word Embedding using Skip Gram 
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Word2Vec can be generated using either Continuous Bag-Of-Words or Skip-gram model 

which is discussed in section 3. In this paper, the Skip-gram model with a negative sample 

have chosen for Local word vector generation and implemented on Python using NumPy then 

Keras Python framework is used to implement deep learning neural network for NLP 

processing. After pre-processing a clean dataset has found then set the value of some 

hyperparameters such as learning rate, epochs, embedding size, window size, etc. and 

generate training data by building vocabulary also build dictionaries that map word to id or 

vice versa. Then use Skip-gram model to training vocabulary by forward propagation and 

backpropagation network. Finally get word vector and their similar words in word 

embedding. Full process shown in Figure 6. 

 
Figure 6-Local Word Embedding for Bengali Language implementation process 

 

4.4 Experimental Evaluation 

Table 3 shows the data demography to check the performance of proposed local word 

embedding compare with pretrained fastText word embedding. 

  

Table 3- Dataset Statistics 
Terminology Values 

Total number of Documents 12086 

Total Words before pre-processing 78,500,000 

Total unique words before preprocessing 12354672 

Number of words after preprocessing 25467890 

Number of Unique Words after preprocessing  164765 

The whole data set has pre-processed and trimmed before sending it to the word vector 

generation process. The complete datasets have categorized into 5 different features and 

applied the proposed local word embedding model separately in each proposed feature as 

shown in Table 4.  

Table 4-Measurement Features 
Features Window Size Negative sample Vector Dimension size 

F1 5 10 300 

F2 10 15 300 

F3 15 20 300 

F4 20 25 300 

F5 25 30 300 

 

For training and testing purpose 80% datasets have used for train the model and rest of 20% 

dataset is used to evaluate the model using Random Forest [27] machine learning classifiers. 
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The model has been trained in five separate features F1 to F5 as shown in Table 4 and tests 

the model in each feature. The size of epochs is 100 and verbose size is 2 and train the model 

using fit function. Google Colab open-source platform has used to execute the experiment 

entirely in the Jupyter notebook. Python 3.7, TensorFlow 2.2.1, Panda 1.0.3, Nvidia K80s 

GPUs have used to implement the research. Panda data frame has used for dataset handling 

and scikit-learn 0.22.2 for training and testing the model. First, the proposed local word 

embedding model has tested for all features and trained and evaluated the model. Then use the 

fastText pretrained word embedding model to train and test based on different features. After 

the implementation of skip-gram based local word embedding following results have been 

produced as shown in Figure 7 for the semantic relationship of different words. 

 
Figure 7-Semantic relationship between Male-Female 

 

If we want to find out relationship based on equation like:  
ফাফা + ভ য়  – ছ র   = ?                                                          (2) 

Probable result is shown in Table 5: 

 
Table 5-Output of ফাফা + ভ য়  – ছ র  = ? 

Probable Output Word Proposed/ Local Word Embedding fastText Word Embeddings 

ভা 0.9142267107 (91.42%) 0.8956247434 (89.56%) 

঳ন্তান 0.7938171625 (79.38%) 0.7865468544 (78.65%) 

ফাফাভা 0.7937164306 (79.37%) 0.8037171625 (80.37%) 

঳্ত্যী 0.7889907360 (78.89%) 0.7967107976 (79.67%) 

঳্ফাভী 0.7878202795 (78.78%) 0.7937536805 (79.37%) 

Proposed word embedding and fastText word embedding produce the closest neighbors to this 

equation. The top 5 closest neighbors are shown in Table 5 with their probability scores. 

Local word embedding model produce probability that is semantic related to other words 

which and accuracy is better than pretrained word vector fastText. 

 

Table 6-performance result of Proposed & fastText word embedding 
Method Features Accuracy (%) Precision (%) Recall (%) 

Proposed 

word 

Embedding 

F1 87.84 87.16 90.51 

F2 63.75 63.59 67.84 

F3 72.71 73.09 76.01 

F4 79.35 79.31 82.58 

F5 71.51 71.58 76.50 

fastText 

pre-trained 

word 

embedding 

F1 86.75 86.17 89.49 

F2 62.96 62.86 67.09 

F3 72.00 72.48 75.23 

F4 83.47 83.13 86.34 



Wadud et al.                                Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1349-1361 

1358 

F5 69.38 69.83 74.12 

 

Performance result of proposed & fastText word embedding shown in Table 6. The local 

word embedding model produces different scores for different features whereas the F1 feature 

produces better performance than the other four features. The proposed model achieves a 

maximum accuracy score of 87.84% for feature F1. FastText pretrained word embedding 

model produces 86.75% accuracy for feature F1 which is minimum than proposed word 

embedding model. Figure 8 shows the graphical representation of proposed and fastText 

model. 

 
(a) 

 
(b) 

Figure 8-Graphical representation of local embedding and fastText embedding (a) Accuracy 

score (b) Recall score 

 

Figure 9 shows the F1 score of the local word embedding model and the fastText pretrained 

word embedding model. The first and third features for both models produce a more advanced 

F1 score where the proposed model F1 score is higher than the fastText model.  

 

Table 7-Confusion matrix 

Confusion matrix 

Local word embedding 
fastText pre-trained word 

embedding 

Predicted Positive Predicted negative 
Predicted 

Positive 

Predicted 

negative 

Actually positive 48.21% 05.05% 47.66% 05.61% 

Actually negative 07.11% 39.63% 07.65% 39.08% 
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Figure 9-F1-Score of Local and fastText word embedding 

 
(a) 

 
(b) 

Figure 10-Graphical representation of confusion matrix (a) Local word embedding (b) 

fastText pretrained word embedding 

 

Confusion matrix for local word embedding model and fastText word embedding model 

shown in Table 7 and graphical representation shown in Figure 10. The positive prediction of 

the proposed model is 48.21% of the total test dataset that means it can correctly identify the 

48.21% dataset as a positive class among the 53% dataset. Only 05.05% dataset was actually 

positive but the proposed model predicts this as a negative class. For negative classes, the 

proposed model predicts the negative class of 39.33% of the 47% of total negative datasets. 

Compared to fastText, our proposed model actually has higher scores of positive and negative 

probabilities that the fastText model. For false positive and false negative score fastText 

model probabilities is higher than proposed local word embedding model.  The fast text word 

vector is unique and produces good results in most cases but in Bengali language processing 

local word vector output can be made based on requirements and shows better performance 

than other pre-trained word vectors. 

5. Conclusion and Future work 

48.21% 

5.05% 
7.11% 

39.63% 

Local word embedding 

Confusion Matrix 

True positive True negative

False positive False negative

47.66% 

5.61% 
7.65% 

39.08% 

fastText pretrined word embedding 

Confusion Matrix 

True positive True negative

False positive False negative
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This research explores different word embedding methods than can be used to create local 

word embedding vector for Bengali language processing which is very important for deep 

learning neural network. We perform the most useful two word embedding methods for 

generating embedding vector. IF-IDF method used to count frequency of word which is used 

for classification, clustering of NLP sentiment analysis and Word2Vec method used to predict 

word which is used for regression or prediction analysis. After generating word embedding 

vector, we fed this vector to deep learning neural network as input-to-input layer. Then we 

used several hidden layers also CNN layers to successfully train the machine using this word 

embedded data set. Finally, we compared proposed local word embedding model with 

fastText pretrained word embedding model. Experimental result shows that proposed model 

accuracy is 87.84% whereas fastText model accuracy is 86.75% for Bengali language 

processing. In the future, we have a plan to identify all stop words during pre-processing and 

to consider misspelling or vocabulary out of words to calculate their word vectors for Bangla 

language processing. 
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