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Abstract 

      Internet of Vehicle (IoV) is one of the most basic branches of the Internet of 

Things (IoT), which provides many advantages for drivers and passengers to ensure 

safety and traffic efficiency. Most IoV applications are delay-sensitive and require 

resources for data storage and computation that cannot be afforded by vehicles. 

Thus, such tasks are always offloaded to more powerful nodes, like cloud or fog. 

Vehicular Fog Computing (VFC), which extends cloud computing and brings 

resources closer to the edge of the network, has the potential to reduce both traffic 

congestion and load on the cloud. Resources management and allocation process is 

very critical for satisfying both user and provider needs. However, the strategy of 

task offloading to fog node in constraints of energy and latency is still an open issue. 

Several research works have tackled the resource scheduling problem in the field of 

VFC; however, the recent studies have not carefully addressed the transmission path 

to the destination node, nor has it considered the energy consumption of vehicles. 

This paper aims to optimize the task offloading process in the VFC system in terms 

of latency and energy objectives while taking the deadline constraint into 

considerations by adopting a Multi-Objective Evolutionary Algorithm (MOEA). 

Four different execution/transmission models are proposed where vehicle resources 

are utilized for tasks execution and transmission, and the well-known Dijkstra's 

algorithm is adopted to find the minimum path between each two nodes. The 

simulation results show that the models which involve the vehicles in the 

transmission process have reduced the latency and the total energy for the VFC 

system significantly in comparison with other models and the current state of the art 

methods. 
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المركبات الاهداف لعملية تفريغ المهام في حوسبة ضبابتحدين متعدد   
 
 ، عدنان جمعة جابر*سرى خيري عبدالله

 قدػ عمؽم الحاسؽب، كمية العمؽم، جامعة بغجاد، بغجاد، العخاق
 الخلاصة
ل (IoV)يؽفخ إنتخنيت السخكبات        لخجمات  قيؼ والخكاب لزسان العجيج مؼ ا مدائ

تأخيخ وتتطمب سلامتهػ و  م قات إنتخنيت السخكبات حداسة ل لسخور. مععػ تطبي كفاءة حخكة ا
م الى  مؽارد قج لا تدتطيع السخكبات تؽفيخها، لحلغ يتػ تفخيغ مثل هحا الشؽع مؼ السها
لسخكبات  لية مثل الدحابة أو الزباب. تستمغ حؽسبة ضباب ا بية عا محطات ذات قجرة حدا
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(VFC) لتي تقخب مؽارد الحؽسب ميل الازدحام وا لقجرة عمى تق بية الى حافة الذبكة، ا ة الدحا
ية  مب ت ل الغ الأهسية  دارة السؽارد وتخريرها أمخًا ب السخوري والحسل عمى الدحابة. تعج إ
م إلى عقجة  تيجيات تفخيغ السها لخجمة. ومع ذلغ، فإن استخا رغبات السدتخجميؼ ومدودي ا

عجيج مؼ الأعسال الزباب في ظل قيؽد الطاقة والؽقت لا تدال قي اقذة. عالجت ال سش ج ال
لبحثية مذكمة ججولة السؽارد في مجال  ػ تأخح في VFCا ثة ل لحجي . الا ان الجراسات ا

لشقل إلى عقجة الؽجهة.  تشاول بعشاية مدار ا ػ ت لطاقة لمسخكبات، ول بار استهلاك ا  يهجفالاعت
م ا اهح ميل ز  VFCلبحث إلى تحديؼ عسمية تفخيغ السهام في نعا ق قة لت لطا بة وا مؼ الاستجا

بار  لشهائي في الاعت ػالسدتهمكة مع أخح قيؽد السؽعج ا اعتساد خؽارزمية تطؽرية  حيث ت
فة الى ذلغ .(MOEA)متعجدة الأهجاف  قتخاح ,بالاضا فيح  تػ ا تش م ل فة  أربعة نساذج مختم

ها. و والإرسال حيث يتػ استغلال قجرة ا تشفيح السهام ونقم سادلديارات ل خؽارزمية ديكدتخا  اعت
د السدار الاقرخ بيؼ عقجتيؼ.  لتي السعخوفة لإيجا لشساذج ا ائج السحاكاة أن ا حيث اظهخت نت

لطاقة  تقال وا فيح قج قممت بذكل كبيخ مؼ زمؼ الان تش ل لشقل وا لسخكبات في عسمية ا تتزسؼ ا
ية لشعام  ل  و احجث الاعسال ذات صمة.مقارنةً بالطخازات الأخخى  VFCالإجسا

I. Introduction 

   The rapid growth in wireless and embedded computing has led to the emergence of the 

Internet of Things (IoT) computing. IoT is a technology that connects billions of smart 

devices to the internet, so these devices work cooperatively to sense and disseminate the 

useful information required for certain systems [1],[2]. IoT has been successfully invested in 

various life fields that are considered as the backbone of smart cities and their economies such 

as home automation systems, Intelligent Transportation Systems (ITS) or Internet of Vehicle 

(IoV), systems of surveillance seismic vibrations in buildings, tracking levels systems of 

pollution and radiation in the city, trash management systems, and much more [3]. These 

systems diverge in their architecture depending on their application context and aim for the 

same purpose; to provide convenience and safety for users. 

 Vehicular Ad-hoc Networks (VANETs) encompasses intelligent vehicles where several 

devices are installed like wireless systems and sensing devices to increase road safety and 

user luxury. VANET provides two kinds of communications, vehicle to vehicle (V2V) and 

vehicle to infrastructure (V2I), where the latter allows vehicles to communicate with the Road 

Side Unit (RSU) that is equipped with high computing capabilities[4]. The VANETs 

applications delay-sensitive and the low computations capabilities of vehicles have imposed 

several challenges on the VANETs systems. These challenges involve the need for large 

storage space and high-speed processing devices to provide systems to take correct decisions 

in proper time [5].  

 Cloud computing, which is characterized by its high storage and computation capabilities, 

has been utilized for various applications including vehicular networks [6]. However, cloud 

computing is subject to several limitations related to network bandwidth and also the lengthy 

distance between the cloud and end-users [7] [8]. So, offloading to the remote central cloud 

may not be an idealistic solution. To conquer these drawbacks, fog computing has emerged to 

provide computation and storage services near the data sources [9]. Fog can reduce the 

congestion in the network and latency, due to its proximity to IoT devices and/or the end-user 

devices. 

 Recently, researchers are interested in studying the employment of a large number of 

parked and slow-moving vehicles to improve system performance and reduce response time, 

by applying the vehicular fog computing (VFC) architecture [10]. VFC consists of a large 

number of vehicles whose underutilized computation resources can be harnessed and 

provisioned to other users. 

 According to the task specifications, the simple tasks can be executed by vehicles while the 

delay-sensitive ones are offloaded to the high capabilities RSU servers. In addition, when a 
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task requires intensive computation and cannot be executed by fog nodes within a deadline 

time, it is better to offload it to the unlimited capabilities cloud servers [11]. The task-

offloading in the VFC system aims to select suitable resources for executing the vehicles’ 

tasks by considering several parameters and constraints to satisfy the user needs. 

 The task-offloading in the VFC environment has been considered as an NP-hard 

optimization problem, where determining the best task offloading decision requires an 

efficient algorithm that can deal with high complexity and a large size problem. In recent 

literature, there have been several research works focused on utilizing the heuristic and meta-

heuristic algorithm to find the best task offloading solution by making the best tradeoff 

between different conflicting optimization objectives like latency and energy consumptions 

under deadline and budget constraints. Different studies have formulated task-offloading as a 

single objective optimization problem e.g. [12],[13]. On the other hand, several others 

formulated task-offloading as a multi-objective problem to reduce both task execution latency 

and energy consumption in the cloud and fog nodes [14]. However, the recent studies that 

considered the task execution in the cloud and RSUs, did not consider the energy 

consumption of the vehicles, and have not carefully addressed the transmission path to the 

destination node. The task transmission path to the destination node, where the task must be 

executed, has a very high impact on the offloading performance. Thus, this paper investigates 

most of the possible transmission paths taking into consideration the required time and energy 

consumption required for task transmission. 

 In this paper, a multi-objective evolutionary algorithm (MOEA) for task offloading 

optimization in VFC systems is adopted to reduce the energy consumption and the task 

completion time. This is achieved by considering the task transmission time and energy under 

the time deadline constraint. The vehicles' abilities for task execution and transmission are 

exploited, so the well-known Dijkstra's algorithm is adopted to find the shortest route for task 

transmission over vehicles. The major contributions of this paper are summarized as follows: 

 A three layers architecture is proposed, consisting of the 1) Vehicular layer, 2) The RSUs 

layer which contains several RSUs distributed along the road, 3) The top layer where the 

Macro Base station (MBS) that has high capabilities and located in the center of the road 

where this station works to find the optimum solutions for offloading [15]. 

 Different models for determining the entities involved in the task transmission and 

execution is investigated. These models are analyzed and evaluated to find the best method 

that fulfills the requirements of both users and service providers in terms of latency and 

energy consumption. 

 The MOEA/D algorithm is utilized to achieve task offloading optimization in fog 

computing by minimizing the consumed energy and the completion time for the generated 

tasks. This in turn is achieved by utilizing both RSUs and vehicles for task computation and 

transmission. 

 The well-known Dijkstra algorithm is adopted in order to find the best path for task 

transmission in the vehicles layer, taking into consideration both the required time and energy 

consumption,. 

 The reminder of this paper is as follows: Section II covers the literature related to task 

offloading optimization. Section III describes the system architecture, exhibits the proposed 

task offloading models. Section IV described the problem formulation details and MOEA/D 

algorithm. Section V discusses the results obtained by the simulation. The paper is concluded 

in section VI. 

II. Related Works 

 Task offloading is considered as one of the most important aspects in VFC systems, due to 

its significance in making decisions concerning where to run the vehicle tasks and how to 

allocate the resources for computation. A survey of the literature related to task offloading 
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was presented in [16]. They discussed different types of algorithms used to distribute and 

offload programs to save energy or improve performance and described why computation 

offloading is important for limited resources devices. In [17], the authors introduced a detailed 

definition of edge computing and mentioned the reasons behind its efficiency for some 

computing services. The authors in [18] discussed the importance of determining whether a 

task offloading is useful or not and introduced a fog computing model and an offloading 

policy. A fog framework and an offloading policy was proposed to offload IoT requests to the 

appropriate destination, which may be either the fog node or the cloud, aiming to reduce the 

delay of service [19]. 

 Energy-saving is a very important aspect in the VFC systems; therefore, several research 

works have addressed reducing the energy consumption in the IoV systems. In [20], the 

authors focused on improving energy consumption and achieving the user Quality of Service 

(QoS) to enhance the performance of the fog system. They proposed a balanced energy-delay 

solution by employing Evolutionary Algorithms (EA) to scrutinize delay and consumed 

power in both fog-cloud computing and conventional cloud computing. A fog-cloud 

computational offloading algorithm in IoV was proposed for minimizing the vehicles power 

consumption and the power of computational facilities. The proposed model excelled in the 

cloud-only model and also in the fog-only model [21]. The authors in [22] concentrated on the 

control issues of energy consumption for mobile edge computing (MEC)-enabled RSUs. They 

constructed an energy-efficient scheduling framework for MEC-enabled IoV to reduce the 

energy consumption of RSUs taking into consideration the task latency constraint. 

 On the other hand, several research works have been conducted to reduce the latency and 

achieve a real-time response. In [23], the authors proposed a framework of MEC-based 

vehicular networks and discussed the consumed time and the offloading cost in various 

transmission modes. The authors demonstrated the importance of fog computing for time-

sensitive applications and proposed a framework for allocating resources to reduce the latency 

using the genetic algorithm (GA) [12]. In [13], Fair Task Offloading (FTO) scheme, which 

selects an appropriate fog node for task offloading according to the fairness metric and a rule, 

was proposed for minimizing the task delay. 

 The authors in [24] designed an offloading algorithm for response time reduction in fog-

based IoV systems. They used both moving and parked vehicles nearby RSUs as fog nodes. 

likewise in [25], vehicles near RSUs were used to act as fog nodes in VFC systems for better 

connectivity and promoting computational performance. 

 In [26], a multi-objective problem with various constraints was formulated and addressed 

by using of Interior Point Method(IPM)-based algorithm. A scheme was proposed to optimize 

both offloading probability and transmit power for mobile devices to minimize the energy 

consumption, delay performance, and payment cost. In [27], the authors formulated a problem 

of energy efficient optimization with the aim of reducing energy consumption giving regard to 

restrictions of execution delay. They proposed an algorithm of alternating direction method of 

multipliers (ADMM)-based distributed to address this problem. The authors in [14] proposed 

a multi-objective computation offloading method (MOC) to minimize the energy 

consumption and the task execution time with the constraints of the load balancing and the 

ensuring of the IoV data trustworthiness. Although the proposed method achieved 

improvement in energy consumption, it was unsuccessful in reducing time of transmission. 

 In [28], the authors designed a method of computation offloading for IoV under the 5G 

networks architecture to solve the problem of multi-objective optimization in order to reduce 

the delay and cost of offloading. This method determines which edge node is appropriate to 

be the destination of a vehicle application, taking into consideration the load balance in the 

edge nodes. 
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 Although the current research work achieved acceptable performance in the field of task 

offloading optimization, the best transmission path (which ensures low time and energy 

consumption) still requires further investigation. This article implements and analyzes most of 

the possible transmission paths to formulate idea better understanding on how to choose the 

best path for a specific application. This work’s target is to reduce the energy consumed and 

the response time required to complete the generated tasks by offloading and balancing the 

tasks among RSU and vehicles. Four transmission/processing models for the VFC system, 

named RSUs-Vs, RSUs-Vs/Vs, RSUs-Vs/RSUs, and RSUs-Only, are proposed and analyzed 

to find the best offloading that guarantees the low latency and energy. 

III. System Architecture and Proposed Models 

In this section, the layers of the system model are presented, then, the proposed 

execution/transmission models are described in detail. The proposed system model consists of 

three layers; the central management layer, the distributed RSUs layer, and the layer of the 

vehicular network. These layers are described as follows: 

1) Central management layer: consists of MBS, which is positioned at the midst of the road, 

such that its coverage area is large enough that all vehicles can have access to it. The MBS 

can determine the appropriate strategy for task offloading based on two databases that are 

updated periodically. The first database contains information about RSUs (RSU’s ID, 

coverage area, computational capability, ready time, channel state, etc.). The second database 

contains information about vehicles (vehicle’s ID, position, velocity, processing ability, etc.). 

2) Distributed RSUs layer: a group of RSUs   *                   + with similar 

coverage areas and different specifications are distributed along the road. Periodically, they 

send information messages to the MBS to update their states. Based on the coverage area of 

RSUs, the road is divided into M segments with similar areas where one RSU is positioned at 

the center of each segment. 

3) Vehicular network layer: in this layer, the tasks are generated, it encompasses a set of 

vehicles   *           + with different specifications distributed along the uni-

direction road. All vehicles send information about their current state to MBS periodically. 

Each vehicle    generates a task   , which is characterized by    and   , where    denotes the 

data size of task (bits), and    is the maximum tolerable delay (Sec.). 

 In the proposed system, when a task    is generated by a vehicle   , the latter asks the 

MBS for the best execution node and the best transmission path to the destination node by 

sending the computational requirement of the task (  and   ). Then, MBS assigns the task 

either to an appropriate RSU (target) or to a proximate vehicle (goal) as the task is processed 

with minimum consumed energy and minimum latency. After that, the MBS will inform the 

vehicle    with the decision of task offloading by sending the ID of the destination node 

(target or goal) and the path for delivering the task to the destination, in addition to the path 

for delivering the result to concerned vehicle   . In the proposed system, both RSUs and 

vehicles are involved in the task transmission and processing, which leads to generating 

various transmission and execution models These models will be described in detail below: 

 RSUs-Vs model: using RSUs and vehicles for tasks execution, the path to transfer the task 

is chosen according to the place of its execution. If the destination is an RSU, the task will be 

transmitted over RSUs as shown in Figure 1 (a), while if the destination is a vehicle, the task 

will be transmitted over the vehicles as shown in Figure 1 (b).  

 RSUs-Vs/Vs model: using RSUs and vehicles for tasks execution, while the tasks are 

transmitted over vehicles as shown in Figures 1 (c) and (b).  

The Dijkstra's algorithm is used to find the path for task transmission over vehicles with 

minimum latency and energy. Considering the vehicle velocity and the time required to 

complete the task, the MBS determines the vehicles' locations after the task execution is 



Abdullah and Jabir                                       Iraqi Journal of Science, 2022, Vol. 63, No. 2, pp: 785-800 

 

790 

finished for sending the result and informs the destination node the path for delivering the 

result. 

 RSUs-Vs/RSUs model: using RSUs and vehicles for tasks execution, while tasks are 

transmitted over RSUs as shown in Figures 1 (a) and (d). 

 RSUs-Only model: using RSUs for tasks execution and transmission as shown in Figure 1 

(a). 

 

 

 

  

Figure 1-Models of task transmission and result delivery. 

(a) Model of task transmission, 

processing, and result delivery 

using RSUs. 

(b) Model of task transmission, 

processing, and result delivery using 

vehicles. 
 

(c) Model of task and result 

transmission using vehicles, task 

processing using RSUs. 

(d) Model of task and result 

transmission using RSUs, task 

processing using vehicles. 
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IV. Task Offloading Problem Formulation and MOEA/D Algorithm 

 Generally, real-world problems require satisfying multiple objectives at the same time. 

However, the optimization of one objective leads predominantly to the retrogradation of one 

extra objective at least. The introduced problem of task offloading optimization in this paper 

combines two antithetic objective functions to provide the VFC system with a set of solutions. 

Each solution can perfectly map the tasks to the proper vehicles and RSU nodes, so that the 

required objectives are satisfied. This section presents how the MOEA/D algorithm is adopted 

for the task offloading problem. The important notations of this paper are included in Table-1. 

 

Table 1- Important notations of MOEA/D algorithm and the system model 
Notation Description 

  Individual  

  Initial population 

Ç Crossover Probability 

ɱ  Mutation Probability 

Ŕ  Probability of choosing the fog node for processing  

IL Individual length 

Z Population size 

M The number of RSUs in the system 

N The number of vehicles and tasks 

  The group of RSUs   *                    + 
  The set of tasks   *              + 
  The set of vehicles   *              + 

    ,      Bandwidth of I2V channel, Bandwidth of V2I channel 

    ,    Bandwidth of RSUs channel, Bandwidth of vehicles channel 

  
   ,   

  Computational capacity of     , Computational capacity of    

  ,    Data size of the task   , Maximum tolerable delay of    

  
  The result data size of the task    

          The downloading energy consumption of a task 

         The offloading energy consumption of a task 

      The transmission energy consumption of an RSU 

   
    The processing energy consumption of      

    The transmission energy consumption of a vehicle 

   
  The processing energy consumption of    

    ,    Wireless communication of RSUs, wireless communication of vehicles 

 

 Recently, MOEA/D as a general-purpose algorithm framework has achieved magnificent 

success in the field of evolutional multi-objective optimization and has attracted a lot of 

interest. It decomposes a multi-objective optimization problem (MOP) into a set of sub-

problems of single-objective optimization (or problems of simple multi-objective 

optimization) using uniformly distributed weight vectors of aggregation. It then uses a search 

heuristic to simultaneously and cooperatively optimize these sub-problems/problems [29]. 

The MOEA/D algorithm is utilized for the task offloading problem, such that, each individual 

in the meta-algorithm adopted in this study is represented as a vector with a length equals to 

the number of generated tasks. For simplicity, each vehicle generates one task at a time, thus 

the total number of generated tasks equals the total number of vehicles, and they are used 

interchangeably in the coming sections. Each gene represents a task generated by a vehicle, 

while its content identifies where this task will be executed. 

A. Initial Population 

 In the RSUs-Only model, the formation of the initial population can be derived as shown 

in Eq. 1: 

         ,   ) , (1) 

where   *       +,   *        +, and   ={ Ɲ
1
, Ɲ

 2
,…, Ɲ

Z
}. 
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 Ɲ
z
 represents the z

th
 chromosome in the initial population. In RSUs-Vs, RSUs-Vs/Vs, and 

RSUs-Vs/Vs models, the formation of initial population can be derived as shown in Eq. 2: 

         ,   ) , (2) 

where             . 

A random value is generated for each gene, If the random value is less or equal to the 

probability of choosing the fog node for processing Ŕ, the gene content will be the ID of an 

RSU. If the generated random value is greater than Ŕ, the gene content will be the ID of a 

vehicle. 

B. Objective Function Evaluation 

 In general, the meta-heuristic algorithms satisfy single or multi-objective requirements 

based on the case at hand. As previously indicated, the target of the proposed VFC system is 

to minimize both latency and the total energy consumed . The objective function gauges the 

quality of each individual as follows: 

B.1 Latency Measurement 

 The latency can be defined as the total amount of time required for the task completion, 

which consists of task transmission, task waiting time in the queue, task execution, and task 

result feeding back [14]. Before deriving these terms, it is necessary to define the following 

identifiers: 

vsrc: is the source vehicle that generates the task. 

vdst: is the vehicle where the task is executed. 

rdst: is the RSU where the task is executed. 

snrst: is the nearest RSU to vsrc. 

rdnrst: is the nearest RSU to vdst. 

vdnrst: is the nearest vehicle to rdst. 

Using these identifiers, the main terms of the latency objective are derived as follows:  

The offloading time (     ) is the time required to offload the task    from the source vehicle 

(vsrc) to the nearest RSU (snrst), and can be expressed as shown in Eq. 3: 

        
  

    
  (3) 

If the destination node (rdst or vdst) is far from vsrc, the task should be transmitted, over 

RSUs or vehicles, based on the selected VFC model. The transmission time (      ) can be 

generally expressed as shown in Eq. 4: 

             
   ∑

  

  

 

 
  (4) 

where src and dst are either RSUs or vehicles,   represents the total hop count between src 

and dst nodes, and    is the bandwidth of RSUs (    ) or vehicles (  ) that are responsible 

for transmitting the task. 

The required time for the task completion encompasses the waiting time (     ), which is the 

time that a task must wait until the resources get ready, plus the time consumption for the task 

execution, which are expressed as shown in Eq. 5: 

        
   

  

    
  (5) 

        
   ∑         

  
  

   
  (6) 

Where      represents the computation capability of the destination node, which is either an 

RSU (     
   ) or a vehicle (     

 ), and    represents the number of tasks in the queue of the 

destination node that are waiting for their turn to be executed.  

The task result   
  should be transmitted to vsrc over RSUs or vehicles. Before that, the new 

location of vehicle after    is finished should be found to determine the transmission path of 

  
  , which may be the same path of    transmitting or may change. The vehicle location is 
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determined depending on its location when it offloaded the task, the task transmission time, 

the task waiting time, the task execution time, the task result feeding back time, and the 

vehicle velocity. 

If    is executed by an RSU,   
  should be transmitted to the nearest RSU for the new location 

of vsrc. The downloading time to the vsrc can be expressed as shown in Eq.7. If    is 

executed by a vehicle,   
  is transmitted normally to vsrc without any need for downloading 

process. 

       
 
 

  
 

    
  (7) 

Accordingly, the total time for the proposed models can be obtained as follows: 

a) RSUs-Vs model 

In this model, if the task    is executed by an RSU, the total time consists of offloading    to 

snrst, transmitting    to rdst, waiting for resources to get ready, executing   , transmitting   
  

to snrst, downloading   
  to vsrc. This can be expressed as shown in Eq. 8. 

          
   

                        
            

            
   

                                                     
  
 

        
 
. (8) 

While if    is executed by a vehicle the total time consists of transmitting    to vdst, waiting 

for resources to get ready, executing   , and transmitting   
  back to vsrc as shown in Eq. 9. 

          
                    

            
            

                    
  
 

 (9) 

b) RSUs-Vs/Vs model 

In this model, if the task    is executed by an RSU, the total time consists of transmitting    to  

vdnrst, offloading    to rdst, waiting for resources to get ready, executing   , downloading   
  

to vdnrst, and transmitting   
  to vsrc. This can be expressed as shown in Eq. 10: 

          
   

                 
                    

            
                                               

 
 

                 
  
 

  (10) 

While if    is executed by a vehicle the total time consumption can be obtained from Eq.9. 

c) RSUs-Vs/RSUs model 

In this model, if the task    is executed by an RSU, the total time consumption can be 

obtained from Eq.9. If    is executed by a vehicle, the total time consists of offloading    to 

snrst, transmitting    to rdnrst, downloading    to vdst, waiting for resources to get ready, 

executing   , offloading   
  to rdnrst, transmitting   

  to snrst, and downloading   
  to vsrc. 

This can be expressed as shown in Eq. 11: 

          
   

                           
                    

   

                                              
          

 
                   

  
 

        
 
  (11) 

d) RSUs-Only model 

In this model, the total time consumption can be obtained from Eq.8. 

To get the accurate minimum time consumption for one task, the delivery time, the execution 

time, and the feedback time for each fog node must be calculated whether it was an RSU or a 

vehicle. For RSUs-Vs, RSUs-Vs/V, and RSUs-Vs/RSUs models, the following objectives 

should be satisfied: 

   ∑ ∑        
   

   
 
   ,  (12) 
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{
 
 

 
 

   ( )    ( )               

   (  )    ( )                  

   ( )    (  )                   
      

       
      

  (13) 

While in the RSUs-Only model, the following objective should be satisfied: 

   ∑ ∑        
   

   
 
   , (14) 

    {
   ( )                 

       
      

  (15) 

B.2 Energy Measurement  

 The total energy consumption is the total amount of energy that is consumed for a task 

completion, which consists of transmission energy, execution energy and result feedback 

energy [14]. These terms can be generally expressed as follows: 

The offloading energy (     ) is the energy consumption for offloading    to the nearest 

RSU, and can be expressed as: 

                        . (16) 

The transmission energy (      ) is the energy consumption for transmitting    to the 

destination node over RSUs and vehicles, can be expressed as shown in Eq. 17: 

             
                   

    (17) 

where src and dst are the source and destination nodes which can be either an RSU or a 

vehicle, 

 and    is the energy consumed by either RSUs (     ) or vehicles (   ) for transmission. 

The execution energy (     ) is the energy consumption for executing    by RSUs or 

vehicles, can be expressed by Eq. 18: 

        
              

    (18) 

where     is the node where the task gets executed, and    is the energy consumed by either 

RSU (      
   ) or vehicle (      

 ) for processing. 

The downloading energy can be expressed as shown in Eq.19. If    is executed by a vehicle, 

  
  is transmitted to vsrc. 

       
 
                  

 
  (19) 

The total energy consumption for the proposed models can be obtained as follow: 
a) RSUs-Vs

 
model 

In this model, the total amount of energy consumption for    execution and transmission by 

RSUs is calculated as shown in Eq. 20: 

          
   

                       
            

                                                        
  
 

 

       
 
 (20) 

While the total amount of energy consumption for    execution and transmission by vehicle is 

calculated as shown in Eq. 21: 

          
                  

            
                   

  
 

  (21) 

b) RSUs-Vs/Vs model 

In this model, the total energy consumption for    transmission to an RSU over vehicles is 

calculated by Eq. 22: 

          
   

                 
                    

          
 
 

                                                      
  
 

 (22) 
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While the total energy consumption for    execution and transmission by vehicles can be 

obtained from Eq.21. 

c) RSUs-Vs/RSUs
 
model 

In this model, the total amount of energy consumption for    execution and transmission by 

RSUs can be obtained from Eq.2.20. The total energy consumption for    transmission by 

RSUs to a vehicle is calculated as shown in Eq. 23:  

          
   

                          
                    

                                               
 
 

                  
  
 

        
 
  (23) 

d) RSUs-Only model 

In this model, the total energy consumption for    execution and transmission by RSUs can be 

obtained from Eq.20. 

To obtain the minimum energy consumption for the execution of one task. For each fog node 

(an RSU or a vehicle), the energy consumed during task delivery, the task execution, and the 

delivery of the result to the vehicle that generated the task must be calculated. For the RSUs-

Vs, RSUs-Vs/V, and RSUs-Vs/RSUs models, the following objectives should be satisfied as 

shown in Eq. 24:  

   ∑ ∑        
   

   
 
   , (24) 

    

{
 
 

 
 

   (  )    (  )              

   (  )    (  )                  

   (  )    (  )                    
      

       
      

 (25) 

While in the RSUs-Only model, the following objective should be satisfied as shown in Eq. 

26: 

   ∑ ∑        
   

   
 
   , (26) 

    {
   (  )                 

       
      

  (27) 

Crossover Operation 

 This operation is the same for all models. It is responsible for forming a new individual 

(Child /   ) by integrating the genetic information of two elected solutions. 

   {
           

            
 . (28) 

C. Mu

tation Operation 

 The fundamental function that aids in reconnaissance of the entire search space and 

forbidding the population from falling in a local optimal solution. In this operation, a random 

modification to one or more gene values is made to generate a better solution from the 

original solution, which resulted from the crossover operation. In all proposed models, 

mutation operation depends on the value of the mutation probability ɱ. For each gene, a 

random value is generated firstly. After that, this generated value is compared with ɱ. Gene 

content will be replaced if and only if the random value is less than or equal to ɱ. 

 If the fog node, which processes the task, is an RSU, then the gene content is randomly 

replaced by another RSU. But if the fog node is a vehicle, then the gene content will be 

randomly replaced by another vehicle. After that, the generated solution is examined to 

confirm whether the gene replacing process had a positive affect and produced a better 

solution than the previous solution or not. If the resulting solution is better than the original 
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solution and has achieved the deadline condition, the replacement will be approved. 

Otherwise, the original solution will be restored and the replacement process canceled. 

V. Numerical Result 

 In order to validate the performance of the proposed models in the VFC system based on 

MOEA/D, these models and MOC model were implemented in MATLAB. Ten systems for 

each model with different entities and task specifications were used, such that, every system 

was executed ten times. It is necessary to mention that the population size was 100, the 

system generations was set also to 100, Ç, ɱ, and Ŕ were set to 0.3, 0.3, and 0.5 respectively. 

The simulation parameters are summarized in TABLE 2. The wireless coverage, bandwidth, 

and energy consumption of RSU and Vehicles are set according to the DSRC standard. Also, 

some other parameters are selected based on numerous experiences. 

 

Table 2- Simulation parameters 
Variable Value Variable Value 

Length of the road 3000 m      2 Mbps 

M 6   
  0.5 – 1 GHz 

N 20-60          31.7 dBm 

T 20-60    
  36 – 40 dBm 

     27 Mbps     14 dBm 

  
    1 – 4 GHz    250 m 

          31.7 dBm   
        

 30 - 60 Km/h 

      33 dBm    10 Sec. 

   
    43 – 49 dBm    1 – 256 KB 

     250 m   
  ≥ 0.5 KB 

   20 Mbps      2 Mbps 

 Figure 2 shows the average latency versus the number of vehicles for the proposed models 

and MOC model. It is noticeable that the average latency for RSUs-Vs and RSUs-Vs/Vs 

models are much lower than the other three models. The reason is that in RSUs-Vs model, the 

task is not offloaded to RSUs unless it is processed by an RSU, which led to a reduction in the 

required time and energy consumption for offloading and downloading. RSUs-Vs/Vs model 

exploits the computational capacity of vehicles for the task execution, so this model 

outperforms the MOC model. RSUs-Vs/RSUs and RSUs-Only models outperform the MOC 

model in terms of latency because the latter utilized vehicles for task transmission to RSUs, 

which led to increase the required time for the task delivering and result feeding back. 
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Figure 2-Comparison of the average latency of RSUs-Vs, RSUs-Vs/Vs, RSUs-

Vs/RSUs, RSUs-Only and MOC models versus the number of vehicles 
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 As mentioned previously, there are several different parts of time consumption Figure 3 

and Figure 4 show that the time consumption for transmission and feeding back in RSUs-Vs 

and RSUs-Vs/Vs models is less than that in the other three models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

The time that is spent by a task in the queue is called waiting time. Figure 5 shows that the 

waiting time in RSUs-Only and MOC models increases with the number of vehicles. Due to 

the constant number of fog nodes ( ), the increase of vehicles number leads to an increase in 

the load on RSUs. While the waiting time remains almost constant or change in a negligible 

small percentage in RSUs-Vs and RSUs-Vs/Vs models because the number of fog nodes 

increases with the number of vehicles (   ). Figure 6 shows that RSUs-Vs and RSUs-

Vs/Vs models take more time than other models in task execution. This is because the 

computation capability of vehicles is less than that of RSUs. Therefore, a vehicle takes longer 

than the time taken by an RSU to execute the same task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7 shows the average energy consumption versus the number of vehicles for the 

different five models. It is noticeable that the RSUs-Vs and RSUs-Vs/Vs consume much less 

energy than the other three models. As previously described, the total energy consumption 

Figure 3-Time consumption of the task 

transmission. 

Figure 4-Time consumption of the 

result feeding back. 

Figure 5-The amount of waiting time. Figure 6-Time consumption for the 

task execution. 
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consists of transmission energy consumption, execution energy consumption, and feeding 

back energy consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

     Figures 8,9, and 10 show that the energy consumption of transmission, execution, and 

feeding back increase monotonously with number of vehicles. However, it is clearly 

noticeable that RSUs-Vs and RSUs-Vs/Vs consume less energy than the other models during 

each of the three parts that compose the total energy consumption. 
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Figure 4-Comparison of the average energy of RSUs-Vs, RSUs-Vs/Vs, RSUs-
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Figure 10-Execution energy consumption. 

Figure 8-Transmission energy 

consumption. 
Figure 9-Feeding back energy 

consumption. 
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VI. Conclusions 

 In this paper, Multi-Objective Evolutionary Algorithm (MOEA) for task offloading 

optimization in Vehicular Fog Computing (VFC) systems is adopted to reduce the energy 

consumption and the task completion latency by considering the task transmission time and 

transmission energy. The vehicles resources are exploited for computation and transmission 

by employing these vehicles as fog nodes to reduce the total cost of energy consumed and 

achieve the response in a shorter time. Four different models of the VFC system are proposed. 

The numerical results prove that RSUs-Vs and RSUs-Vs/Vs models can effectively reduce 

task latency and the total amount of energy consumed . RSUs-Vs model can reduce latency 

and energy consumption by 72% and 22% on average respectively, while RSUs-Vs/Vs model 

is able to reduce latency and energy consumption by 90% and 25.8% respectively. 

 According to the obtained results, RSUs-Vs and RSUs-Vs/Vs models consume more 

execution and waiting time than the other models. On the other hand, RSUs-Vs/RSUs and 

RSUs-only models consume more energy than the other models. Enhancing the performance 

of such models in terms of latency and energy optimization is worth further investigation. A 

real dataset can be used to verify the performance of the proposed models and more criteria 

and constraints like cost and budget can be investigated. 
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