Shahad and Al-Mothafar

Iraqi Journal of Science, 2021, Vol. 62, No. 12, pp: 4916-4922 DOI: 10.24996/ijs.2021.62.12.29

ISSN: 0067-2904

On P-Essential Submodules

Haithab A. Shahad*, Nuhad Salim Al-Mothafar

Department of Mathematics, College of Education for Science, University of Baghdad

Received: 31/1/2021

Accepted: 26/6/2021

Abstract

Let *R* be a commutative ring with identity and let *A* be an R-module. We call an R-submodule *H* of *A* as P-essential if $H \cap L \neq 0$ for each nonzero prime submodule *P* of *A* and $0 \neq L \leq P$. Also, we call an R-module *A* as P-uniform if every nonzero submodule *H* of *A* is P-essential. We give some properties of P-essential and introduce many properties to P-uniform R-module. Also, we give conditions under which a submodule *H* of a multiplication R-module *A* becomes P-essential. Moreover, various properties of P-essential submodules are considered.

Keywords: Essential submodules, Uniform modules, Fully prime modules, multiplications modules.

حول الفضاءات الجزئية الجوهربة من النمط-P

هيذب عبود شهد * ، نهاد سالم المظفر

قسم الرباضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

1-Introduction

Let *R* be a commutative ring with unity and let *A* be a unitary R-module. A non-zero submodule *H* of *A* is called essential if $H \cap L \neq 0$ for each non-zero submodule *L* of *A* [1]. *A* is called uniform if every non-zero submodule *H* of *A* is essential [1]. In (2019), Ahmad and Ibrahiem studied a new concept, which is named H-essential submodules [2]. Ali and Nada [3] introduced the concept of semi-essential submodules as a generalization of the class of essential submodules. They stated that a nonzero submodule *H* of *A* is called semi-essential , if $H \cap P \neq 0$ for each nonzero prime submodule *P* of *A*. In section two, we introduce a P-essential submodule concept as a generalization of the essential submodule concept. We call an R-submodule *H* of *A* as P-essential if $H \cap L \neq 0$ for each nonzero prime submodule *P* of *A* and $0 \neq L \leq P$. Our main concerns in this section are to give characterizations for P-

^{*}Email: hshahad@uowasit.edu.iq

essential submodules and generalize some known properties of essential submodules to Pessential submodules. In section three, we give conditions under which a submodule H of a faithful multiplication R- module A becomes P-essential. In section four, we present the Puniform module concept as a generalization of the uniform concept. We also generalize a characterization and some properties of uniform modules to P-uniform modules.

2- P-Essential Submodules

Recall that a non-zero submodule *H* of an R-module *A* is called essential if $H \cap L \neq 0$ for each submodule *L* of *A* [1].

Definition(2-1)

Let *A* be an R-module and *P* be a non-zero prime submodule of *A*. A submodule *H* of *A* is said to be P-essential, written as $\leq_{pe} A$, if for every proper submodule *L* of *P*, then $H \cap L = 0$, which implies that L = 0.

Or, a non-zero submodule H of A is called P-essential , if $H \cap L \neq 0 \forall 0 \neq L \subseteq P$. Remarks and Examples(2-2)

1- Every essential submodule is P- essential submodule, but the converse is not true in general.

For example, consider $A = Z_{24}$ as Z-module, $P = \langle \overline{3} \rangle = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}, ..., \overline{21}\}$. $H = \langle \overline{6} \rangle = \{\overline{0}, \overline{6}, \overline{12}, \overline{18}\}$, $\leq_{Pe} A$, since $\langle \overline{0} \rangle, \langle \overline{6} \rangle, \langle \overline{12} \rangle$ are proper submodules of $P = \langle \overline{3} \rangle$, $H \cap L \neq \langle 0 \rangle \forall 0 \neq L \leq P$, but $\langle \overline{6} \rangle \leq_e A$, since $\langle \overline{8} \rangle \cap \langle \overline{6} \rangle = 0$, while $\langle \overline{8} \rangle \neq \langle \overline{0} \rangle$.

2- Let $A = Z_{15}$ be a Z-module and the prime submodules of A are : $P_1 = \langle \bar{3} \rangle$, $P_2 = \langle \bar{5} \rangle$. It follows that $\langle \bar{3} \rangle$, $\langle \bar{5} \rangle$ are P₁-essential and P₂-essential resp. in Z_{15} , but are not essential in Z_{15} , since $\langle \bar{3} \rangle \cap \langle \bar{5} \rangle = \langle \bar{0} \rangle$, but $\langle \bar{5} \rangle \neq \langle \bar{0} \rangle$.

3- A submodule of a P-essential submodule needs not to be P-essential.

For example, let $A = Z_{24}$ be a Z-module , $H = \langle \overline{4} \rangle$, $P = \langle \overline{2} \rangle$ is a prime submodule of A, $\langle \overline{4} \rangle \leq_{pe} A$, but $\langle \overline{8} \rangle \leq_{pe} A$, since $\langle \overline{8} \rangle \cap \langle \overline{6} \rangle = 0$ where $L = \langle \overline{6} \rangle \subseteq \langle \overline{2} \rangle = P$ and $\langle \overline{8} \rangle \leq \langle \overline{4} \rangle$.

4- If H_1 and H_2 are P-essential submodules of , then $H_1 \cap H_2$ needs not be to P-essential of *A*. For example, let $A = Z_{24}$ and let $P = \langle \overline{2} \rangle$, $H_1 = \langle \overline{4}, \rangle$ and $H_2 = \langle \overline{6} \rangle$ be P-essential of *A*, but $\langle \overline{4} \rangle \cap \langle \overline{6} \rangle = \langle \overline{0} \rangle$ is not P-essential of Z_{24} .

5- The sum of two P-essential submodules of an R-module A is also P-essential submodule.

Proof: Let A be R-module and let L and K be two P-essential submodules of A. Note that $\leq L + K$, since $L \leq_{pe} A$, implies that $L + K \leq_{pe} A$.

6- A semi-essential submodule needs not to be P-essential submodule, as we see in the following example:

Consider Z₁₂ as Z-module . $N = <\overline{3} >$ is semi-essential [3], but it is not P- essential where $P = <\overline{2} >$ and $<\overline{3} > \cap <\overline{4} > = <\overline{0} >$, but $0 \neq <\overline{4} >$.

Proposition (2-3)

Let A be an R-module, P be a prime submodule of A, and K be any submodule of A. If $\leq_{Pe} A$, then $K \leq_{Pe} A$ if and only if $K \leq_{e} A$.

Proof : Suppose that $K \leq_{Pe} A$. Let *P* be a prime submodule of *A* and let $L \leq P$ such that $K \cap L = <0>$, implies that $K \cap (P \cap L) = <0>$. Since $P \cap L \leq P$ and $K \leq_{Pe} A$, then $P \cap L = <0>$. By hypothesis, $P \leq_e A$, thus L = <0> which implies that $K \leq_e A$. The converse is obvious.

Poposition (2-4)

A non-zero submodule K of A is P-essential if and only if for each non-zero submodule L of a submodule P, $\exists x \in L$ and $r \in R$ such that $0 \neq rx \in K$, where P is a prime submodule of A. The proof is easy and hence is omitted.

Proposition(2-5)

Let A be an R-module and let H_1 , H_2 be submodules of A such that $H_1 \leq H_2$. If H_1 is Pessential submodule of A, then H_2 is a P-essential submodule of A.

Proof

Let P be a prime submodule of A, $0 \neq L \leq P$. By using proposition (2-4), $x \in L$, $r \in R$. Since $H_1 \leq_{\text{pe}} A$, then $0 \neq \text{rx} \in H_1 \leq H_2$, then $0 \neq \text{rx} \in H_2$, implies that $H_2 \leq_{Pe} A$. The converse of prop.(2-5) is not true in general; for example :

Consider Z_{24} as a Z-module and $\langle \overline{8} \rangle$ is a submodule of $\langle \overline{4} \rangle$. By remarks and example $(2-2)(3), <\bar{4} > \leq_{pe} Z_{24}, \text{ but } <\bar{8} > \leq_{pe} Z_{24}, \text{ since } <\bar{8} > \cap <\bar{6} > = <\bar{0} > \text{ and } <\bar{6} > \neq <$ $\overline{0} >$.

Corollary(2-6)

Let H_1 and H_2 be submodules of A. If $H_1 \cap H_2$ is P-essential submodule of A, then H_1 and H_2 are P-essential.

Proof

By using proposition (2-5), since $H_1 \cap H_2 \leq H_1$ and $H_1 \cap H_2 \leq_{Pe} A$, so $H_1 \leq_{Pe} A$. In the same way, $H_2 \leq_{Pe} A$.

The converse of the previous corollary is not true in general, as shown in remarks and examples(2-2)(5).

Proposition(2-7)

Let A be an R-module and let H_1 and H_2 be submodules of A. If H_1 is an essential submodule of A and H_2 is a P-essential submodule of A, then $H_1 \cap H_2$ is also P-essential submodule of A.

Proof

Let P be prime submodule of A and let $0 \neq L$ submodule of P. Since H_2 is P-essential submodule of A, thus $H_2 \cap L \neq < 0 >$. And since H_1 is an essential submodule of A, then $H_1 \cap (H_2 \cap L) \neq < 0 >$, so $(H_1 \cap H_2) \cap L \neq < 0 >$. This implies that $H_1 \cap H_2$ is P-essential submodule of A.

Proposition(2-8)

Let A and B be R-modules and let $f: A \to B$ be an epimorphism. If K is a P-essential submodule of , then $f^{-1}(K)$ is a $f^{-1}(P)$ -essential of A.

Proof

We know that if P is a prime submodule of B then $f^{-1}(P)$ is a prime submodule of A [4]. Let $0 \neq L \leq f^{-1}(P)$ and $f^{-1}(K) \cap L = <0 >$. To prove that L = 0, then $K \cap f(L) = <0 >$. Since K is P-essential in B and $f(L) \leq P$, then f(L) = 0, implies $L \subseteq f^{-1}(0) = kerf \leq 1$ $f^{-1}(K)$. But $f^{-1}(K) \cap L = <0>$, that is L = 0. Thus $f^{-1}(K)$ is a $f^{-1}(P)$ -essential submodule of A.

Remark(2-9):- Let $f: A \to A$ be an isomorphism. If $H \leq_{Pe} A$, then $f(H) \leq_{Pe} A$.

Proof : Let P be a prime submodule of \hat{A} and let L be a non-zero submodule of P. Since f is an epimorphism, then $f^{-1}(L)$ is a submodule of $f^{-1}(P)$ which is prime submodule of A by [4]. But $\leq_{Pe} A$, then $H \cap f^{-1}(L) \neq <0 >$. On the other hand, f is a monomorphism, thus $f(H) \cap L \neq < 0 >$. This completes the proof.

Proposition(2-10)

If K is a submodule of an R-module A and P_1 , P_2 are prime submodules of A, such that $0 \le P_1 \le P_2$. If $K \le_{P_1e} A$, then $K \le_{P_2e} A$.

Proof: Let $L_2 \leq P_2$ such that $K \cap L_2 = <0 >$. To prove that $L_2 = 0$. $\exists i: P_1 \rightarrow P_2$, since $L_2 \leq P_2$, hence $i^{-1}(L_2) \leq P_1$. $i^{-1}(\tilde{K} \cap L_2) = i^{-1} < 0 >$, implies that $\cap i^{-1}(L_2) = <0 >$. Since $\leq_{P_1e} A$, hence $i^{-1}(L_2) = L_2 = <0 >$.

Proposition(2-11)

Let C, K, P be submodules of an R-module A and P is prime submodule of $K \leq C$. $K \leq_{Pe} A$ if and only if $K \leq_{(P \cap C)e} A$ and $C \leq_{Pe} A$.

Proof:- (\Rightarrow) Since *P* is prime in *A*, $C \leq A$, then $(P \cap C)$ is prime in *C* [4]. Let $L \leq (P \cap C)$ with $\cap L = <0 >$. To prove that L = <0 >, since $L \leq P$, $K \leq_{Pe} A$, hence L = <0 >. Let $T \leq P$ with $\cap C = <0 >$, implies that $T \cap K = <0 >$ (the hypothesis has been modified in the proposition). Since $\leq_{Pe} A$, then T = 0.

(\Leftarrow) Let $L \leq P$ such that $L \cap K = <0>$, then $(L \cap K) \cap C = <0>$, implies that $(L \cap C) \cap K = <0>$, $L \cap C \leq P \cap C$ and $K \leq_{(P \cap C)e} A$, hence $L \cap C = <0>$. Since $\leq_{Pe} A$, then L = <0>, thus $K \leq_{Pe} A$.

In the following proposition, we give the transitive property for non-zero P-essential submodules.

Proposition(2-12)

Let A, B , C be R –modules such that $A \leq B \leq C$. If $A \leq_{pe} B$ and $B \leq_{pe} C$, then $A \leq_{Pe} C$.

Proof:- Let P be a prime submodule of C and let L be a submodule of P such that $A \cap L = 0$. Note that $0 = A \cap L = (A \cap L) \cap B = A \cap (L \cap B)$. If $B \le L$ then $0 = A \cap (L \cap B) = A \cap B$, hence $A \cap B = 0$, but $A \le B$, so $A \cap B = A$, which implies that A=0. But this is a contradiction. Thus $B \le L$ and $L \cap B \le P$. But $A \le_{Pe} B$, therefore $L \cap B = 0$, and since $B \le_{Pe} C$, then L = 0, that is $A \le_{Pe} C$. The converse of proposition (2-12) is not true in general, as the following example shows: Consider Z_{24} as Z-module, the submodule $<\overline{6} >$ is P-essential of Z_{24} , by remarks and examples(2-2). But $<\overline{6} >$ is not P-essential submodule of $<\overline{2} >$ where $<\overline{2} > \le_{e} Z_{24}$.

Recall that an R-module A is fully prime, if every proper submodule of A is a prime submodule [2].

Proposition(2-13)

Let $A = A_1 \bigoplus A_2$ be a fully prime R- module where A_1 and A_2 are submodules of , and let $0 \neq K_1 \leq A_1$ and $0 \neq K_2 \leq A_2$. Then $K_1 \bigoplus K_2$ is P-essential of $A_1 \bigoplus A_2$ if and only if K_1 is a P-essential submodule of A_1 and K_2 is a P-essential submodule of A_2 .

Proof

(⇒) Since A is a fully prime module, then by [5], $K_1 \oplus K_2$ is an essential submodule of $A_1 \oplus A_2$ and by [6, proposition(5-20)], K_1 is an essential submodule A_1 and K_2 is an essential submodule of A_2 . But since every essential submodule is a P-essential, so we are done. (⇐) It follows similarly.

Proposition(2-14)

Let A be an R-module and let H_1 and H_2 be P-essential submodules of A such that $H_1 \cap H_2 \neq 0$, then $H_1 \cap H_2$ is P-essential submodule of A. **Proof**

Let P be a prime submodule of A and let $L \leq P$ such that $(H_1 \cap H_2) \cap L = 0$. This implies that $H_2 \cap (H_1 \cap L) = 0$. If $H_1 \leq L$, then we have a contradiction with the assumption, thus $H_1 \leq L$. This implies that $H_1 \cap L$ is a submodule of A [5]. Since H_2 is P-essential submodule of A and, by our assumption, $H_1 \cap L$ is a submodule of A, then $H_1 \cap L = 0$. But H_1 is P-essential submodule of , therefore L = 0, hence $H_1 \cap H_2$ is P-essential submodule of A.

3- P-Essential Submodules in Multiplication Modules

An R- module A is called multiplication if every submodule H of A is of the form IA for some ideal I of R [7] and an R-module A is called faithfull if ann(A) = 0. In this section, we give a condition under which a submodule H of A is a faithful multiplication R-module that becomes P-essential.

Theorem(3-1)

Let A be a faithful multiplication R-module and H be a submodule of A. Then H is P-essential of A if and only if I is P-essential of R.

Proof

Assume that *H* is P-essential submodule of *A*, let *P* be a prime ideal of R and $L \le P$ such that $I \cap L = 0$. Since *A* is a faithful multiplication R-module, then $(I \cap L)A = IA \cap LA = 0$. Now, *PA* is a prime submodule of , $LA \le PA$ and (IA = H is P-essential submodule of *A*), implies that LA = 0. Since *A* is finitely generated faithful multiplication R-module , then L = 0. Therefore, *I* is a P-essential . Conversely, let *P* be a prime submodule of *A* and *L* be a submodule of *P* such that $H \cap L = 0$. Since *A* is multiplication , then there exists an ideal *B* of R such that L = BA [8] . Hence $H \cap L = IA \cap BA = (I \cap B)A = 0$. But *A* is faithful , so $I \cap B = 0$. Since *I* is a P-essential ideal of R, then B = 0, therefore L = BA = 0, thus *H* is a P-essential submodule of *A*.

Theorem(3-2)

Let A be a faithful multiplication R-module. Then H is a P-essential submodule of A if and only if [H: < x >] is a P-essential ideal of R for each $x \in A$.

Proof

Assume that *H* is P-essential . Since *A* is faithful multiplication R-module , then [H:A] is a P-essential of *R*, by Theo.(3-1). But $[H:A] \subseteq [H: < x >]$ for each $\in A$, so $H = [H:A]A \subseteq [H: < x >]A$, [7] . Hence [H: < x >]A is P-essential by Proposition (2-5), hence [H: < x >] is a P-essential ideal of *R* by Theorem (3-1).

Proposition(3-3)

Let *A* be a finitely generated, faithful and multiplication R- module . If $I \leq_{Pe} J$, then $IA \leq_{Pe} JA$ for every ideals *I* and *J* of *R*.

Proof

Let *P* be a prime submodule of *JA* such that P = KA for some prime ideal *K* of *R* and $K \subseteq J$,[8] and let *L* be a submodule of *P* such that $IA \cap L = 0$. Since *A* is a multiplication module, then L = EA for some ideal *E* of *R*. So $\cap EA = 0$, implies that $(I \cap E)A = 0$. Since *A* is a faithfull module, then $\cap E = 0$. Since $EA \leq KA$ and *A* is finitely generated, faithful and multiplication, so by [8], $E \leq K$. Since *I* is a P-essential ideal of *J*, then E = 0 and hence L = 0. That is, $IA \leq_{Pe} JA$.

Proposition(3-4)

Let A be a non-zero multiplication R-module with only one maximal submodule H. If $H \neq 0$, then H is an essential (hence P-essential) submodule of A.

Proof

Let *L* be a submodule of *A* with $L \cap H = 0$. If = A, then $H \cap A = 0$, hence H = 0, which is a contradiction. Thus *L* is a proper submodule of *A*, and since *A* is a non-zero multiplication module, so by [8], *L* is contained in some maximal submodule of *A*. But *A* has only one maximal submodule, which is *H*. Thus $L \subseteq H$, implies that L = 0, that is *H* is an essential (hence P-essentianl) submodule of *A*.

Recall that a non-zero R-module A is called fully essential if every non-zero semi-essential submodule of A is an essential submodule of A [5].

Definition(3-5): A non-zero R-module A is called fully P-essential if every non-zero P-essential submodule of A is an essential submodule of A. A ring R is called fully P- essential if every non-zero P-essential ideal I of R is essential ideal of R. **Examples(3-6)**

1- Z_8 as a Z-module is fully P-essential Z-module.

2- Z_{12} as a Z-module is not fully P-essential , since the submodule $<\bar{6} >$ of Z_{12} is P₂essential where $P_2 =<\bar{3}>$, but not essential since $<\bar{6}> \cap <\bar{4}> =<\bar{0}>$ but $<\bar{4}> \neq <\bar{0}>$. 3- Every fully essential is fully P-essential.

The following theorem gives the hereditary of fully P-essential property between R-module A and the ring R.

Theorem(3-7)

Let A be a non-zero faithfull and multiplication R-module, then A is a fully P-essential module if and only if R is a fully P-essential ring.

Proof

 (\Longrightarrow) Assume that A is a fully P-essential module and let I be a non-zero P-essential ideal of R, then IA is a submodule of A, say H. This implies that H is a P-essential submodule of A. Since $I \neq 0$ and A is faithful module, then $H \neq 0$. But A is a fully P-essential module, thus H is an essential submodule of A. Since A is a faithful and multiplication module, therefore I is an essential ideal of R [8], that is R is a fully P-essential ring. (\Leftarrow) Suppose that R is a fully P-essential ring and let $0 \neq H \leq_{Pe} A$. Since A is a multiplication module, then H = IA for some P-essential ideal of R. By assumption, I is an essential ideal of R. But A is faithful and multiplication module, then H is an essential submodule of A [8]. Thus A is fully P-essential module.

4- P-Uniform Modules

Recall that a non-zero R-module A is called uniform if every non-zero submodule of A is essential [9]. Recall that a non-zero R-module A is called semi-uniform if every non-zero submodule of A is semi-essential [10]. In this section , we give a P-uniform module concept as a generalization of the uniform module concept. We also generalize some properties of uniform modules to P-uniform modules.

Definition(4-1)

A non-zero R-module A is called P-uniform if every non-zero submodule of A is P-essential . A ring R is called P-uniform if R is a P-uniform R-module.

Remarks(4-2)

1- Each uniform R-module is P-uniform, but the converse is not true in general . For example, Z_{15} as a Z-module is P-uniform but not uniform since $\langle \bar{3} \rangle \cap \langle \bar{5} \rangle = \langle \bar{0} \rangle$, while $\langle \bar{5} \rangle \neq \langle \bar{0} \rangle$; see remarks and examples(2,2),(2).

2- Each simple R-module A is P-uniform. But the converse is not true in general. For example, Z_9 is a P-uniform Z-module where $= <\overline{3} >$, but not simple Z-module.

3- Z_{12} as a Z-module is not P-uniform , where $P = <\overline{2} >$ is prime submodule of Z_{12} , $<\overline{3} > \cap <\overline{4} > = <\overline{0} >$ and $<\overline{4} > \leq_{Pe} < \overline{2} >$.

4- We can note that a semi-uniform R-module needs not to be P-uniform, as shown in the following example:

The Z-module Z_{36} is semi-uniform [3], but not P₁-uniform and not P₂-uniform, where $P_1 = \langle \overline{2} \rangle$, $P_2 = \langle \overline{3} \rangle$, since $\langle \overline{18} \rangle \cap \langle \overline{12} \rangle = \langle \overline{0} \rangle$, but $\langle \overline{12} \rangle \neq \langle \overline{0} \rangle$, as in the following table:

$\mathcal{H} \subseteq \mathcal{A}$	638	$p_2 - ess$	$p_2 - ess$	Semi-ess
Z ₃₆	\sim	\sim	\sim	\sim
(2)	\sim	\checkmark	\checkmark	\sim
(3)	\sim	\sim	\sim	\checkmark
(4)	×	\checkmark	×	\checkmark
(6)	\sim	\sim	\sim	\sim
(9)	×	×	\sim	\checkmark
(12)	×	×	×	\checkmark
(18)	×	×	×	\checkmark

Proposition(4-3)

Let A be an R-module , then A is uniform if and only if A is P-uniform and fully P-essential.

Proof:- (\Rightarrow) It is clear.

(⇐) Let *H* be a non-zero submodule of *A*. since *A* is P-uniform module, then $H \leq_{Pe} A$. But *A* is fully essential module , then $H \leq_{e} A$, implies that *A* is uniform module.

Theorem(4-4)

Let A be a faithful multiplication R-module , then A is a P-uniform R-module if and only if R is a P-uniform ring.

Proof

Suppose that A is P-uniform and let E be a non-zero ideal of R. Thus EA is P-essential submodule of A. By theorem (3-1), E is a P-essential ideal of R. Conversely, assume that R is P-uniform and H is a submodule of A. Since A is multiplication, then there exists an ideal B of R such that H = BA. But R is P-uniform, so B is P-essential. Thus H is P-essential by theorem(3-1).

Proposition(4-5)

Let A_1 and A_2 be two R-modules and let $f: A_1 \to A_2$ be an epimorphism. Then:

1- If A_1 is P-uniform R-module, then A_2 is also P-uniform R-module. 2- If A_2 is P-uniform R-module for each prime submodule P of A_1 , then A_1 is $f^{-1}(P)$ -uniform R-module.

Proof

1-Let H_2 be a non-zero submodule of A_2 , then $f^{-1}(H_2)$ is a non-zero submodule of A_1 . Since A_1 is P-uniform R-module, thus $f^{-1}(H_2)$ is a P-essential submodule of A_1 . By remark(2-9), we get $f(f^{-1}(H_2)) = H_2$ is a P-essential submodule of A_2 . Therefore, A_2 is P-uniform R-module.

2- Let H_1 be a non-zero submodule of A_1 , then $f(H_1)$ is a non-zero submodule of A_2 . Since A_2 is P-uniform R-module, then $f(H_1)$ is a P-essential submodule of A_2 . By proposition(2-8), we get $f^{-1}(f(H_1)) = H_1$ is a $f^{-1}(P)$ - essential submodule of A_1 . Therefore, A_1 is $f^{-1}(P)$ - uniform R-module.

Proposition(4-6)

Let $A = A_1 \oplus A_2$ be R-module, where A_1 and A_2 are R-modules. If A is P-uniform, then A_1 and A_2 are P-uniform modules

Proof

Let H_1 be non-zero submodule of A_1 , so $H_1 \leq A$. But A is a P-uniform, then H_1 is a P-essential submodule of A. Thus, H_1 is a P-essential submodule of A_1 . Therefore, A_1 is P-uniform R-module. In a similar way, we can proof that A_2 is a P-uniform R-module.

References

- [1] Goodearl, K. R., "Ring theory" Marcel Dekker, New York, 1972.
- [2] Ahmed ,M.A. and Ibrahiem, T.A. (2019) "H-essential submodules and Homessential modules" *Iraqi journal of science*, vol.60, no. 6, pp. 1381-1386, 2019.
- [3] Ali S. Mijbass and Nada K. Abdulla, "Semi-essential submodule and Semi-uniform modules". J. of Kirkuk University- Scientific studies, vol. 4, no. 1, pp. 48-58, 2009.
- [4] Athab, E.A. "Prime and semi-prime modules "M. SC. Thesis, university of Baghdad, 1996.
- [5] Ahmed, M.A. and Dakheel . Sh. O. " S-maximal submodules " J. of Baghdad for Science , Preprint, 2015.
- [6] Anderson, F.W. and Fuller ,K.R. "*Rings and categories of modules*" Springer-Verlag, New York. Academic Press Inc. London, 1992.
- [7] Barnard , A., "Multiplication modules". J. Algebra, vol. 71, pp. 174-178, 1981.
- [8] El-Bast, Z.A. and Smith, P.F." Multiplication modules", Comm. Algebra, vol. 16, pp. 755-779, .
- [9] Abdullah, N.K. "Semi-essential submodules and semi-uniform modules" M. Sc. Thesis. University of Tikrit, 2005.
- [10] Ahmed ,M.A. "The dual notions of semi-essential submodule and semi-uniform modules" *Iraqi journal of science*, vol.59, no. 4B, pp. 2107-2116, 2018.