

ISSN: 0067-2904

On P-Essential Submodules

Haithab A. Shahad*, Nuhad Salim Al-Mothafar
Department of Mathematics, College of Education for Science, University of Baghdad

Received: 31/1/2021
Accepted: 26/6/2021

Abstract

Let R be a commutative ring with identity and let A be an R -module. We call an R-submodule H of A as P-essential if $H \cap L \neq 0$ for each nonzero prime submodule P of A and $0 \neq \mathrm{L} \leq P$. Also, we call an R-module A as P-uniform if every nonzero submodule H of A is P -essential. We give some properties of P -essential and introduce many properties to P-uniform R-module. Also, we give conditions under which a submodule H of a multiplication R -module A becomes P -essential. Moreover, various properties of P-essential submodules are considered.

Keywords: Essential submodules, Uniform modules, Fully prime modules, multiplications modules.
حول الفضاءات الجزئية الجوهريـة من النمط-P

> هيذب عبود شهل * ، نهاد سالم المظفر
> قس الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

من النمط-P.

1- Introduction

Let R be a commutative ring with unity and let A be a unitary R -module. A non-zero submodule H of A is called essential if $H \cap L \neq 0$ for each non-zero submodule L of A [1]. A is called uniform if every non-zero submodule H of A is essential [1]. In (2019), Ahmad and Ibrahiem studied a new concept, which is named H-essential submodules [2]. Ali and Nada [3] introduced the concept of semi-essential submodules as a generalization of the class of essential submodules. They stated that a nonzero submodule H of A is called semi-essential , if $H \cap P \neq 0$ for each nonzero prime submodule P of A. In section two, we introduce a Pessential submodule concept as a generalization of the essential submodule concept. We call an R-submodule H of A as P-essential if $H \cap L \neq 0$ for each nonzero prime submodule P of A and $0 \neq \mathrm{L} \leq P$. Our main concerns in this section are to give characterizations for P -

[^0]essential submodules and generalize some known properties of essential submodules to P essential submodules. In section three, we give conditions under which a submodule H of a faithful multiplication R- module A becomes P-essential. In section four, we present the P uniform module concept as a generalization of the uniform concept. We also generalize a characterization and some properties of uniform modules to P-uniform modules.

2- P-Essential Submodules

Recall that a non-zero submodule H of an R-module A is called essential if $H \cap L \neq 0$ for each submodule L of A [1].

Definition(2-1)

Let A be an R -module and P be a non-zero prime submodule of A. A submodule H of A is said to be P-essential, written as $\leq_{p e} A$, if for every proper submodule L of P, then $H \cap L=$ 0 , which implies that $L=0$.
Or, a non-zero submodule H of A is called P-essential, if $H \cap L \neq 0 \forall 0 \neq L \subseteq P$.

Remarks and Examples(2-2)

1- Every essential submodule is P - essential submodule, but the converse is not true in general.
For example, consider $A=Z_{24}$ as Z-module, $P=<\overline{3}>=\{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}, \ldots, \overline{21}\} . H=<\overline{6}>$ $=\{\overline{0}, \overline{6}, \overline{12}, \overline{18}\}, \leq_{P e} A$, since $\langle\overline{0}\rangle,\langle\overline{6}\rangle,\langle\overline{12}\rangle$ are proper submodules of $P=\langle\overline{3}\rangle$, $H \cap L \neq<0>\forall 0 \neq L \leq P$, but $<\overline{6}>\ddagger_{e} A$, since $<\overline{8}>\cap<\overline{6}>=0$, while $<\overline{8}>\neq<$ $\overline{0}>$.
2- Let $A=Z_{15}$ be a Z-module and the prime submodules of A are : $P_{1}=\langle\overline{3}\rangle, P_{2}=\langle\overline{5}\rangle$.
It follows that $\langle\overline{3}\rangle,<\overline{5}\rangle$ are P_{1}-essential and P_{2}-essential resp. in Z_{15}, but are not essential in Z_{15}, since $<\overline{3}>\cap<\overline{5}>=<\overline{0}>$, but $\langle\overline{5}>\neq<\overline{0}>$.
3- A submodule of a P -essential submodule needs not to be P -essential.
For example, let $A=Z_{24}$ be a Z-module, $H=<\overline{4}>, P=<\overline{2}>$ is a prime submodule of A , $<\overline{4}>\leq_{p e} A$, but $<\overline{8}>\coprod_{p e} A$, since $<\overline{8}>\cap<\overline{6}>=0$ where $L=<\overline{6}>\subseteq<\overline{2}>=P$ and $<\overline{8}>\leq<\overline{4}>$.
4- If H_{1} and H_{2} are P-essential submodules of , then $H_{1} \cap H_{2}$ needs not be to P-essential of A. For example, let $A=Z_{24}$ and let $P=<\overline{2}>, H_{1}=<\overline{4},>$ and $H_{2}=<\overline{6}>$ be P-essential of A , but $\left\langle\overline{4}>\cap<\overline{6}>=<\overline{0}>\right.$ is not P-essential of Z_{24}.
5- The sum of two P-essential submodules of an R -module A is also P -essential submodule.
Proof: Let A be R-module and let L and K be two P-essential submodules of A. Note that $\leq L+K$, since $L \leq_{p e} A$, implies that $L+K \leq_{p e} A$.
6- A semi-essential submodule needs not to be P-essential submodule, as we see in the following example:
Consider Z_{12} as Z-module . $N=<\overline{3}>$ is semi-essential [3], but it is not P - essential where $P=<\overline{2}>$ and $<\overline{3}>\cap<\overline{4}>=<\overline{0}>$, but $0 \neq<\overline{4}>$.

Proposition (2-3)

Let A be an R-module, P be a prime submodule of A, and K be any submodule of A. If $\leq_{P e} A$, then $K \leq_{P e} A$ if and only if $K \leq_{e} A$.
Proof : Suppose that $K \leq_{P e} A$. Let P be a prime submodule of A and let $L \leq P$ such that $K \cap L=<0>$, implies that $K \cap(P \cap L)=<0>$. Since $P \cap L \leq P$ and $K \leq_{P e} A$, then $P \cap L=<0>$. By hypothesis, $P \leq_{e} A$, thus $L=<0>$ which implies that $K \leq_{e} A$. The converse is obvious.

Poposition (2-4)

A non-zero submodule K of A is P-essential if and only if for each non-zero submodule L of a submodule $P, \exists x \in L$ and $r \in R$ such that $0 \neq r x \in K$, where P is a prime submodule of A. The proof is easy and hence is omitted.
Proposition(2-5)

Let A be an R-module and let H_{1}, H_{2} be submodules of A such that $H_{1} \leq H_{2}$. If H_{1} is Pessential submodule of A, then H_{2} is a P-essential submodule of A.

Proof

Let P be a prime submodule of $A, 0 \neq L \leq P$. By using proposition (2-4), $\mathrm{x} \in \mathrm{L}, \mathrm{r} \in \mathrm{R}$. Since $H_{1} \leq_{\text {pe }}$ A, then $0 \neq \mathrm{rx} \in H_{1} \leq \mathrm{H}_{2}$, then $0 \neq r x \in H_{2}$, implies that $H_{2} \leq_{P e} A$.
The converse of prop.(2-5) is not true in general; for example :
Consider Z_{24} as a Z -module and $\langle\overline{8}\rangle$ is a submodule of $\langle\overline{4}\rangle$. By remarks and example (2-2)(3), $<\overline{4}\rangle \leq_{p e} Z_{24}$, but $\langle\overline{8}\rangle \ddagger_{p e} Z_{24}$, since $\left.\langle\overline{8}\rangle \cap<\overline{6}\right\rangle=\langle\overline{0}\rangle$ and $\langle\overline{6}\rangle \neq<$ $\overline{0}>$.
Corollary (2-6)
Let H_{1} and H_{2} be submodules of A. If $H_{1} \cap H_{2}$ is P-essential submodule of A, then H_{1} and H_{2} are P-essential.

Proof

By using proposition (2-5), since $H_{1} \cap H_{2} \leq H_{1}$ and $H_{1} \cap H_{2} \leq_{P e} A$, so $H_{1} \leq_{P e} A$. In the same way, $H_{2} \leq_{P e} A$.
The converse of the previous corollary is not true in general, as shown in remarks and examples(2-2)(5).

Proposition(2-7)

Let A be an R-module and let H_{1} and H_{2} be submodules of A. If H_{1} is an essential submodule of A and H_{2} is a P-essential submodule of A, then $H_{1} \cap H_{2}$ is also P-essential submodule of A.

Proof

Let P be prime submodule of A and let $0 \neq L$ submodule of P. Since H_{2} is P-essential submodule of A, thus $H_{2} \cap L \neq<0>$. And since H_{1} is an essential submodule of A, then $H_{1} \cap\left(H_{2} \cap L\right) \neq<0>$, so $\left(H_{1} \cap H_{2}\right) \cap L \neq<0>$. This implies that $H_{1} \cap H_{2}$ is P-essential submodule of A.

Proposition(2-8)

Let A and B be R-modules and let $f: A \rightarrow B$ be an epimorphism. If K is a P-essential submodule of , then $f^{-1}(K)$ is a $f^{-1}(P)$-essential of A.

Proof

We know that if P is a prime submodule of B then $f^{-1}(P)$ is a prime submodule of A [4]. Let $0 \neq L \leq f^{-1}(P)$ and $f^{-1}(K) \cap L=<0>$. To prove that $L=0$, then $K \cap f(L)=<0>$. Since K is P-essential in B and $f(L) \leq P$, then $f(L)=0$, implies $L \subseteq f^{-1}(0)=\operatorname{ker} f \leq$ $f^{-1}(K)$. But $f^{-1}(K) \cap L=<0>$, that is $L=0$. Thus $f^{-1}(K)$ is a $f^{-1}(P)$-essential submodule of A.
$\operatorname{Remark}(2-9):-$ Let $f: A \rightarrow A ́$ be an isomorphism. If $H \leq_{P e} A$, then $f(H) \leq_{P e} A ́$.
Proof: Let P be a prime submodule of A and let L be a non-zero submodule of P. Since f is an epimorphism, then $f^{-1}(L)$ is a submodule of $f^{-1}(P)$ which is prime submodule of A by [4]. But $\leq_{P e} A$, then $H \cap f^{-1}(L) \neq<0>$. On the other hand, f is a monomorphism, thus $f(H) \cap L \neq<0>$. This completes the proof.

Proposition(2-10)

If K is a submodule of an R-module A and P_{1}, P_{2} are prime submodules of A, such that $0 \leq P_{1} \leq P_{2}$. If $K \leq_{P_{1} e} A$, then $K \leq_{P_{2} e} A$.
Proof:- Let $L_{2} \leq P_{2}$ such that $K \cap L_{2}=<0>$. To prove that $L_{2}=0$. ヨi: $P_{1} \rightarrow P_{2}$, since $L_{2} \leq P_{2}$, hence $i^{-1}\left(L_{2}\right) \leq P_{1} \cdot i^{-1}\left(K \cap L_{2}\right)=i^{-1}<0>$, implies that $\cap i^{-1}\left(L_{2}\right)=<0>$. Since $\leq_{P_{1} e} A$, hence $i^{-1}\left(L_{2}\right)=L_{2}=<0>$.

Proposition(2-11)

Let C, K, P be submodules of an R-module A and P is prime submodule of , $K \leq C$. $K \leq_{P e} A$ if and only if $K \leq_{(P \cap C) e} A$ and $C \leq_{P e} A$.

Proof:- (\Rightarrow) Since P is prime in $A, C \leq A$, then $(P \cap C)$ is prime in C [4]. Let $L \leq(P \cap C)$ with $\cap L=<0>$. To prove that $L=<0>$, since $L \leq P, K \leq_{P e} A$, hence $L=<0>$. Let $T \leq P$ with $\cap C=<0>$, implies that $T \cap K=<0>$ (the hypothesis has been modified in the proposition). Since $\leq_{P e} A$, then $T=0$.
($\Leftarrow)$ Let $L \leq P$ such that $L \cap K=<0>$, then $(L \cap K) \cap C=<0>$, implies that ($L \cap$ $C) \cap K=<0>, L \cap C \leq P \cap C$ and $K \leq_{(P \cap C) e} A$, hence $L \cap C=<0>$. Since $\leq_{P e} A$, then $L=<0>$, thus $K \leq_{P e} A$.
In the following proposition, we give the transitive property for non-zero P-essential submodules.
Proposition(2-12)
Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be R -modules such that $A \leq B \leq C$. If $A \leq_{p e} B$ and $B \leq_{p e} C$, then $A \leq_{P e} C$.
Proof:- Let P be a prime submodule of C and let L be a submodule of P such that $A \cap L=0$. Note that $0=A \cap L=(A \cap L) \cap B=A \cap(L \cap B)$. If $B \leq L$ then $0=A \cap(L \cap B)=A \cap B$, hence $A \cap B=0$, but $A \leq B$, so $A \cap B=A$, which implies that $\mathrm{A}=0$. But this is a contradiction. Thus $B \not \leq L$ and $L \cap B \leq P$. But $A \leq_{P e} B$, therefore $L \cap B=0$, and since $B \leq_{P e} C$, then that is $L=0$, $A \leq_{p e} C$.
The converse of proposition (2-12) is not true in general, as the following example shows: Consider Z_{24} as Z -module, the submodule $\langle\overline{6}\rangle$ is P-essential of Z_{24}, by remarks and examples(2-2). But $\left\langle\overline{6}>\right.$ is not P-essential submodule of $\langle\overline{2}>$ where $<\overline{2}\rangle \leq_{e} Z_{24}$.
Recall that an R-module A is fully prime, if every proper submodule of A is a prime submodule [2].

Proposition(2-13)

Let $A=A_{1} \oplus A_{2}$ be a fully prime R - module where A_{1} and A_{2} are submodules of, and let $0 \neq K_{1} \leq A_{1}$ and $0 \neq K_{2} \leq A_{2}$. Then $K_{1} \oplus K_{2}$ is P-essential of $A_{1} \oplus A_{2}$ if and only if K_{1} is a P-essential submodule of A_{1} and K_{2} is a P-essential submodule of A_{2}.

Proof

(\Rightarrow) Since A is a fully prime module, then by [5], $K_{1} \oplus K_{2}$ is an essential submodule of $A_{1} \oplus A_{2}$ and by [6, proposition(5-20)], K_{1} is an essential submodule A_{1} and K_{2} is an essential submodule of A_{2}. But since every essential submodule is a P-essential, so we are done. (\Leftarrow) It follows similarly.

Proposition(2-14)

Let A be an R-module and let H_{1} and H_{2} be P-essential submodules of A such that $H_{1} \cap H_{2} \neq 0$, then $H_{1} \cap H_{2}$ is P-essential submodule of A.

Proof

Let P be a prime submodule of A and let $L \leq P$ such that $\left(H_{1} \cap H_{2}\right) \cap L=0$. This implies that $H_{2} \cap\left(H_{1} \cap L\right)=0$. If $H_{1} \leq L$, then we have a contradiction with the assumption, thus $H_{1} \nsubseteq L$. This implies that $H_{1} \cap L$ is a submodule of A [5]. Since H_{2} is P-essential submodule of A and, by our assumption, $H_{1} \cap L$ is a submodule of A, then $H_{1} \cap L=0$. But H_{1} is P-essential submodule of , therefore $L=0$, hence $H_{1} \cap H_{2}$ is P-essential submodule of A.

3- P-Essential Submodules in Multiplication Modules

An R- module A is called multiplication if every submodule H of A is of the form $I A$ for some ideal I of R [7] and an R-module A is called faithfull if $\operatorname{ann}(A)=0$. In this section, we give a condition under which a submodule H of A is a faithful multiplication R-module that becomes P -essential.

Theorem(3-1)

Let A be a faithful multiplication R -module and H be a submodule of A. Then H is P essential of A if and only if I is P-essential of R.

Proof

Assume that H is P -essential submodule of A, let P be a prime ideal of R and $L \leq P$ such that $I \cap L=0$. Since A is a faithful multiplication R-module, then $(I \cap L) A=I A \cap L A=0$. Now, $P A$ is a prime submodule of , $L A \leq P A$ and ($I A=H$ is P-essential submodule of A), implies that $L A=0$. Since A is finitely generated faithful multiplication R-module , then $L=0$. Therefore, I is a P-essential. Conversely, let P be a prime submodule of A and L be a submodule of P such that $H \cap L=0$. Since A is multiplication, then there exists an ideal B of R such that $L=B A$ [8]. Hence $H \cap L=I A \cap B A=(I \cap B) A=0$. But A is faithful, so $I \cap B=0$. Since I is a P-essential ideal of R , then $B=0$, therefore $L=B A=0$, thus H is a P-essential submodule of A.

Theorem(3-2)

Let A be a faithful multiplication R-module. Then H is a P-essential submodule of A if and only if $[H:\langle x\rangle]$ is a P-essential ideal of R for each $x \in A$.

Proof

Assume that H is P-essential. Since A is faithful multiplication R-module, then $[H: A]$ is a P-essential of R, by Theo.(3-1). But $[H: A] \subseteq[H:<x>]$ for each $\in A$, so $H=[H: A] A \subseteq$ $[H:<x>] A$, [7] . Hence $[H:<x>] A$ is P-essential by Proposition (2-5), hence $[H:<x>]$ is a P-essential ideal of R by Theorem (3-1).

Proposition(3-3)

Let A be a finitely generated, faithful and multiplication R- module. If $I \leq_{P e} J$, then $I A \leq_{P e} J A$ for every ideals I and J of R.

Proof

Let P be a prime submodule of $J A$ such that $P=K A$ for some prime ideal K of R and $K \subseteq J,[8]$ and let L be a submodule of P such that $I A \cap L=0$. Since A is a multiplication module, then $L=E A$ for some ideal E of R. So $\cap E A=0$, implies that $(I \cap E) A=0$. Since A is a faithfull module, then $\cap E=0$. Since $E A \leq K A$ and A is finitely generated, faithful and multiplication, so by [8], $E \leq K$. Since I is a P-essential ideal of J, then $E=0$ and hence $L=0$. That is, $I A \leq_{P e} J A$.

Proposition(3-4)

Let A be a non-zero multiplication R-module with only one maximal submodule H. If $H \neq 0$, then H is an essential (hence P-essential) submodule of A.

Proof

Let L be a submodule of A with $L \cap H=0$. If $=A$, then $H \cap A=0$, hence $H=0$, which is a contradiction. Thus L is a proper submodule of A, and since A is a non-zero multiplication module, so by [8], L is contained in some maximal submodule of A. But A has only one maximal submodule, which is H. Thus $L \subseteq H$, implies that $L=0$, that is H is an essential (hence P-essentianl) submodule of A.
Recall that a non-zero R-module A is called fully essential if every non-zero semi-essential submodule of A is an essential submodule of A [5].
Definition(3-5): A non-zero R-module A is called fully P-essential if every non-zero Pessential submodule of A is an essential submodule of A. A ring R is called fully P - essential if every non-zero P-essential ideal I of R is essential ideal of R.

Examples(3-6)

1- $\quad \mathrm{Z}_{8}$ as a Z-module is fully P-essential Z-module.
2- $\quad Z_{12}$ as a Z-module is not fully P-essential, since the submodule $<\overline{6}>$ of Z_{12} is $\mathrm{P}_{2^{-}}$ essential where $P_{2}=\langle\overline{3}>$, but not essential since $\langle\overline{6}\rangle \cap<\overline{4}\rangle=\langle\overline{0}\rangle$ but $\langle\overline{4}\rangle \neq\langle\overline{0}\rangle$.
3- Every fully essential is fully P-essential.
The following theorem gives the hereditary of fully P-essential property between R-module A and the ring R.

Theorem(3-7)

Let A be a non-zero faithfull and multiplication R-module, then A is a fully P -essential module if and only if R is a fully P -essential ring.

Proof

(\Rightarrow) Assume that A is a fully P-essential module and let I be a non-zero P-essential ideal of R, then $I A$ is a submodule of A, say H. This implies that H is a P-essential submodule of A. Since $I \neq 0$ and A is faithful module, then $H \neq 0$. But A is a fully P-essential module, thus H is an essential submodule of A. Since A is a faithful and multiplication module, therefore I is an essential ideal of R [8], that is R is a fully P -essential ring. (\Longleftarrow) Suppose that R is a fully P-essential ring and let $0 \neq H \leq_{P e} A$. Since A is a multiplication module, then $H=I A$ for some P -essential ideal of R. By assumption, I is an essential ideal of R. But A is faithful and multiplication module, then H is an essential submodule of A [8]. Thus A is fully P -essential module.

4- P-Uniform Modules

Recall that a non-zero R-module A is called uniform if every non-zero submodule of A is essential [9]. Recall that a non-zero R-module A is called semi-uniform if every non-zero submodule of A is semi-essential [10]. In this section, we give a P -uniform module concept as a generalization of the uniform module concept. We also generalize some properties of uniform modules to P -uniform modules.

Definition(4-1)

A non-zero R -module A is called P -uniform if every non-zero submodule of A is P -essential . A ring R is called P -uniform if R is a P -uniform R -module.

Remarks(4-2)

1- Each uniform R -module is P -uniform, but the converse is not true in general. For example, Z_{15} as a Z-module is P-uniform but not uniform since $\left.\langle\overline{3}\rangle \cap<\overline{5}\right\rangle=\langle\overline{0}\rangle$, while $\langle\overline{5}\rangle \neq<\overline{0}\rangle$; see remarks and examples(2,2),(2).
2- Each simple R-module A is P -uniform. But the converse is not true in general. For example, Z_{9} is a P-uniform Z-module where $=\langle\overline{3}\rangle$, but not simple Z-module.
3- $\quad Z_{12}$ as a Z-module is not P-uniform, where $P=<\overline{2}>$ is prime submodule of Z_{12}, $<\overline{3}>\cap<\overline{4}>=<\overline{0}>$ and $<\overline{4}>\$_{P e}<\overline{2}>$.
4- We can note that a semi-uniform R-module needs not to be P-uniform, as shown in the following example:
The Z-module Z_{36} is semi-uniform [3], but not P_{1}-uniform and not P_{2}-uniform, where $P_{1}=\langle\overline{2}\rangle, P_{2}=\langle\overline{3}\rangle$, since $\left.\langle\overline{18}\rangle \cap<\overline{12}\right\rangle=\langle\overline{0}\rangle$, but $\langle\overline{12}\rangle \neq\langle\overline{0}\rangle$, as in the following table:

$\mathcal{H} \subseteq \mathscr{A}$	ess	$\mathrm{P}_{2}-$ ess	$\mathrm{P}_{2}-$ ess	Semi-ess
\mathbb{Z}_{36}	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
($\overline{2}$)	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
(3)	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
($\overline{4}$)	\times	$\sqrt{ }$	\times	$\sqrt{ }$
(6)	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
(5)	\times	\times	$\sqrt{ }$	$\sqrt{ }$
(12)	\times	\times	\times	$\sqrt{ }$
(18)	\times	\times	\times	$\sqrt{ }$

Proposition(4-3)

Let A be an R-module , then A is uniform if and only if A is P -uniform and fully P essential.
Proof:- (\Rightarrow) It is clear.
(\Leftarrow) Let H be a non-zero submodule of A. since A is P-uniform module, then $H \leq_{P e} A$. But A is fully essential module, then $H \leq_{e} A$, implies that A is uniform module.

Theorem(4-4)

Let A be a faithful multiplication R-module, then A is a P-uniform R-module if and only if R is a P-uniform ring.

Proof

Suppose that A is P-uniform and let E be a non-zero ideal of R. Thus $E A$ is P-essential submodule of A. By theorem (3-1), E is a P-essential ideal of R. Conversely, assume that R is P -uniform and H is a submodule of A. Since A is multiplication, then there exists an ideal B of R such that $H=B A$. But R is P -uniform, so B is P -essential . Thus H is P-essential by theorem(3-1).

Proposition(4-5)

Let A_{1} and A_{2} be two R-modules and let $f: A_{1} \rightarrow A_{2}$ be an epimorphism. Then:
1- If A_{1} is P-uniform R-module, then A_{2} is also P-uniform R-module. 2- If A_{2} is P-uniform R-module for each prime submodule P of A_{1}, then A_{1} is $f^{-1}(P)$ uniform R-module.

Proof

1-Let H_{2} be a non-zero submodule of A_{2}, then $f^{-1}\left(H_{2}\right)$ is a non-zero submodule of A_{1}. Since A_{1} is P-uniform R-module, thus $f^{-1}\left(H_{2}\right)$ is a P-essential submodule of A_{1}. By remark(2-9), we get $f\left(f^{-1}\left(H_{2}\right)\right)=H_{2}$ is a P-essential submodule of A_{2}. Therefore, A_{2} is P-uniform Rmodule.
2- Let H_{1} be a non-zero submodule of A_{1}, then $f\left(H_{1}\right)$ is a non-zero submodule of A_{2}. Since A_{2} is P-uniform R-module, then $f\left(H_{1}\right)$ is a P-essential submodule of A_{2}. By proposition(2-8), we get $f^{-1}\left(f\left(H_{1}\right)\right)=H_{1}$ is a $f^{-1}(P)$ - essential submodule of A_{1}. Therefore, A_{1} is $f^{-1}(P)$ uniform R-module.

Proposition(4-6)

Let $A=A_{1} \oplus A_{2}$ be R-module, where A_{1} and A_{2} are R-modules. If A is P-uniform, then A_{1} and A_{2} are P-uniform modules

Proof

Let H_{1} be non-zero submodule of A_{1}, so $H_{1} \leq A$. But A is a P-uniform, then H_{1} is a Pessential submodule of A. Thus, H_{1} is a P-essential submodule of A_{1}. Therefore, A_{1} is Puniform R-module. In a similar way, we can proof that A_{2} is a P-uniform R-module.

References

[1] Goodearl , K. R., " Ring theory " Marcel Dekker , New York, 1972.
[2] Ahmed ,M.A. and Ibrahiem, T.A. (2019) "H-essential submodules and Homessential modules" Iraqi journal of science, vol.60, no. 6 , pp. 1381-1386, 2019.
[3] Ali S. Mijbass and Nada K. Abdulla, "Semi-essential submodule and Semi-uniform modules". J. of Kirkuk University- Scientific studies, vol. 4, no. 1, pp. 48-58, 2009.
[4] Athab, E.A. " Prime and semi-prime modules " M. SC. Thesis, university of Baghdad, 1996.
[5] Ahmed, M.A. and Dakheel . Sh. O. " S-maximal submodules " J. of Baghdad for Science, Preprint, 2015.
[6] Anderson, F.W. and Fuller ,K.R. " Rings and categories of modules " Springer-Verlag, New York. Academic Press Inc. London, 1992.
[7] Barnard, A., " Multiplication modules". J. Algebra, vol. 71, pp. 174-178, 1981.
[8] El-Bast, Z.A. and Smith , P.F." Multiplication modules" , Comm. Algebra, vol. 16, pp. 755-779, .
[9] Abdullah, N.K. " Semi-essential submodules and semi-uniform modules" M. Sc. Thesis. University of Tikrit, 2005.
[10]Ahmed ,M.A. "The dual notions of semi-essential submodule and semi-uniform modules" Iraqi journal of science, vol.59, no. 4B , pp. 2107-2116, 2018.

[^0]: *Email: hshahad@uowasit.edu.iq

