
Ghazi and Ali Iraqi Journal of Science, 2018, Vol. 59, No.2C, pp: 1105-1114
 DOI:10.24996/ijs.2018.59.2C.15

*Email: faezhassan@uomustansiriyah.edu.iq

1105

Robust and Efficient Dynamic Stream Cipher Cryptosystem

Abdullah Ayad Ghazi

*1
, Faez Hassan Ali

2

1
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

2
Department of Mathematics, College of Science, Al-Mustansiryah University, Baghdad, Iraq

Abstract

 In this paper a new technique based on dynamic stream cipher algorithm is

introduced. The mathematical model of dynamic stream cipher algorithm is based on

the idea of changing the structure of the combined Linear Feedback Shift Registers

(LFSR's) with each change in basic and message keys to get more complicated

encryption algorithm, and this is done by use a bank of LFSR's stored in protected

file and we select a collection of LFSR's randomly that are used in algorithm to

generate the encryption (decryption) key.

 We implement Basic Efficient Criteria on the suggested Key Generator (KG) to

test the output key results. The results of applying BEC prove the robustness and

efficiency of the proposed stream cipher cryptosystem.

Keywords: Stream cipher, Dynamic stream cipher, Linear Feedback Shift Registers.

 نظام تشفير انسيابي ديناميكي رصين وكفوء

 2فائز حسن علي ،1*عبدالله اياد غازي
1

 العراق ،بغداد ،بغداد جاهعة ،كليه العلوم ،سن الرياضياتق
2

 العراق ،بغداد ،الجاهعة الوستنصرية ،كليه العلوم ،الرياضيات قسن

 خلاصة
الرياضي في هذا البحث سيتم تقديم تقنية جديدة تعتمد عمى خوارزمية تشفير انسيابي ديناميكية. النموذج

 ذات التغذية الراجعة لخوارزمية التشفير الانسيابي الديناميكية تعتمد عمى فكرة تبديل تشكيمة المسجلات الزاحفة
المشتركة بالمنظومة مع اي تبديل لممفتاح الاساسي ومفتاح الرسالة لمحصول عمى خوارزمية اكثر تعقيد، وهذا

احفة والتي يتم اختيار بعضها عشوائيا لكي تستخدم في يتم من خلال استخدام بنك يحوي مجموعة مسجلات ز
الخوارزمية لتوليد مفتاح التشفير)الحل(. في هذا البحث قمنا بتنفيذ مقاييس الكفاءة الاساسية عمى مولد
المفاتيح المقترح لاختبار نتائج المفتاح المخرج. ان نتائج تطبيق تمك المقاييس اثبتت رصانة وكفاءة نظام

 لانسيابي المقترح.التشفير ا
1. Introduction

 A stream cipher is a symmetric cipher which operates with a time-varying transformation on

individual plaintext digits. The most important stream cipher is the Vernam cipher, and it is also called

one-time pad that leads to good secrecy (the ciphertext gives no information about the original

plaintext). In general, the stream ciphers have some advantages that make them suitable for many

applications. As usual, they are faster and have a lower hardware complexity than the block ciphers.

They are also very suitable when the memory is limited, since the digits (or bits) are individually

encrypted (decrypted). Moreover, synchronous stream ciphers are not affected by error-propagation. In

the stream cipher, the running output key, also called the key stream, is the output sequence which is

combined, digit by digit, to the sequence obtained from plaintext to obtain the ciphertext sequence.

 ISSN: 0067-2904

Ghazi and Ali Iraqi Journal of Science, 2018, Vol. 59, No.2C, pp: 1105-1114

1106

 output

The output running key is generated by a finite state automaton called the key generator (KG) or the

key stream generator [1].

 Stream ciphers have a history that has been improving throughout the upcoming years. The stream

ciphers were invented in 1917 by Vernam G., even though they were not called stream ciphers back in

the day [2]. In 1967, Golomb S., an American mathematician and professor had written a book that is an

excellent introduction to the theory of both linear and nonlinear shift registers [3]. Rivest R., from RSA

Data Security, Inc., in 1987, made a design of a byte oriented stream cipher called RC4 [4]. This kind of

cipher found its application in many Internet and security protocols. In 1999 the exact design of both

A5/1 and A5/2 was discovered by Briceno [5]. The security of GSM conversation is based on usage of

the A5 family of stream ciphers. Many hundred million customers just in Europe are protected from

over-the-air piracy by the stronger version of the stream cipher, the A5/1 stream cipher while the other

customers on other markets use A5/2 which is weaker version. In 2002, Scream was developed by

Coppersmith, Halevi, and Jutla who are the IBM researchers [6]. This cryptosystem is a purely software-

oriented stream cipher. The design of Scream is based on the ideas behind the SEAL stream cipher, but

considered to be more secure. The “toy cipher” which denoted Scream0 uses the AES whereas the

scream cryptosystem cipher uses secret S-boxes, generated by the output key. Hell, Johansson T., and

Meier W., and was especially designed for being very small and fast in hardware implementation. This

cryptosystem uses the key of length 80 bits and the IV is 64 bits, while its internal state is of size 160

bits. Grain uses a LFSR and a nonlinear FSR (NLFSR), and the idea to use NLFSR is quite new in

modern cryptography [7]. At the conference FSE 2004, a new stream cipher cryptosystem called VMPC

[8] was proposed by the researcher Zoltak B., which considered to be a modification of the RC4 stream

cipher. Dragon is a stream cipher cryptosystem [9] submitted to the eSTREAM project, designed by a

group of researchers, Ed Dawson et al. It is a word oriented stream cipher that acts on key sizes of 128

and 256 bits. The original idea of the design is to use a two parts; NLFSR and a linear part.

 In this paper we will discuss a new techniques based on dynamic stream cipher algorithm. This

algorithm depends on the basic key (BK) and the message key (MK), when both keys change the

structure of the LFSR would change too. The generated key gets tested by Basic Efficiency Critter

(BEC) and the results of BEC are not fixed, they are changed when the structure of the proposed

generator is changed. If the generated key passes all the (BEC) for many times then the generator is

secure and ready to be used in encryption and decryption process. In section 2, the stream cipher based

on LFSR's will be discussed. In section 3, the Basic Efficiency Criteria for stream ciphers will be

described, in section 4, the new design of Dynamic stream ciphers will be introduced. Lastly in section

5, the results of the implementation of BEC on RDSCC will be shown.

2. Stream Cipher Based on Linear Feedback Shift Register

 A feedback shift register (FSR) is made up of two main parts: a shift register and its feedback

function. The SR is a sequence of bits, (the length of a SR is figured in bits). Each time only one bit is

needed, all the bits in the SR are shifted 1 bit to the right.

 Cryptographers have liked stream ciphers made up of SR: Since they are easily implemented in digital

hardware. Selmer E., the Norwegian governments’ chief cryptographer, worked out the theory of SR

sequences in 1965 [10]. Golomb S., an NSA mathematician, wrote a book with Selmers results and

some of his own [3, 10]. The simplest kind of FSR is a Linear Feedback Shift Register (LFSR), as

described in Figure-1. The feedback function (polynomial) is simply the XOR of certain stages in the

register. Because of the simple feedback sequence, a large background of mathematical theory can be

applied to analyzing LFSRs.

Figure 1- Linear Feedback Shift Register (LFSR).

an an-1
……

a3 a2 a1

Ghazi and Ali Iraqi Journal of Science, 2018, Vol. 59, No.2C, pp: 1105-1114

1107

3. Basic Efficiency Criteria (BEC) for Stream Cipher

 The basic efficiency criteria are discussed in the following subsections.

3.1 Randomness [11, 3]

 A random bit generator is a device or an algorithm which its outputs sequence (of bits) of

statistically independent and unbiased binary digits. A Pseudo Random Bit Generator () is a

deterministic algorithm that given a truly random binary sequence. The input to the is called the

seed, while the output of the is called a pseudorandom bit sequence of bits.

It is important to mention that the frequency, run and autocorrelation test are called the Main Binary

Standard Randomness Tests.

 A good Pseudo Random Number Generator should satisfies a set of statistical requirements, The

statistical properties: output symbols should uniformly distributed; in binary symbol must be balance.

There are variety of statistical tests, such as the frequency test, serial test, runs test, poker test, and

autocorrelation test which considered as five stander tests [12].

1. Frequency Test

This test use to determine wither the number of ’s and ’s in a sequence (key stream sequence)

with length n are:

 ∑
(⁄)

 ⁄

()

 . . . (1)

Where n0, n1 denoted the observed number of 0’s and 1’s in S respectively. Is the expected value,

 is the length of which approximate follow a chi-square distribution with freedom degree.

2. Serial Test

 This test aims to determine whether that the number of occurrences of , and as a

subsequence S are approximately the same as would be expected for random sequence

 =∑ ∑
()

 … (2)

 Where and denoted the observed number of and respectively the

expected value () Where

 ().
3. Poker Test

 This test divide the sequence in to k. parts with length and let be the observed number

of occurrence of the kind of sequence of length . The poker test aims to determine whether the

sequence of length each appear approximately the same number of times in as would be expected

for the random sequence.

 ∑
()

 … (3)

Where
 () (),

 ().
4. Run Test

 A run of sequence S is a subsequence of S consisting of consecutive 0’s or 1’s, run of 0’s called

Gap while run of 1’s called Block. Run test use to determine whether the number of runs of various

lengths in the sequence S is as expected for a random sequence

 ∑
()

()

 … (4)

 Where equal to the largest gap or block, be the observed number of blocks

and gaps respectively of length in for each ; . The expected value equal to

 ,

 ().
5. Autocorrelation Test

 This test is use to check for correlations between the sequence and (non-cyclic) shifted reversions

of it. Let (number of shifting) be a fixed integer .

 (() ())
 () … (5)

Where () and () denote the observed of ’s and ’s in shifted sequence respectively,

 ().

3.2 Linear Complexity [1]

 The linear complexity of a finite binary sequence is the length of the shortest LFSR that

generates a sequence having as its first terms and denoted by () and can by calculated by

using Berlekamp-Massey Algorithm [13].

Ghazi and Ali Iraqi Journal of Science, 2018, Vol. 59, No.2C, pp: 1105-1114

1108

3.3 The Periodicity [14]
 Let the P (Si) represent the period of sequence produce from the LFSR system, and let P()
represent the period of each sequence produces from LFSRi for each . if () (

); is the lengths of , so the periodicity equal to:

P(Si) (
) ; … (6)

3.4 Correlation Immunity [15]

 It’s a relation between the output sequence of Combining Function Unit(CF) from the

KG and the sequences that are combined with each other by CF. This relation caused because of the

high nonlinearity of the combined function .The correlation probability () of in general,

represent the ratio between the numbers of similar binaries (SB) of two sequence to the length of the

compared part of them.

CP = SB /n … (7)

 The best value of the correlation immune for any system when (m is the numbers of immune

LFSRs); that’s mean all , Are statically independent from the output
4. Design of New Dynamic Stream Cipher
 The basic idea behind the stream cipher cryptosystem is generating key stream based on the use

collection of LFSR's with fixed arrangement, all these LFSR's are filled depending on the value of the

mixed initial key.

 In this paper we will design a system based on a dynamic technique called the robust dynamic

stream cipher cryptosystem (RDSCC). This cryptosystem is dynamic because it has different structure

of the combined LFSR's after each change in the seed key to get unanalyzable encryption algorithm.

 This is done by the use of a bank of LFSR's stored in protected file and then selecting a random

collection of LFSR's that are used in the algorithm to generate the encryption (decryption) key.

4.1 Key Management of
 There are two types of keys that are designed as an initial key for the LFSRs of the system, these

keys are:

(1). Message Key (MK): This key is non-secret which consist of () ASCII CODE (8 bits)

characters. A new MK can be used with every new message to guarantee that no two messages have

the same initial key. Before the encryption starts, the MK key is generated randomly by RDSCC. This

key will be send with an encrypted message.

(2). Basic Key (BK): This key contains of high secret () ASCII CODE (8bits) characters and

is changed daily. This key must be save in a protected file in both ends.

4.2 Basic Components of RDSCC

The proposed RDSCC includes the following main components:

A. Choosing Shift Register (CSR): It’s a single LFSR with length 17.

B. Address Shift Register (ASR): It’s a single LFSR with length 8.

C. Initialization System (IS): It consists of 4 fixed LFSR’s with different length (37, 43, 31 and 53)

and it’s filled by the seed key (mixed of MK and BK).

D. Moving System (MS): Consists of 8 LFSR’s and its changed every message.

E. Balance System (BS): Consists of 4 LFSR’s and its changed every message.

F. Virtual Memory Unit (VMU): Consists of 256 random and different bytes.

4.3 Initialization of the RDSCC

A. First, we have to obtain a string of 160 bits called Bits of Key (BKE), this is done by the

following steps:

I. Bits of BK: BBKij, i=1,…,20; j=0,…,7; k=(i-1)*8+j:

I 1 1  1 2 2  2  20 20  20

J 0 1  7 0 1  7  0 1  7

K 1 2  8 9 10  16  153 154  160

BBK
BK

1,0

BK

1,1


BK

1,7

BK

2,0

BK

2,1


BK

2,8


BK

20,0

BK

20,1


BK

20,7

Ghazi and Ali Iraqi Journal of Science, 2018, Vol. 59, No.2C, pp: 1105-1114

1109

II. Bits of MK: BMKij, i=1,…,10,1,…,10; j=0,…,7; k=(i-1)*8+j:

i 1  1  10  10 1  1  10  10

j 0  7  0  7 0  7  0  7

k 1  8  73  80 1  8  73  80

BMK
MK

1,0


MK

1,7


MK

10,0


MK

10,7

MK

1,0


MK

1,7


MK

10,0


BK

10,7

III. BKEk, k=1,…,160: Also BKEk=BBKij XOR BMKij

k 1  8  73  80 81  88  153  160

BBK
BK

1,0


BK

1,7


BK

10,0


BK

10,7

BK

11,0


BK

11,7


BK

20,0


BK

20,7

BMK
MK

1,0


MK

1,7


MK

10,0


BK

10,7

MK

1,0


MK

1,7


MK

10,0


BK

10,7

BKE
KE

1


KE

8


KE

73


KE

80

KE

81


KE

88


KE

153


KE

160

B. The IS filled by the string BKEk, k=1,...,160, then the last stages of each LFSR filled by 1.

C. From the BKEk, k=1,..,160, choose 20 bits depending on the relation of k mod 8=0, the first 4 bits

are combined with each other to choose one connection function for the ASR, CSR filled from the rest

of 20 bits (16 bits). Then the last stage is filled by 1.

D. The CSR moves to generate 12 numbers ranged from 1-16 randomly that represent the indices of

the LFSR’s kept in LFSR’s bank (with connection functions). The first 8 LFSR are specialized for MS

and the other 4 LFSR’s are for the BS.

E. The two systems MS and BS are filled by IS, also their last stages are filled by 1.

F. The IS moves again to generate 256 distinct bytes to fill the VMU.

See Figure -2.

Figure 2- Initialization System (IS).

4.4 Moving of RDSCC

 The proposed cryptosystem movement is as follows:

1. The MS moves to obtain address AD=xi*256/2
i
, to VMU, where xi is the output bit from LFSRi

of MS, i=1,…,8.

2. Byte1=VMU(AD).

3. BS move to obtain y1,p1,y2,p2,y3,p3,y4,p4, where yi is the output bit from LFSRi of BS, i=1,…,4,

and pi is a fixed position from LFSRi of BS, i=1,…,4.

4. These 8 bits are filled in ASR, this ASR moves to obtain address NS=bi*16/2
i
, i=1,…,4, where

b1, b2, b3 and b4 are bits obtained from fixed positions in LFSR's 1,3,5 and 7 from MS.

5. Let Byte2 be the final byte of contents of ASR, s.t. Byte2=ci*256/2
i
, where ci is the final bits of

ASR.

SR4

SR1

SR2

SR3

IS

CSR

VMU

BS

MS

Ghazi and Ali Iraqi Journal of Science, 2018, Vol. 59, No.2C, pp: 1105-1114

1110

 (x1,….,x8)

6. The final key is key=Byte1 XOR Byte2.

See Figure-3.

 (y1,p1…,y4,p4)

 (x1,….,x8)

Figure 3-Moving of RDSCC.

RDSCC Algorithm
Step (1): input BK (20 chrs), MK (10 chrs), text_input (plain/cipher), with length L bytes;

Step (2): mixing BK and MK to initialize IS.

Step (3): Fill CSR system by IS to specify the shift registers of MS and BS from LFSRs bank.

Step (4): Move IS to fill MS, BS, and VMU.

Step (5): For i=1:L

 AD=MS(xj); j=1,..,8.

 Byte1=VMU(AD);

ASR=BS(yj,pj); j=1,..,4.

 Byte2=Move(ASR);

 Key(i)=Byte1⊕Byte2;

Text_output(i)=Key(i)⊕text_input(i);

End {for i}

Step (6): Output text (cipher/plain);

End

 The block diagram of RDSCC algorithm is described in Figure-4.

BS

4 LFSR's

MS

8 LFSR's

VMU

256 Bytes
Byte1

Byte2

Key

ASR

8 bits

Ghazi and Ali Iraqi Journal of Science, 2018, Vol. 59, No.2C, pp: 1105-1114

1111

Figure 4-RDSCC Block diagram.

START

IS=MK⊕BK

Move IS to fill MS, BS, VMU

Fill CSR by IS

Input

MK,BK,L,textinput(plain/cipher

)

AD=MS(xj), Byte1=VMU(AD)

 j=1,..,8

ASR=BS(yj,pj),Byte2=Move(ASR)

 j=1,..,4

END

Key (i)=Byte1⊕Byte2

Text output(i)=Key(i)⊕textinput(i)

Output text

(cipher/plain)

For i=1 : L

Ghazi and Ali Iraqi Journal of Science, 2018, Vol. 59, No.2C, pp: 1105-1114

1112

5. Implementation of BEC on RDSCC

 We will review the results of output keys from RDSCC for various examples with different lengths

(Li, i=1,2,3), with different key management as follows:

1. Example1: L1=1000 bytes (=8000 bits).

2. Example2: L2=2000 bytes (=16000 bits).

3. Example3: L3=5000 bytes (=40000 bits).

5.1 Periodicity

Table 1-Periodicity tests for three examples.

Test Example1 Example2 Example3

Periodicity 2
502

2
412

2
546

5.2 Linear Complexity

Table 2-Linear complexity tests for three examples using Berlekamp-Massey Algorithm.

Test Example1 Example2 Example3

Linear complexity 4000 8000 20000

5.3 Correlation Immunity

Table 3-Correlation Immunity tests for three examples.

Test CP for Key Length in Bits

Correlation Immunity Example1 Example2 Example3
CI

acceptance

MS1 49.90 51.45 50.54 accept

MS2 50.50 49.20 49.76 accept

MS3 52.90 48.80 49.36 accept

MS4 50.60 50.20 49.00 accept

MS5 51.90 50.45 48.66 accept

MS6 53.50 49.15 48.34 accept

MS7 49.80 49.85 50.34 accept

MS8 48.80 51.00 50.90 accept

Where MSj is the output of LFSR j in MS.

CI (RDSCC) =8 which equal the number of shift registers in MS.

5.4 Randomness Tests

 In this section we will apply chi-square test on the results gotten from calculations of randomness

tests.

 Let k be the number of categories in the sequence S, ci be the category i, N(ci) be the observed

frequency of the category ci, Pi the probability of occurs of the category ci, then the expected

frequency Ei of the category ci is Ei=P(S)Pi, the T (chi-square value) can be calculated as follows:

T=

2
k

i i

i 1
i

(N(c) E)

E


 …(8)

 Assuming that T distributed according to chi-square distribution by =k-1 freedom degree by  as

significance level (as usual =0.05%), which it has T0 as a pass mark. If TT0 then the hypothesis

accepted and the sequence pass the test, else we reject the hypothesis and the sequence fails to pass the

test, this mean that T not distributed according to chi-square distribution (for more information about

chi-square see [16] or any book in statistics and probability).Tables-(4, 5, 6, 7, 8) show the results of

applying Frequency, Serial, Poker, Run and Autocorrelation tests.

Table 4-Results of applying Frequency test for three examples.

Test Example1 Example2 Example3  T0 Decision

Frequency 0.0125 0.0063 1.8769 1 3.841 pass

Ghazi and Ali Iraqi Journal of Science, 2018, Vol. 59, No.2C, pp: 1105-1114

1113

Table 5- Results of applying Serial test for three examples.

Test Example1 Example2 Example3  T0 Decision

Serial 4.0359 0.2582 4.5456 3 7.814 pass

Table 6-Results of applying Poker test for three examples.

Test Example1 Example2 Example3  T0 Decision

Poker 2.9320 2.3800 5.0332 5 11.107 pass

Table 7-Results of applying Run test for three examples.

Run Test Max Run T  T0 Decision

Example1 13 23.5721 24.996 36.1306 pass

Example2 12 18.1194 21.026 33.6400 pass

Example3 17 44.5960 27.587 45.9098 pass

Table 8-Results of applying autocorrelation test for three examples.

 Example1 Decision Example2 Decision Example3 Decision

5 0.5615 pass 1.0404 pass 0.0110 pass

10 3.2040 pass 0.0023 pass 0.0049 pass

15 0.3007 pass 0.1502 pass 1.0104 pass

20 1.1549 pass 0.6258 pass 1.3232 pass

25 10.1850 fail 0.1383 pass 0.6324 pass

30 0.6504 pass 0.4008 pass 0.0036 pass

35 0.0554 pass 0.0527 pass 0.0210 pass

40 0.0020 pass 0.4634 pass 0.5046 pass

45 0.5985 pass 0.0076 pass 0.0421 pass

50 0.4528 pass 0.9954 pass 0.4101 pass

6. Conclusion

1. Since the proposed cryptosystem is dynamic, that’s mean the MS and BS have different lengths of

LFSR's with different order and that is obvious form Table-1.

2. From Table-1, we can conclude the high periodicity of RDSCC.

3. The RDSCC has high linear complexity and that proved in table (2).

4. Table-3 shows the good correlation immunity of RDSCC.

5. The RDSCC has good statistical randomness tests results that mean it has a good security and it

can be used as encryption system (see Tables (4-8)).

6. The proposed cryptosystem can be used to encrypt not only texts, it may be used to encrypt

images, videos, or any media files, because of its high security and speed.

References

1. Rueppel R. A. 1986. "Analysis and Design of Stream Ciphers", Springer-Verlag, Berlin.

2. Vernam G. S. "Cipher Printing Telegraph Systems for Secret Wire and Radio Telegraphic

Communications", Journal of the American Institute of Electrical Engineers, 55.

3. Golomb, S. W. 1967. “Shift Register Sequences” San Francisco: Holden Day 1967,(Reprinted by

Aegean Park Press in 1982).

4. Smart, N. 2003. “Cryptography: An Introduction”, McGraw-Hill Education, 2003. ISBN

0-077-09987-7.

5. Briceno, M., Goldberg, I., and Wagner, D. 1999. “A Pedagogical Implementation of A5/1”,

Available at http://jya.com/a51-pi.htm (accessed August 18, 2003).

6. Halevi, S., Coppersmith, D., and Jutla, C. S. 2002. “Scream: A Software Efficient Stream Cipher”,

In J. Daemen and V. Rijmen, editors, Fast Software Encryption 2002, volume 2365 of Lecture

Notes in Computer Science, pages 195–209. Springer-Verlag.

Ghazi and Ali Iraqi Journal of Science, 2018, Vol. 59, No.2C, pp: 1105-1114

1114

7. Johnson, D. W. and Johnson, F. P. 2002. “Joining Together: Group Theory and Group Skills”,

Allyn & Bacon, July.

8. Zoltak, B. 2004. “VMPC One-Way Function and Stream Cipher”, In B. Roy and W. Meier,

editors, Fast Software Encryption 2004, volume 3017 of Lecture Notes in Computer Science,

pages 210–225. Springer-Verlag.

9. Chen, K. and et al, 2005. “Dragon: A Fast Word Based Stream Cipher”, eSTREAM, ECRYPT

Stream Cipher Project, Report 2005/006 (2005-04-29).

10. Selmer, E. S. 1996. “Linear Recurrence Over Finite Field”, University of Bergen, Norway.

11. Beker, H., and Piper, F. 1982. “Cipher Systems: The Protection of Communications”, John Wiley

& Sons, New York.

12. Stefanek, A. 2008. “M3P14 Elementary Number Theory”, Mathematics Imperial College, London.

13. Massey, J. L. 1969. “Shift-Register Synthesis and BCH Decoding”, IEEE Transactions on

Information Theory, 15: 122–127, 1969.

14. Menzes, A., Van Oorschot, P., and Vanstone, S. 1996. “Hand Book of Applied Cryptography”,

CRC Press.

15. Clark, A., Golic, J. and Dawson, E. 1996. "A Comparison of Fast Correlation Attack”, D.

Gollmann, editor, Fast Software Encryption, third International Workshop (LNCS1039), 145-157,

Springer-Verlag.

16. Martinez, W. L. and Martinez, A. R. 2002. “Computational Statistics Handbook with MATLAB”,

Chapman & Hall/CRC, Library of Congress Cataloging-in-Publication Data.

