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Abstract

This paper deals with finding an approximate solution to the index-2 time-varying
linear differential algebraic control system based on the theory of variational
formulation. The solution of index-2 time-varying differential algebraic equations
(DAEsS) is the critical point of the equivalent variational formulation. In addition, the
variational problem is transformed from the indirect into direct method by using a
generalized Ritz bases approach. The approximate solution is found by solving an
explicit linear algebraic equation, which makes the proposed technique reliable and
efficient for many physical problems. From the numerical results, it can be implied
that very good efficiency, accuracy, and simplicity of the present approach are
obtained.

Keywords: Control problems, Direct method of calculus of variation, Generalized
Ritz method, Index-two time-varying linear differential algebraic equations,
Variational formulation.
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1. Introduction

Many real life problems can be modelled as a differential algebraic (control) system.
Finding a novel reliable and efficient technique for solving differential algebraic equations

*Email: k.abd@uomustansiriyah.edu.iq,
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has become an interesting aim for mathematicians and engineers. Numerical methods that
solve higher index differential algebraic equations can be found in literature [1-7]. Many of
these methods were based on the index reduction technique to avoid the difficulties in the
higher index differential algebraic equations. Time- varying linear differential algebraic
equations is a subject of many real life problems and has been the subject of many researchers
in recent years [8, 9, 10]. An efficient and easily implemented technique to solve some
classes of DAEs (index-1), approximately using non-classical variational formulation
approach, was developed [11, 12, 13]. The aim of this work is to extend and develop the
results of the latter three studies to solve higher index time-varying linear differential
algebraic control equations, especially for index-2 problems, without using the reducing
technique which is not applicable for many real life problems. Since the proposed DAES
problem has the non-symmetrical time-derivative linear operator with respect to the classical
bilinear form, a new bilinear form, based on the old one, is taken to ensure the necessary
requirements for the existences of the variational problem corresponding to the given
constrained problem.
2. Basic Concepts
Let X and Y be linear spaces and : D(L) € X - R(L) inY, then L is called symmetric with
respect to the bilinear form (a, b) if

(La,b) = (Lb, a) satisfied for a,b € D(L).
Moreover, a bilinear (a, b) is called non-degenerate on X and Y if the following two
conditions are satisfied:
Firstly, for every a € X,{(a,b) = 0,then b = 0, and secondly, for every b €Y,(a, b) =
0,then @ = 0[11, 14].
3. Problem Formulation

Consider the semi explicit linear descriptor system
Ex = Ax + Bu + f(t),
where E, A € R™", withrank(E) =ny <n, x € R™, u € R", B€E R™" , f € C(I; R™).
Since the rank (E) = n,, it follows from [9], [15], and [16] that there exists unitary matrices
U € R™™ and V € R™™ such that
E=U (g 8) VT, 3 = diag(8,,8,,.., 8, )and 8, = 8, .2 8, >0,

2 0

With the setting P = V,Q = U™1, where QEP = (0 0) , one gets

X
P~1lx = (x;)'xl € R™,x, € R" ™  hence
561 _ xl
QEP (x2> — QAP (xz) + QBu + Qf (t)

A A B f (t
Set QAP = <411 412>,(@B = <§1>,Qf = <@( )>,
Ayr Ay Bz~ ) f2(t) ~ _
& O) (xl) = (A4 Az (xl) £ (B} (2O
0 0/\x; Ay Agy) M2 B, f2(t)
Hence,, the semi explicit system is transformed into differential algebraic systems:
561 = Allxl + Alzxz + Blu + fl (1)
O = Alel + A22x2 + Bzu + fz (2)
where Ay =274y, A =37y, Ay = Ay, Ay = Ay,
f1 = Z_lfp fz = fz, B, = 2_131' B, = B,.
If there exists A,, = 0 is invertible matrix with (4,,4,,) or A,, is not invertible matrix with
(4,,A1,)71, then the system (1) and (2) are index two linear DAEs with control u.
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From the Jacobean of the algebraic constraint with respect to x,, one can use the implicit
function theorem [5, 17, 18] to solve the following:
Xy = L(t,%1,u,1) 2 —(Ap1A12) " Ap1A11X1 + Ap Byu + Ay 4Byt + ] .(3)

Thus, from (1), (2), and (3), one have

X1 = Ay1x1 A L(t x,u, 1) + Biu+ f;

0=A451x1 + A%, + Bou+ f,
where the class of consistent initial condition at t = t, is defined according to the given
algebraic constraint (2), as follows:

w® = {(x7,x3) € RTKE) 5 Rr-rank(E)| 4, x, (to) + Byu(to) + f>(to) = 0,
X, (to) = L(to,x1(t0);u(to);u(to))} -(4)
Note that, if there is an interest in finding the explicit expression for x, to obtain the state-

space (x4, x,), then one has to derive (3) with respect to t, as follows:
oL oL oL oL

xzzaﬁ(t,xl,u,u) E+a—1x1+£u+£u
Foru € C?[I,R"], t €1 = [to, t;], f € [I,R™" ]
__oc or 0L oL
xz = at ax1 [Allxl + A12x2 + Blu +f1] + a_u + au
0L L 0L 0L 0L 0L
(a 1A11)x1 (a 1A12)x2 (a 1Bl>u+ax1f1 wttattar

Then systems (1) and (2) are equivalent to state- space dlfferentlal equation defined on
manifold:

i A1 Aqz X B 0
(_1): oL oL (x;)-l' GLB u+<6_£>u

x — —A -
2 dx, 1 Axg PP 0x, ou

<0) < fi > )
+ | oL
ﬁ 6x1f1

where x,(t) = L(t, x;,u, 1), subject to the manlfold
Az1x1(t) + Bu(t) + f2(t) = 0 ...(6)

As one can see, the terms wu, i are not appropriate for an application point of view, and the
usage of the implicit function theorem to reduce the number of variables and estimate x, by
(3) is better than solving problems (5) and (6).
4. Index-2 Time-Varying DAEs and their Variational Formulations

The main theme of this section is to discuss the solvability of index-2 time-varying DAEs
using the variational formulation approach.
We are looking for a suitable function, such that its critical points lead to a solution to the
proposed problem and vice-versa.

Define
x1(t) = A1 () x1 () + A2 (O)x2(8) + B (Du(t) + f1(t) -(7)
0 = A1 (D)x1 (1) + B (Du(t) + f2(2) .-(8)
where Ay ()AL, (t) is a non - singular matrix Vvt €,

B,(Ou(t) + f»(t) € Range(A,1(t)) u(t) € A, where A, is the class of admissible control
defined according to the given problem.

If u(t) € c'(I,R"), f, € c(I,R™), f, € ¢'(I,R™ ™) ,and I = [to, tf], tr > t, , One can have
the following

0= Ay x,+A5,%, + Bou+ Bt + f,

= Ayyxy + Ay (A1 + Appxy + Biu+ ;) + Bou + Byt + f,
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Since the problem is index 2, i.e. (A,,4;,) is invertible matrix, then (9) is solvable and gives
that

x,(t) = —A(®)x,(8) — B(Hu(t) — ((A21(t)1412 (t) )_1A21(t))f1(t) .
— (A (DA2()) By (0))ie(t) — (Az1 (D)Ar2 () ) o (8)
where 4 = (421 ()A12(6) )™ (A (DAL (D) + Ay (),

B = (A1 (0)A15(6) )7 (Aa (0)B1 (6) + B, (D)),

This leads to x,(t) = L(xq,u,u), u(t) €Ay, f € c'(I,R" ™),
I = [to, tr], to, ty are given and real numbers with ¢, < ¢;.
The selection of a consistent initial condition is based on the nature of equations (8), as:
0 = A1 (to)x1(to) + B2 (to)ulto) + f2(to)
x2(to) = L(x1(to), u(to), u(ty)), foragiven x;(to), u(ty), u(to)
Next, we define

w’ = {(xl(to)»xz (to)) € RTank(E) i gn-rank(B) |y, (t,) = L(xl(O),u(O),u(O))

= —A(to)x1(to) — B(to)ulty) — ((A21(to)A12 (to) )_1A21(t0_))f1(t0)
—((A21(t0)1412 (to) )'B, (to))a(to) — (A1 (t0)A12(te) ) Ha(to),

for a given f; (to), f2(to), u(to), (o).
We redefine the constrained DAEs as

Lixy () = G41(2), ...(10)
Lyx1(t) = G, (0), (1D
L3xy1 (o) = G3(to) ...(12)

where
Lix(t) £ %x1 )+ (A12(t)1‘1(t) - A11(t)) x1(t)
Lyx1(8) £ —Az1(0)x1(2)
L3x;(to) £ Lyxq (o)
G1(8) £ By (Du®) + f1(®) — ((A21 (D) A12(0) ) * A2, (D)) f2.(0)
~((A20(DA12(8) )" B(8) )ie(t) — (A2 (DA12(8) ) f2(8)

G2 () £ B,(Du(t) + f2(8) , Gs(to) = B3(to)u(to) + f3(to)
Set L = (Ly, Ly, Ly)T
L:D(L) c C(I,R™) »Rang(L)
D(L) = {x; € C'(I,R™)|x,(ty) € 0°} c C(I,R™)Vu(t) € c'(I,R"), f, € c(I,R™),

fz € c'(I,R"" ™),
Since the operator % is appeared in L,x;(t), the linear operator L is not symmetric with the
given usual bilinear form basic concept. Hence, no variational formulation exists unless one
can redefine the linear operator or its bilinear form [11, 19].
To create a functional (variational) equivalent to a linear problem Lu = f, where L is not
symmetric with respect to the chosen bilinear form, by the functional F(xl,L, u,u, f, f) =
F[x,], we have:

trl1 L1x1(t) L1x1(t)
Flx,] = f E(Lixl(t) Lix;(8) Lixy(to) | Loxi(@®) | = (GT(@®) GI(®) GI ()| Loxa(®) ||dt
to Lax;(tg) Lax(to)
Fla] = 7 |3 L0 () Ly (6) + 5 L5y ()L () + 5 Lhacy (60) L (£0) — GT ()Lyx, (8) —

GI(E)Lo: (8) — GT (to) Laxs (£0) | dt .(13)
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= 2L (0, L (0) + 7Ly (O, Lo (0) 3 (s (60, Ly (60)) = {61 (6, Ly ()

— (G2 (1), Lyx1 () — (G3(to), L3x1 (o).
where (x,y) = ftzfxTy dt , x(t),y(t) € C[to, tf)-
We define the first variation, due to the linear part of the increment of the functional F[x,(t)],
as:
6F(x1(t)) = F[xl + le] - F[xl]llinear partinéx; — 0

1 1
O0F = §<L1(x1 +0x1), L1 (x1 + 6x1)) + E(Lz(x1 + 6x1), Ly (x1 + 8x1))

+ %<L3(x1(to) + 5x1(t0)),L3(x1(t0) + 6x1(t0))) — (G (), L1 (x4 + 6x1))
—{G(t), Ly(x1 + 6x1)) — (Gs (to),L3(x1(to) + 6x4 (to)))

1 1 1
- [E (Ly1x,(8), Lyx1(8)) + 5 (Lpx1(t), Lyxy (8)) + > (L3x1(to), L3x1(to))

= (610, L2 (9) = (620, Loy () = (G (o), Lsa (60))|

Such that
(L1(xq + 6x1), Ly (x1 + 6x1))
= (L1x1, L1x1) + (L1x1, L10x1) + (L10x1, L16x1) + (L16xq, L1x1)

Since (L,6x4,L,6x,) is non linear in the term of §x;, then

(L1(xq + 8x1), L1 (xq + 6x1)) = (L1xq, L1x1) + 2{L1x1, L15x1).
And by the same way
(Ly(xq + 6x1), Ly (xq + 8x1)) = (Lyxy, Lyxq) + 2(Lyxq, L,6x1)
(L3 (x1(t0) + 5x1(t0)), Lg (x1(to) + 5x1(t0)))

= (L3x1(tg), L3x1 (o)) + 2{L3x1(ty), L36x1 (to)).
where x,(t,) is an arbitrary selection from the class of consistency initial condition w?.
Otherwise, one can assume it as fixed numbered and set §x,(t,) = 0,
(G1(t), L1 (xq + 6x1)) = (G (t), L1x1 (£)) + (G1(t), L16x1(¢))
(G2(t), Ly(xq + 6x1)) = (G5 (t), Lyx; () + (G, (t), L6x1 ()
(G3(to), L3 (x1(to) + 6%, (to))) = (G3(to), L3x1(tg)) + (G3(top), L36x1(t0))-
From the above discussion, let us define 6F[x,(t)] as:
OF [x1(t)] = (L1x1, L18x1) + (Laxq, Ly6x1) + (L3xq(ty), L30x4 (tg)) — (G (t), L16x1(t))

—(G,(t), L,6x,(t)) — (G3(tp), L36x1(tp))

= (L1x; — G1(t),L16x1) + (Lyx; — G(t), Ly0x1)
+ (L3x1(to) — G3(to), L36x1(to))
_ tf T T

OF[x;(1)] = fto [(L1x1 - G1(t)) Li6x; + (L2x1 — G, (t)) Ly6x; + (L3x1(t0) -

G (to))TL3 8xq (to)] dt

tr r r . L1682,
= f [(L1X1 - G1(t)) (L2x1 - Gz(t)) (L3x1(t0) - Gs(to)) ] Ly6x, |dt

fo L36x4(to)
It is noticed that, if there is x; € ¢’(I,R™) satisfying the operator equations (10)-(12),
uniquely over the class w?, then these equations will be identically satisfied.
Since the aim is to fix x; € ¢'(I, R™) , then this variational problem is well defined.
Also, since from the linearity in x;,

= L16x; = 6L1x4, L,6x; = L,8x4, S6Lsx,(ty) = SL3x1(ty)

for arbitrary 6L,x,, 8L,x1,8L5x,(t,),
then
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6F [x,(¢)]

= ([(L1xs = G1(D))  (Loxy — Go(®)  (Lax1(to) — Ga(to))], [L16xy  Lpbx;  L3bx1(to)])
For the arbitrary §x;, the non-degeneracy property on the range and domain of the bilinear
form, and the linearity property, we get

8F[x1(t)] =0

= [(L1x1 - G1(t)) (L2x1 - Gz(t)) (L3x1(t0) - Gs(to))] =[0 0 0]Vvdx,

= Lixy = G4(b), Lyxy = Go(), L3x1(to) = G3(to), Xy = Lx;

=Lx; —G(t) =0 Lxy = G(t),L = (L1, Ly, L3)", G (1) = (G4, Gy, G3)

It should be noticed that

1. If x, =Lx; > 6x; = ;—JZle and this term should be inserted in the variational
formulation.

2. If x1(tg) € M (x1(tp)) (linear manifold of consistent initial conditions),

= 8x,(t) = 55| .6x(to),

3. x1(to) may_aolso be assumed as fixed to produce that 6x,(t,) = 0 and this will not

affect the previous results.

Then, if x; = G(t) , with L = (L, L,, L3)Tis the solution of the proposed problem, then
(0,L,6x1) = 0 & 6F[x,(t)] = 0.
The other direction is clearly understood and the solution x; € ¢’(I, R™) is a critical point of
variable formulation (10).
From practical point of view, one has to evaluate the functional F[x,(t)] in order to find its
critical points.
Moreover, critical points of a functional are equivalent to solve the necessary Euler equation
corresponding to the given problem, which is difficult too. Thus, a direct method of
variational problem is adapted to approximate the solution by a finite number of bases
functions of separable Banach space c(I, R), as:

x] =Y alH] (), j=12,..,ny ,m arbitrary ...(14)
xy=L(x], i), 1=12,..,n—ng, j=12,..,1 ...(15)

where Hl.j is linearly independent bases function of time t.
By substituting (14) and (15) in (13), we have
Flx] = F(xy, L, f, f)
= F(a§,ai,a3, ...,an a8 ,a%,a3, ..,a2,, .., a;°,a;°, a,°, ... a?,{’no ...(16)

where n = n, + n — ny is the total number of unknown variables.
The critical point of variational formulation (13) is then equivalent to find the derivative of
the functional (16) with respect to a{,i =0,...,mj,j=1,..,n,.

. oF . .

i.e. 67{=0, Vi=0,..,m;,j=1,..,1n ...(17)
Since the varitional formulation is of quadratic type, the linear system of algebraic equation
was obtained from equation (14), with the class of consistency initial condition where the
given functions u(t), u(t), f (t), f (t) are selected from the class of admissible functions.

Once this system (17) is being solved for a{, approximate solutions x;(t) and x,(t) are
obtained according to equations (14) and (15) and hence the original solution of (7) and (8) is
obtained approximately.

5. llustrations
Example 5.1: (index 2 linear time-varying DAEs with given u(t) over admissible class)
Consider the linear time invariant index-2 semi explicit DAE problem [1],

3661



Zaboon and Abd Iragi Journal of Science, 2021, Vol. 62, No. 10, pp: 3656-3671

()= (8 DG+ (L)% + (Bueo g
0=0 1)(fc2)—(e't)+u(t),t€[0,1] ...(19)

Note that the variable x,; does not appear in the algebraic constraint explicitly.
Then, by deriving the algebraic constraint with respect to t and u(t) = —sint we have that

d_t(o = x11 + X1, — et — sint)

=>0=5C11+5612+e_t—COSt (20)
We substitute (18) in (20) to get
[—x11 + X1, — sint] + [1 + 2t]xy; + et —cost =0
— imt_p—t
X11 X12+il:-l;t e "+cost _ L(x11’x12’ t), Vt € [0'1] '
The class of consistency initial condition is

w’ = {(xn(to);x12(t0),xz1(t0))|x21(t0) = L(x11(t0), x12(t0), to)

_ x11(tg) — x12(t) + sinty — e~ + cost,
B 1+ 2t
Then, the index-2 semi explicit system will be as

X11\ _ (-1 1\ [*11 0 1
<5C12) B ( 0 O) (xlz) + (1 + Zt)L(xll'xlz' t) + (O)u(t)
0=10 1 (ii;) — (e +u®.
And, as we mentioned in algorithm 5 for finding variational formulation,

1 1 1
Flx,] = 5 (Ly1x1(£), Lyx1(£)) + > (Lpx1(t), Lyxy (B)) + > (L3x1(t0), L3x1(tp))

- (B(t), L1x; (£)) — {f (), Lax1 () — (f (to), L3x1 (to)).
where Lyx; (t) = %1 + Axy, Loxy(t) = —Az1x1, Laxy (o) = —Az1%1(to)

Xy = (X11,%12)", A1y = (_01 (1)), Ay = (1 -|E)2t)’ Ay =01 1),

A;= (A12(A21412) 7 Az1 A1y — ArD), f(1) = —e* +u(),
B = (1= A13(A421412) " A21)Biu — A1 (A1 A1)~ (e ™" — cost)

—x1z+sint—e "t +cost . .
L(x;) = 2222 jlet ¢ O are defined with the class w° .

The variational formulation with the class of consistent initial condition is defined as:

:>le:

V x11(to), x12(t0)}

Flx,] = %jl [[x1 + Axl]T[xl + Ax;| = 2B7[%; + Axy] + [—Az1%1]" [~ Az1x1]
0

= 2[f O] [=Az1x1] + [=Az1%1 (to)]" [=Az1%1 (20)]
= 2[= (™) + u(to)]" [~ Az1x1 ()] dt
Now, we set
x11(t) = alHY(t) ,H}(t) =¢4,i=0,..,my; m; =5,
x12(t) = ) a?H?(t),H(t) =t',i=0,..,my; my=>5
2

and H}, H? are linearly independent-bases functions that are vanished on w° .
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_ ., . 9F
We estimate F (al, az) = F(a},ai,al, ...,ai, a3, a2, a3, .., a%), and by taking —= =0, and
a

—

1
% = 0, this gives A <‘_17> = B, hence the approximate solution (x;,(t), x1,(t), x5, (t) ) is
a a
obtained.

The numerical results of the unknown coefficients of linear algebraic system were found to
be:

ad = 1,al = —0.99997,a} = 0.49967,a} = —0.16510, a} = 0.03840,al = —0.00511
,a¢ = 0,a? = 0.99998, a2 = 0.00020,a3 = —0.16757,a3 = 0.00162, aZ = 0.00723.
And The exact solution that taken from [1] is
X1 =e7t xy, =sint, x,,(t) = fisztt for a given u(t) = —sint.
Then one can shows the comparison between the proposed solution and the exact solution in
tables 5.1 and 5.2.

Table 5.1-Comparison between differential states in the proposed method and exact solution

X11 X1 X12 X12
t Propose  Exact Abs. error Propose Exact Abs. error
method Sol. method Sol.
0 1 1 0 0 0 0

0.1 0.9048 0.9048 1496x 1077 0.0998 0.0998 1299% 1077
0.2 0.8187 0.8187 5443x 1077 0.1986 0.1987 3842x 1077
0.3 0.7408 0.7408 3639x 1077 0.2955 0.2955 3052x 1077
0.4 0.6703 0.6703 3007x 1077 0.3894 0.3894 1859x 1077
0.5 0.6065 0.6065 6213x 1077 0.4794 0.4794 4818x 1077
0.6 0.5488 0.5488 2583% 1077 0.5646 0.5646 2461x 1077
0.7 0.4965 0.4966 3840x 1077 0.6442 0.6442 2770%x 1077
0.8 0.4493 0.4493 5108x 10~ 0.7173 0.7174 4324%x 1077
0.9 0.4065 0.4066 1605% 1077 0.7833 0.7833 1139% 1077
1 0.3678 0.3679 3043x 10710 0.8414 0.8415 2775x 10710

Table 5.2-Comparison between equality constraint states in the proposed method and exact
solution

X21 X21
t Prposed Exact Abs. error
method Sol.
0 1 1 0
0.1 0.8291 0.8292 2329x 1077
0.2 0.7000 0.7000 6633x 1077
0.3 0.5970 0.5971 4182x 1077
0.4 0.5117 0.5117 2703x 1077
0.5 0.4387 0.4388 5516x 1077
0.6 0.3751 0.3752 2293x 1077
0.7 0.3186 0.3187 2754x 1077
0.8 0.2679 0.2680 3628x 1077
0.9 0.2220 0.2220 9804x 107
1 0.1801 0.1801 1939% 10710

There is another way to test the accuracy of the solution, without knowing the exact
solution, by using L,-norm and substituting the a{ values in

3663



Zaboon and Abd Iragi Journal of Science, 2021, Vol. 62, No. 10, pp: 3656-3671

x11(0) = X atHA (), HE (8) = ti',i =0,..,my; m =5, ..(21)
x12(6) = X afHE(t)  HE () = t4,i=0,..,my; my =5 ...(22)

So for differential equation, one can check the accuracy as follows

. 1. . .
1%, — A11%1 — A1px; — Byull; = [fo (%11 + 211 = %15 + sint|? + |5 — 241 + x5 —

1/2
sint + et — costlz]dt]

=3 x 1075 ...(23)
where x; = (x11,x12)7, and for equality algebraic constraint
1/2
Az, — et +ull, = [follxll + x5, —et— sintlzdt] =2x1077 ..(24)

And for consistency condition

1/2
142121 (to) — e~ + u(to)ll, = [f01|x11(t0) +x12(t) —e~f0 — Sinto|2dt] " 0 ...(25)
The L, norm errors (23)-(25) explain the overall error of satisfying the equations (10)-(12),
vVt € [to, tf] = [0,1], for each equation , where the parameterizations (21),(22) are suggested.
The approximate and exact solution to the differential-equality states are showed in Figure
5.1.

= ) S =
09 ~
N -0
08 [ * N /e ,
W X11,X12 State with u(t)=-sint ‘ ..... o
~ 2
07 'S A e ©
~ - / \ ......
N 4 0
~ R
Sos-___ 0000 . 2 o -
8 ® XI11 in present method 8 "‘Q"
7] X11 Exact i -
3 05 | ® XI12in present method hd e - ot
P *=*=X12 Exact o) ,.n‘ <
pil ] © X2linpresentmethod] 7 Y . -
W2 04— [= X21 Exact oo’ -~ S =}
.... o e -~ p
..... / ey ™~
03 _.»" / - al
--- =~ o~
..... equality constraint state X21 with s
- 2 C.1.C.X21(0)=X11(0)-X12(0) o~
. -
L -5
01 > -
0e ! | 1
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1
Time t

Figure 5.1- Differential-equality states and exact solution of index 2 linear time-varying
DAEs with given u(t) =-sint.

Example 5.2:_(The algebraic equation appears as a system of equations)
Consider the linear time invariant descriptor system
X11 = X171 + 2x21(8) + x2(t) + u(t) + f11(t)
X1z = 2X11(t) + x12(t) + 2x2,(8) + f12(2)
0 =x11(t) —u(t) + f21(¢)
0 = x12(t) + f22(0)
with fir(®) = —t5 +3t* — 3 — 2t2 — 1 — u(t),
fia(6) = 265 —t* +t3 — t? — 4,
for(8) = =1 —t% — t> + u(t),
for(t) = =2 —t3 —t*, where € [0,1] .
This system is equivalent to the following differential-algebraic system
Xy = A11x1 + A%, + Biu(t) + f;
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O = A21x1 + Bzu(t) + fz.
1 0 2 1 1 0
where x; = (x11,%12)7, X5 = (X1, %22)", A1y = (2 1)’ Ay = (O 2)’ Ay = (0 1),

fi= (i o= fa)"Bi= (1 0)7,B = (-1 07, u(t) €4,
where A,, is the class of admissible control.
If we differentiate the equality constraint with respect to t, one can get

0 = A%, + Bou(t) + £,
0 = Az (A11x1 + Ay + Biu(t) + f1) + Bou(t) + f,
Since (A4,14:3) is nonsingular, then it is possible to rewrite our system as
Xp = (A11 - A12((A21A12)_1(A21A11))) X1 + (By — A1 (A21412) " Az Bu(t)
+ (1= A13(A21412) " Ap1) fi — A2 (A1 415) T Bou(t) — Ay (A21 A1) 7
Xy = L(xl,u, W, fi, for t)
= —(A214:)7" ((A21A11)x1 + Az Biu(t) + Az /1 (0) + Bou(t) + fz(t))
3t 3 X127 1

defined with the class w° .

4 3
5+ 4242t —xyy — 242
The class of consistency initial condition is
w’ = {(xn(to)»xu (to),x21(t0),x22(t0))|x21(t0) =

(0)
,X22(to) = 2 —x17(0) — leT V x11(0),x12(0)}.
The variational formulation with the class of consistent initial condition is defined as

x12(to) B 1

4 2

11 U - _ -
Flx] = Ef [[xl + Axl] [5‘1 + Axl] - ZBT[’.Cl + Ax1] + [=Az1%1]" [<Az1 %]
0
—2[Byu+ f,(O1 [—Az1%1] + [—A12x7 ] [A12x)]

— 2[Bau(to) + f(t0)]" [A1px9]] dt.
where
A= (A1;(A21413) T Az1A11 — Ary),
B=01- A12(A21A12)_1A21)B11_1 — (1= A12(A21412) 7 Az fi — A12(A21A12) T Byu(t)
— A1 (A214:1) 7 fo

Now, we set
mq
xll(t) = ZallHll(t)lHll(t) = tili = 01--'m1; my = 51
i=0
ms
xlz(t) = Zalelz(t),le(t) = ti,i = 0,..,m2; m2 = 5
i=0

and H}, H? are linearly independent-base functions that are vanished
on w® , which leads to

mq my
x(0) = L, 100, 8) = £| ) alHED), Y a2HE®), ¢
i=0 i=0

—= =3 . 9F oF
then F (al,az) = F(a},at,al, ...,ak,a3,a2,a2, ..,a%), and by taking —==0,and = =0,
a a

1 . : . .
this gives A( %, ) = B, hence the numerical solution for a', a2 using the proposed technique
g 2
a
is found as:
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ay=1,a} =0,al =1,al =0,a; =0,al =1,
a3 =2,a? =0,a5 =0,a3 =1,a5 =1, a% =0,
where the exact answer is obtained as:
x1 = 1+t2+1t°, X1 =2+ t3+th, Xy =t +t4 Xy = 2+ t3.
The numerical results used in the proposed technique and the comparisons with given exact
solutions are shown in following tables.

Table 5.3-Comparisons among differential states in the proposed method and exact solutions

I N S R
method method
0 1 1 0 2 2 0
0.1 1.0100 1.0100 7x 10713 2.0011 2.0011 0
0.2 1.0403 1.0403 0 2.0096 2.0096 0
0.3 1.0924 1.0924 1x 10713 2.0351 2.0351 0
0.4 1.1702 1.1702 0 2.0896 2.0896 0
0.5 1.2812 1.2813 0 2.1875 2.1875 0
0.6 1.4377 1.4378 0 2.3456 2.3456 0
0.7 1.6580 1.6581 6x 1014 2.5831 2.5831 0
0.8 1.9676 1.9677 0 2.9216 2.9216 0
0.9 2.4004 2.4005 1x 107 3.3851 3.3851 0
1 3 3 0 4 4 0

Table 5.4-Comparison among equality state in proposed method and exact solutions

t Pr:;)zésed *21 Abs, error Prcfngsed *22 ADs.

method exact method exact error
0 0 0 0 0 0 0
0.1 0.1001 0.1001 0 0.011 0.011 0
0.2 0.2016 0.2016 0 0.048 0.048 0
0.3 0.3081 0.3081 0 0.117 0.117 0
0.4 0.4256 0.4256 0 0.224 0.224 0
0.5 0.5625 0.5625 0 0.375 0.375 0
0.6 0.7296 0.7296 0 0.576 0.576 0
0.7 0.9401 0.9401 0 0.833 0.833 0
0.8 1.2096 1.2096 0 1.152 1.152 0
0.9 1.5561 1.5561 0 1.539 1.539 0
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To test the accuracy of the solution presented by the present method, the L,-norm is

examined.
For equality constraint, we have
1 1/2
”Alel _e_t‘l‘u”z = lf |x11+x12_e_t_5int|2dt = 0
0

This criterion represents a good test to show the extent to which the approximate solution
matches the exact solution, and thus indicates the accuracy of the method used.
The differential-equality states are illustrated in Figure 5.2.

4 T T T
* X11 in present method
35 |== X11 Exact »° il
© X12 in present method \X11.X12$fates with u(t)=-sin(t) ‘ o
====X12 Exact _—
= .
¥ X21 in present method AR o
3 .- -
X21 Exact / \ et 4 Ve
© X22inpresentmethod) /N et 7
= X22 Exact \ L 7
®25- e <l 7 =
= | e A
-og b it o \ -~
N S S e T Qe T
o~ 2Qernsnnnanannn Qresnnnsnnnnns Qrorrsnannnnns (- T \ - /1.
-
>.< i W v ”
— r S
-
x 15 - - >
- P
-t *
-
b e i -2
1 - - - = e
- _3 i the equality constraint state
— = X21,X22 with C.1.C.
- o T | X21(0)=(1/4)X12(0)-(1/2)
05 = o o (B T X22(0)=2-X11(0)-1/2X12(0) B
i _ =0
- r —
2 .
o ¢ oS ) Sl & I

0 0.1 0.2 0.3 04 05 0.6 0.7 08 0.9 1
Time t

Figure 5.2- Differential-equality states and exact solution with u(t) = -sint. C.1.C. is consistent
initial condition.
Example 5.3 (Descriptor index of two control model)
Consider the following linear mechanical system
Ex = Ax + Bu + f(t),

I 0 0 0 I 1 0 y4
withE=[0 M o|,A=|-x -D g|,B=|c|,x=|2
0 0 O H G O 0 U
where the matrices in the table below represent the respective models.
Matrix Represent in mechanical model
Z € R" the displacement vector
uER? the vector of lagrangian multiplier
u the known input force
M the inertial matrix
D the damping matrix
X the stiffness matrix
L matrix of force distribution
GH the coefficient matrices

All these matrices are known with appropriate dimensions. For more detail about this

mechanical model, see [14].
Now, based on these matrices the semi explicit descriptor system can be rewritten as
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10000 [0 0 1 017 ro0 1+¢
01000] |00011 0 [t
001 0 Olx=|-2 0 -1 -1 1|x+]|- u(t)+| |
000 1 0 01—1—11J 1] 1,0 |
0000 O 1 1 0 0 0 0 t2 4+ ¢

This system needs to be transform firstly into DAES, as mentioned previously in section 3,
with rank(E) = 4 < n. Then, a singular value decomposition is used to calculate U as an
orthonormal eigenvectors matrix of EETand V as an orthonormal eigenvectors matrix of ETE.

000 1 0 01000
10000] [00100]
Set P = V—|01000|, Q=U1'=l0 0 0 1 0
[0100J llOOOOJ
00 0 0 0 00 0 1

[1 0 0 0 O [x11
[0 1 0 0 Of [X12 |
NowQEP=|0 0 1 0 0l=2Z=1I,=2"1 P 1x=]|x3]|
lO 0 0 1 OJ [XMJ
% 000 (f 0 0 1 0 x21t

|[0 -1 -1 =2 1]| |r—1]| |[ 0 ]|

QAP =|-1 -1 -1 o0 1|, @B=111], Qf=| 0 [.

0 1 0 0 1J| loJ |[t+1|

1 0 0 1 0 0 t2+t

Under the transformation (Q, IP), the mechanical system will be differential algebraic control
system as:

X‘l - A11x1 + A12x2 + Blu + f1

0=A41x; + [,
0 0 1 0 1 0
Wlth All = 91 __]i :i _S 1A12 = % lBl = _11 1A21 = [1 O O 1])
0 1 0 0 1 0
t X11
0 X
fi= 0 o=ttt x, = xi;,x2=x21.
1+t X14

which is an index-2 system. By differentiating the equality constraint with respect to t to
estimate x,, and since (4,,4;,) invertible matrix, then

Xy = —(A21A12)‘1[A21A11x1 + Az1Biu + Ay f1+Bou + fz]

x, = —2t — 22293% L s gefined with the class w°.
And the class of consistency initial condition is

w® = {(xn(to): x12(to), X13(to), x14(to), x21(t0))|x21(t0)
= L(x11(to), x12(t0), x13(to), x14(t0), to) V x12 (o), x13(t0)}.
The variational function with the class of consistent initial condition is defined as
1
Flx,] = %L [[561 + Axy|' [y + Axy] — 2B7 [y + Axy] + [~ Agu,]" [~ Agyx]

= 2[Bu+ (O] [=Az121] + [=Az121 (t0)]" [— Az %1 ()]
= 2o ()" [ A, (£0)]] dt

where

A= (Arz (A21A12)_1A21A11 — A1),
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B=(1-A4 (A21A12)_1A21)B17:L — (1 — A13(A21412) 7 451 f1 — A12(A21412) 71 Bou(t)
— A1 (A1412) 7,

mq

xll(t) zzangl(t),Hll(t) = ti,i = 0,..,m1; my = 5,

i=0
ms

xlz(t) zzalelz(t),le(t) = tl,l == 0,..,m2; mz == 5

i=0
mg

23 (£) = zafHﬁ(t),Hf(t) —¢ii=0,..,mg my=5

i=0
my

x14(t) = z afH:l-(t),H:l-(t) = ti,i = 0,..,m4; my = 5
i=0
and H}, H?, H?, H} are linearly independent-base functions that are vanished on w?,
which leads to
x21(t) = L(X11, %12, X13, X14, 1)

Now, we set

mq m, ms my
= | ) atHi®), ) aFHE©, ) aHF(©), ) atHi(®),¢
i=0 i=0 i=0 i=0

— — — —\ — —
— 1 1 1 1 — 2 2 2 2
And F (al, az,a3,a4),a1 = (a}, ai, a3, ..., ak,),a% = (a3, a?,d3, ..., a%,)

3 _ (43 43 43 3 Y4 (44 4 4 4
a3 = (ao,al,az, ...,amg), a* = (ao,al,az, ...,am4)
Since it is a quadratic functional form, for finding the critical point ,this leads to the linear

ﬂ a\

a2 o2

algebraic equation A &3 = B, which is solvable directly for ‘% = A"1B.
a a
a* a*

Since this system is taken from practical applications without exact solution, then we test the
accuracy of the solution presented by the present method, using test by L,-norm:
For differential equation
|ty — Ay12q — Aiox, — Biu — fill2
1 .
= [fO [|X11 - X13 + 2t +

2
X12+%x13+1 .
—12 L - t| + |x12 - X12 - X13 - ZX14_ +

X12+X13+1
2

X12 +X13+1

2t +
2

2
+ e‘t| + |5c13 — X171 = X2 — X3 + 2t +

2 X12+X13+1 2 1/2
e‘t| + |5c14—x12 +2t+%—t—1| ]dt]
=2x 1073
And for equality constraint
1 1/2
|Az1%1 + foll2 = [f 11 + %14 + 2 + t|2dtl =4x107*
0

Which states the accuracy of the present approach even if the exact solution is unknown for
the system.

Figure 5.3 shows the differential equality states for open loop control u(t) € A, where A, is
the class of admissible control.

3669



Zaboon and Abd Iragi Journal of Science, 2021, Vol. 62, No. 10, pp: 3656-3671

- e - - g -
- - e - .
05— = - - = 4
e A e T R e 8 s e
_________ L e =
- -~
---------- s < g
0 2 R T e =
\\\\\ ‘ — = o
~ ~
[} & ~¢
E 05 the differential states
b T T &
n Tt PO .
N &. = TETTETEeesuws l T
>< s '—-~I-__ /
- Sos L] S 4
-~ ~
X b TSel
oo ~~
P .\'.\
\ e ~ ~\~\
15— -~ ~ -
\ W -,
2 T - N
equality constraint with C.1.C -~ Vi
X21(0)=-2t-(x12(0)+x13(0)+1)/2 Nt o "\~
2 and u(t)=exp(-t) N~ - L)
-~
N -~ . o e $
25 | | | | | |
0 0.1 02 03 04 05 06 07 08 09 1
Time t

Figure 5.3-Differential-equality states for linear mechanical system of index two control
model at u(t) =et.

6. Results and discussion

The illustrated examples 5.1-5.3 are ranked from simple to more complex. The examples
5.1-5.2 are of semi explicit index-2, time-varying differential algebraic system, with known
exact solutions. While the last example 5.3 is a descriptor system which firstly needs
transformation, using singular value decomposition, to semi explicit DAEs, and needs to be
taken from real life application without knowing its exact form solution.
These examples are taken as a test for the proposed method. By step by step implementation,
the approximate solution is parameterized via polynomial base function, which is dense in
c[1, R™]. Even with reasonable small number of these polynomials with unknown coefficient,
the obtained solutions are shown to be very accurate and efficient. Figures 5.1-5.3 show the
excellent matching between the approximate solution, using the present method, and the given
exact solution. The overall error value, using L, norm of the linear operators, showed very
good results on t € [to,tf],tf > t,, for each example. The pointwise error in tables 5.1-5.4
demonstrated the good accuracy.
For example 5.3, due to the absence of the exact form solution, the L, norm errors for all the
constraints (the differential and the algebraic) are adapted (||E; ||, = 2 X 1075, ||E, ||, = 4 X
1074 E; 2 Lix — G,(x),E, 2 L,x — G,(x)) to test the convergence of the solution.
As an overall evaluation, the method has very good accuracy, being simple and effective as a
tool to solve index 2, time-varying control DAEs.
7. Conclusions

As one can see, the present method is suitably applicable for an efficient class of index two
DAEs with input u(t) or even with semi-explicit index two, descriptor system. The method is
easily implemented and a very good accuracy has been obtained, even for simple types of
polynomial bases functions. This approach is reliable and efficient for this class of functions
and can be extended to higher index DAEs (index greater than two).
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