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Abstract: 

     UML (Unfiled Modeling Language), known as the standard method for object-

oriented (analysis and design) modeling, includes other languages which enables it 

to implement a prototype of the structure and behaviors of the product. This paper 

attempts to explore the observations about UML role on the cost of software 

maintenance, and hence on the Total Cost of Ownership (TCO) of a software 

product. It is therefore important to investigate the benefits obtained through 

modeling.. 
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Introduction: 

     “UML was develop as a general-purpose language together with fundamental categories to extend 

the UML towards problem” domain-specific profiles [1].  

Software engineering rules, by using the offered tools and aspects in standard modeling structure, aim 

to make obvious the complexity, step by step progress (as much able in general) and probable errors in 

software creation  or  development task for all participates (founder, stack holders, programmers, etc.)  

The system model becomes as contract between the owner and builder, which is understand able to 

everyone.  

System Model 

     A system model could be present as documentation document for the software, which during 

maintenance, helps the developing team to realize how the software produced so any changes or fixing 

may needed, there is map to direct expertise through the software engine. 

If such a documentation was not available a reverse procedure is done from the existing software, so 

the experts conceive the system model, in this case the system model should be more dedicated where 

the developing team & the owner can discuss all required changes. 

System Model Role: 

      Authors concludes that “system model has more than a crucial role in directing ahead the 

engineering process of developing software, but also in reverse engineering. Hence techniques are 

studied and developed to understand and document existing legacy systems, to update their 

functionality or to integrate them into larger systems” [1].  

     In continues of this reality now days one of important quality requirements for almost all of the 

software products, is the simplicity of software maintenance in which affects directly to the TCO of 

software product. 

However, lots of researchers in this aspect announce that, evaluating this issue from different 

perspectives is necessary, since multi direct and indirect conditions are involved in which they affect it 

[2].  

UML and TCO 

     According to the published documents by different researchers and authors the factors which affect 

the study about the UML role in software maintenance & TCO are: kind of the software (project), 
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Time (process, delivery, recapturing), correctness, bug fixing, suppliers knowledge about UML 

models, life term of the product, end users and etc.(Gilb, 2008) 

Which each research may concentrates on some (two or three) figures to make the study and 

measurements. 

Individual classes of change will have separate demands for each class, and in result of that there 

would be different methods & technical tools proposed as solution. Well defining the requirements 

and corresponding designs is very essential, (exactly what types of change are expected) [3].   

Most they believe, in general for major products the system model if is not done in appropriate and 

correct structure, if it would not lead to failure it would cause increase in the TCO with no positive 

results. 

Watson, 2014, “as soon as you start the later, you finish”. Means that starting a project directly throw 

the final part programing will not end to finish in shorter time successfully.  

Having a documentation of the product procedures during creation is helpful if not necessary. The 

same group of builders does not always do development of a product, here the developing group will 

have more prosperous results by having the documentation. 

Case study 

        In study done by [2] they have attempt to realize that does UML documentation decreases costs 

related to code changes, for being able to do this analysis, they had to measure time consumed for 

completing the maintenance tasks of the experiment. 

Therefore, the experiment had “one independent variable (use of UML documentation) and two 

treatments (UML, no-UML)”. 

It had “four dependent variables: 

Time to perform the change excluding diagram modifications (T). 

Time to perform the change including diagram modifications (T’). 

The correctness of the change (Co). 

The quality of the changed design (Q)”.  

They have implemented the study in two different environment: 

1-  Oslo experiment involves 3rd year informatics students. 

2- Ottawa (Carleton) experiment involved 4th year Computer/Software engineering students. 

In each location they have divided, participate into two teams (UML, no-UML). 

For the experiment, they have proposed two systems and required tasks as follow (Table-1): 

The results of the two experiments are almost constant. For each of the dependent variables the 

outcomes were as follow: 

(T): UML does overall help save effort. 

(T’): No effort savings are visible. 

(Co): UML had a notable, “positive impact on the most complicated tasks 

(Q):  (Ottawa experiment investigated” this variable) UML helped to achieve higher design  

 

Table 1-comparing two systems outcome 

System Task Description Oslo 
Ottawa 

(Carleton) 

Simple ATM 

system 

A “Print out an account transaction statement” X X 

B “Transfer money between two accounts” - X 

Vending 

machine 

serving hot 

drinks 

C “Implement a coin return-button” X - 

D “Make bouillon as a new type of drink” X - 

E 
“Check whether all ingredients are 

available for the selected drink” 
X X 

F 
“Make your own, customized drink based 

on the available ingredients” 

Time 

sink 
X 

Conclusion 

    UML “contain the definition of a software process model [4] [5] in addition to methods which 

transforms a UML model into a analogous implementation in a programming language Over all 

having a structured plan such as UML methods for implementing a product by considering, the 
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individual requirements will cause a better result than not having one. UML is good for major 

products which delivering date can be fixed (especially not related to the market competition). 

Nevertheless for small products or products determined to a short deadline delivery spending too much 

time on the preparations (planning, designing structures, etc.) are not acceptable and will be known as 

part of the problem.  
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