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Abstract: 

     We will also derive practical solutions using predictive analytics. And this would 

include application making predictions with real world example from University of 

Faculty of Chariaa of Fez. As soon as student enrolled to the university, they will 

certainly encounter many difficulties and problems which discourage their 

motivation towards their courses and which pushes them to leave their university.  

The aim of our article is to manage an investigation of the issue of dropping out their 

studies. This investigation actively integrates the benefits ofmachine learning. 

Hence, we will concentrate on two fundamental strategies which are KNN, which 

depends on the idea of likeness among data; and the famous strategy SVM, which 

can break the issues of classification. 

Thanks to predictive analytics, we can come up concrete solutions to decrease this 

issue. Therefore, our case study was specifically limited to University of Chariaa-

Fez, Morocco. 
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SVM. 

  

1. INTRODUCTION 

     Thanks to the diverse nature of its higher education, Morocco is comparatively one step ahead 

compared to other countries in fighting the problem of dropping out of students. Undergraduates often 

leave higher education without a diploma. This reflects logistical and functional problems in our 

education system, and affects our society economically. We are, however, confident that we can 

reduce the number of dropping out. This objective can be achieved by the university, the government, 

researcher and experts. All of them can work together and put their complete efforts to combat this 

phenomenon. The Plan "Succeeding license" offers new opportunities for students to succeed, 

particularly the most fragile by assuring university autonomy, and with their increasing 

professionalism.[1] 

Our research aims at realizing a system to give up dropping out at university. The challenge, 

nevertheless, is that we must be able to identify students are most likely to leave the university. This is 

achievable through a model, which is a table that includes all the characteristics of the students from a 

socio-economical perspective. This includes the students’ age, sex, type of diploma, economical status 

- if they have a low economical status –and so on. 

2. WHAT IS MACHINE LEARNING? 

2.1. Definition of machine learning 

     Machine learning refers to the development, analysis, and implementation of methods that allow a 

machine to evolve through a learning process and thus perform tasks that are difficult or impossible to 

achieve by more conventional algorithmic means.  
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Machine learning can be used for several purposes such as Speech recognition [2], Optical character 

recognition [3] and Recommender System [4]. A well-posed machine learning problem contains three 

main components: 

- Performance measure to evaluate the learned system. 

- Training experience to train the learning system. 

- Types of problems and tasks. 

2.2. How machine learning relates to statistics and data analysis? 

     The connection between the two fields: statistics and machine learning always poses an imposing 

question and if they should be separate domains or merge intimately. We can say that they are two 

complementary fields with different visions. And they have much in common since they both provide 

analytical methods. Statistics care about methods such as hypothesis testing, experimental design, 

ANOVA method, linear and logistic regression, generalized linear models, principal component 

analysis, factor analysis and discriminate analysis, to cite a few. Machine learning cares about 

computational modeling and high-dimensional data. It includes advanced non-linear techniques, such 

as maximum margin methods, example support vector machines, SVMs, that uses special geometry in 

building an optimum prediction model. Other techniques include deep neural networks, that have 

proven   performance in several fields such as character recognition and machine translations. [4] 

3. MACHINE LEARNING  

3.1. Support Vector Machines (SVM) 

     The resolution of classification issues may be made by the SVM method inspired by the statistical 

learning theory; it was introduced by Vapnik in 1995. [5]  

     Support Vector Machines, or SVMs, belong to the family of maximum margin classifiers. In other 

words, it looks for the separating hyperplane with the largest margin with generalization guarantees. 

There are other advantages, including handling nonlinear problems using the kernel function to find 

nonlinear boundaries, and also allowing overlap in the classes.  

 
Figure 1-Hyperplane separating data belonging to two classes 

 

The hyperplane H satisfies the equation [6]: 

                                                                     (1) 

With:  

w The weight vector normal to the hyperplane. 

 b The bias or the intercept.  

d+  The shortest distance from the hyperplane h1 to the closest positive example. 

d-  The shortest distance from the hyperplane h2 to the closest negative example. 
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With simple calculations using the definition of the distance between a point and the hyperplane, we 

have, as a result, that: 

       ‖ ‖⁄                                                    (2) 

For instance, to be classified correctly, we need to satisfy one of these two constraints for each of h1 

and h2, which we could combine together by multiplying by the label     to make the constraint that 

we will include in the objective function.  

                                                        (3) 

                                                       (4) 

     The maximum margin classifier is the function that maximizes the geometric margin ‖ ‖⁄ . 

     The standard approach for binary problems is then to solve the soft margin formulation in which 

maximizing the margin, ‖ ‖⁄ . SVMs have also the advantage to be a kernel method that allows to 

generate non-linear decision boundaries. 

To illustrate this notion, consider this two-dimensional non-linearly separable case in which only an 

ellipsoid can separate the data points in the original space x1 x2.[7] 

 
Figure 2-ellipsoid separating the data points 

 

However, with some mapping of x1 and x2 into a 3D space using two-degree polynomials (Figure- 3), 

it is possible to transform the problem from no linearly separable problem into a linearly separable 

problem in a higher dimensional space. 

 
Figure 3-linear separating in a 3D space 
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     Technically, a kernel computes the dot product between the data points in higher dimensional space 

[8]. 

3.2.  K-Nearest-Neighbor( KNN) 

     KNN is a very simple and straightforward approach. Its principle is the following; unknown class 

data is compared to all stored data. We choose for the new data the majority class among its K nearest 

neighbors (It can therefore be heavy for large databases) in the sense of a chosen distance. The main 

idea of KNN is to use the notion of similarity between data. 

In order to find the K Nearest-Neighbor to an example to be classified, we can choose the Euclidean 

distance. 

     Considering two examples represented by two vectors xi and xj, the distance between these two 

examples is given by[9]: 

 (     )  √∑          
  

                                             (5) 

4. THE PROBLEM OF UNIVERSITY DROPOUTS 

“The fact, for a student, to leave higher education without obtaining a diploma” This problem has 

negative effects on students’ situation, especially when they hope for getting their degrees. And the 

most negative effect is the psychological one. [10] 

Drop-out problem is also a serious issue for higher education institutions. Abandonment rates 

inevitably affect the quality of training, its organization, its production and its contents. [11][12] 

Finally, dropout problem is an economical one as well. This involves the society and the government 

that invest heavily in the expenditure of higher education. [13] 

4.1. Data description & preparation 

     This part describes the data we use in this automatic learning application. We obtained the 

diffusion data for the study of the prediction of the university dropout of the Faculty of Chariaa 

between 2011 and 2012. 

     This is a statistical study of approximately 3000 students who are subscribe from 2011-2012. The 

frequency of university drop-out, as shown in this table, is about 30%.  

 

Table 1-Number of students drop-out 

University drop-out Cases 

Indicated before the end of the first year 909 

Indicated after the first year 315 

      We constructed a large matrix of about 3000 students described by 86 variables. Overall, you can 

see, in Figure-4, a mixture of binary functions, numeric functions, categorical characteristics, and a 

large amount of missing values in the data. 

 
Figure 4-Snapshot of described variables of students 
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4.2. Complexity of data 

     We have prepared this data to feed it to machine learning algorithms. Positive examples, drop-out 

students, are disseminated in space, which poses a challenge to find a global predictive model 

discriminating positive from negative examples. 

     First, we handle the complexity of data by organizing functionalities into groups. For example, 

DMG, a demographic group, includes characteristics such as student age, marital status, family 

support, income - an indicator of the student's socio-economic status, gender, Etc. 

The second group, PSH, stands for Previous Study History. 

     We also have information on the status of modules, SM, that includes both normal and catch-up 

sessions for each semester (S1, S2, S3, S4, S5 and S6). 

 
Figure 5-calendar of the characteristic collected. 

 

     We also have all the information concerning the type and the grade of the baccalaureate and the 

region where it was taken (IB). 

     The calendar of the data is illustrated in this Figure- 5. At each step, S1, S2, S3, S4, S5 and S6, a 

set of characteristic groups is collected. Thus, we have these different temporal points, T0, T1, T2, T3, 

T4 and T5 which represent semester one, semester two, semester three, semester four, semester five,  

and semester six respectively. In each semester, there is a group of characteristics that were collected– 

which we described earlier. 

 

Table 2-Number of University drop-out in different temporal points 

 T0 T1 T2 T3 T4 T5 

features 10 14 14 12 12 12 

points 909 71 62 19 113 50 

     Also, by separating the data into multiple data sets, we can focus on specific sub-tasks of university 

dropouts in the effort to devise a refined model. 

4.3. Methods for prediction of this problem  

     In this study, we come to the University drop-out prediction as a binary classification problem. 

Students who abused the studies are assigned the positive class, while those who completed the studies 

are assigned to the negative class. Each Student is a data point, also called example, and described by 
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feature vector x and the discrete label y. y could be -1 or +1. It could be also 0 or 1. 

We would like to predict at different time points, and hence, we have training data sets for each take 

T0, T1, T2,  

T3, T4 and T5.  We applied the simple nearest neighbor algorithm to the data.  

     In Table-4, we count the average number of positive points in the neighborhood of each positive 

point.  

For the distance, in general, choosing the distance metric is a hard problem. And the ideal is to learn 

one from the data. But to simplify, we chose the Euclidian distance.  

We use different values of k, and we illustrate here with k equal 12. Results show that the university 

dropout cases, or the positive examples, have between 0 and 4 positive examples in their 

neighborhoods. 

In other words, Positive examples, which represent the minority class, are isolated among negative 

examples. 

We expected, then, that this phenomenon would lead to challenges in finding a general model that fits 

the data. 

Table 3-data distribution 

 Euclidian 

T0 3,63  1,9 

T1 3,45  1,72 

T2 2,61  2,48 

T3 4,04  3,23 

T4 3,37  2,37 

T5 5,03  2,03 

      We cast the problem as a classification problem, seeking to use data to derive a binary 

classification function       
       }. The general picture is to use the data at hand as input to train 

machine learning algorithms to find the classification function f. Once we have f, we can use it to 

classify a new student. [14] 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-Formalization problem 

 

     Our concrete aim is to obtain a model with low test errors. We first build the confusion matrix to 

report the misclassification errors [15].  
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Table 4-Confusion matrix 

  Actual Label 

  UDO Non UDO 

Predicted Label 

UDO Positive(P) Non Positive(NP) 

Non UDO Non Negative(NN) Negative(N) 

We first build the confusion matrix to report the misclassification errors.  

UDO University dropout. 

P Dropping out students who were predicted as   university dropout by the model. 

N Non dropping out students who were predicted as non university dropout by the model. 

NP Non dropping out students who were predicted as university dropout by the model. 

NN Dropping out students who were predicted as non university dropout by the model. 

            
 

    
                                            (6) 

                        
 

    
                                  (7) 

 

     Sensitivity is the probability that a test performed on a dropout student is positive; in other words, 

the test is positive knowing that the student has dropped out. 

     Specificity is the probability that a test performed on a non dropout student is negative; in other 

words, the test is negative knowing that the student has not dropped out. 

The negative class constitutes the majority. Therefore, it is not difficult when we create a module for 

the goal of obtaining high specificity rates, with a click, to insure a reasonable balance amid specificity 

and sensitivity. Keep in mind that the motive for choosing these two measures is the purpose of being 

able to accurately forecast students with the uppermost risk for leaving university, in order to initiate 

interventions, we use geometric mean, or G, which is [16]: 

  √                                                          (11) 

5. RESULTS & DISCUSSION 

     In order to assess our findings, the next process is to be repeated: a train and test set of 80 to 20 

ratio constitute a random partition of every data set. A test set is only used to assess the model or 

analyze the out of sample error. Therefore, it is never used during a learning phase. Each class is split 

equivalently amid the sets. After that, in order to elect the best model and ideal parameters, we put into 

application a five-fold cross validation to the training set. Finally, the elected model can be tested on 

the hidden test set, and the recording process of confusion matrices starts off for different subsets of 

data alongside sensitivity, specificity, and the G for every single one. 

 

Table 5-Results table 

 Sensitivity Specificity G 

T0 0,41 0,67 0,52 

T1 0,75 0,96 0,85 

T2 0,79 0,89 0,98 

T3 0,75 0,98 0,86 

T4 0,86 0,97 0,91 

T5 0,73 0,82 0,77 

          After studying an approximate number of 3,000 students from the Faculty of Chariaa of Fez, we 

can conclude that the SVM is a realistic and reasonable method that has allowed us to achieve results 

close to reality. 
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     Note that some variables can change over time (family situation, economic ...) are influencing the 

results. It can also be seen that in T4 and T5 the number of students decreases remarkably, this big fall 

can have an explanation that some students who got their DEUG diploma could have either applied for 

other jobs or have enrolled in other universities or institutions.   

6. CONCLUSION  

     This confirms that a more exact forecast of dropping out is not an evasive task. However, this is not 

the end. Stronger models with advanced estimate capacity ought to be built in order to classify 

students that are most probably dropping out of university. The borderlines of machine learning are 

challenged due to the dropout problem. This is due to the challenging nature of the latter, which is an 

everyday problem in our world. This issue is challenging for a number of factors. One factor is the 

missing data while a second one is the secular nature of dropping out. 

Our work opens the door on a new perspective that takes into account other problems such as the 

guidance of the students, the relationship between the university and the employment. 
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