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Abstract

This work aims to introduce and to study a new kind of divisor graph which is
called idempotent divisor graph, and it is denoted by JI(R). Two non-zero distinct
vertices v; and v, are adjacent if and only if v,.v, = e, for some non-unit
idempotent element e? = e eR. We establish some fundamental properties of JI(R),
as well as it’s connection with 7{R). We also study planarity of this graph.

Keywords: ldempotent Elements, Zero Divisor Graph, ldempotent Divisor Graph,
Planar Graph.
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1. Introduction

Let R be a finite commutative ring with unity 1 # 0. We denote Z(R), I(R), and U(R) the
set of zero divisors, the set of idempotent elements and the set of unit elements respectively.
In [1], Beck introduced the idea that connects between ring theory and graph theory when
studied the coloring of commutative ring. Later in [2], Anderson and Livingston modified this
idea when studied the zero divisor graph /{R) that have vertices Z(R)* = Z(R) — {0} and
for vy, v, € Z(R)", v,v, edges if and only if v,.v, = 0. Many authors studied this notion see
for examples [3], [4], [5] and [6]. Recently, there are other concepts of zero divisor graph, see
for examples [7], [8], [9],and [10].
In graph theory ““ (v) denotes by the eccentricity of a vertex v of a connected graph G which
is the number max, .y () d(u, v). That means e(v) is the distance between v and a vertex

furthest from v. The radius of G ,which is denoted by radG, is max, .y d(u, v), while the

diameter of G is the maximum eccentricity and it is denoted by diamG. Consequently,
diamG is the greatest distance between any two vertices of G. Also, a graph G has radius 1 if
and only if G contains a vertex u adjacent to all other vertices of G. A vertex v is a central
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vertex if e(v) = radG and the center Cent(G) is the sub-graph of G that induced by its
central vertices. The girth of a graph G is the length of a shortest cycle contained in G, it is
denoted by g(G). The neighborhood of x in a graph G denotes by Ng(y), is the set of all
y eV (G) such that y is adjacent to x in G. In our graph in this case, Ngy = {y eV (G)\
{x} [xy = 0}. K, K, ,, sSymbolized complete graph and complete bipartite graph respectively.
K; m we call star graph. A clique number of G symbolized o(G ) is greats complete sub-
graph of G. If a connected graph does not contain cycle, we call tree. Let H and G two graphs,
G UH is a graph with V(GUH) =V (G)UV(H) and E(GUH) = E(G) UE(H), and for
n€Z*, nH =Uj-,H. the graph G+ H is a graph with V(GUH) =V(G)UV(H) and
E(G+H)= E(G)VE(H) U{{u,v}: ueV(G),veV(H)}. A path graph of order n is
denoted by P, is a graph with V(B,) ={v;: i =1,2,..,n} and E(P,) = {{v;,v; + 1}: j =
1,2,...,n — 1}, so that C, is a graph B, + {v,,v,,} and it called a cycle graph of order n for
n € Z*. For more details see for example” [11].
In ring theory, a ring R is said to be local if has exactly one maximal ideal. Also, if R finite
local ring, then the cardinality of R symbolized |R| equal p*, where p prime number and
teZ*, as well as the cardinality of maximal ideal M = p”, where 0 < r < t. Aring R is
called Boolean, if every element is an idempotent. We denote F; is a field order g. In section
two we defined a new graph on the ring and prove some basic properties of about this graph
and we give all possible graphs less than or equal 6 vertices. In section three, we give all
graphs to be planer.
2. Examples and Basic Properties

In this section, we introduce a new class of divisor graph manly idempotent divisor graph,
we give some of about this graph, and we also provide some examples.
Definition 2.1: The undirected graph is called idempotent divisor graph, and which is
symbolized by JI(R) which a simple graph with vertices set in R* = R — {0}, and two non-
zero distinct vertices v; and v, are adjacent if and only if v,v, = e, for some non-unit
idempotent element e eR (i.ee? = e # 1).Example 1: Let R = Z,, since the
idempotent elements I(R) = {0,1, 3, 4}, then JI(R) is:

1
5
3
3 4
4 2
J
1(Zs) J(Z6)
Figure 2.1
Remarks:
1- If 0 idempotent element in R, then /TR) cJI(R).
2- If R has only idempotent elements 0 and 1, then 7{R) = JI(R). Consequently, when R
local , then 7{R) = JI(R).
3- If R finite non local ring, then R = R, x R, ...x R,,. Since (1,0, ...,0)? = (1,0, ..., 0),

then R has idempotent element distinct {0, 1}.
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4- If R non- local ring, then there are at greater than or equal two non-trivial idempotent
elements in R. if e2 =e # 0or1,then 1 — e also idempotent and e # 1 —e (because if
e =1—¢e,thene+e =1lande+e = (e+e) + (e+e) = (e+e)? =1 implies that
1 = 0 which is a contradiction. Therefore, e # 1 — e). Hence if u €U(R), then u adjacent
with u~te, for every eI (R) — {0,1}, so that V(JI(R)) = R* = R — {0}.

Example 2: We shall give all possible idempotent divisor graphs, with JI(R) < 6.

If [JI(R)| = 1, then R is local and |Z(R)| = 2,s0 by [12] R = Z, or F,[Y]/(Y?).

If [JI(R)| = 2,thenR islocal and |Z(R)| = 3,s0by[12] R = Z, or F5[Y] / (Y?).

If |[JI(R)| = 3,and R is local, then |Z(R)| = 4, so that by [12].

R = Zg, B[Y]/ (Y®), Z4[Y]/ 2Y,Y? = 2),F[Y]/(Y?), Z4[Y] / (2Y)%, Z4[Y] / (Y* +

Y + 1) or F,[Y,Y,2] / (Y1, Y2)?%. If R non-local, then |R| = 4, therefor R = F,x F,.

If [JI(R)| = 4, then R is local and |Z(R)| = 5, which impliesR = Z,sor F5[Y]/ (Y?).

If [JI(R)|] = 5,then R isnon —local and |R| = 6. Hence R = F, x F;.

If |[JI(R)| 6, then R is local with |Z(R)| = 7.S0R = Z,o0r F,[Y] / (Y?).

Figure 2.2- JI(Zg) Figure 2.3 -J1 (Fy x F3)

Table 2.1- Rings with |JI(R)|<6

Vertices Ring(s) type Graph

1 Z,or F,[Y]/(Y?) K,

2 Zgor F5[Y]/(Y?) K,

3 Zg, B,[Y]/ (Y®), E[Y]/(Y? or Fig.2.2
Z4[Y]/(2Y, Y? — 2)
EY1/ (Y?2), Z4[Y/(2,Y)? F[Y,Y2]/ K3
(Y,,Y5)? or F, xF,

4 Zysor Fs[Y]/ (Y?) K,

5 F) x F3 Fig.2.3

6 Zyo OF Fy[Y]/ (Y?) Ks

Now, we give some basic properties of idempotent divisor graph.

Theorem?2.2: For any ring R, JI(R) is connected graph. Moreover, diam(JI(R)) < 3.

Proof: Since if R local ring, then 7TR) = JI(R), so by [2, Theorem 2.3 ] R connected. Now
we investigate the case when R is non-local. Let a,be JI(R). Since R finite ring, then
R* = Z(R)*U(R). So there are three cases:

Casel: If a,b € Z(R)*. Since 0 # 1 is an idempotent element in R, then by [2, Theorem2.3]
there exist a path between a,b € ITR) and d;gy(a, b) < 3. So there is a path between a and
b inJI(R) and d gy (a,b) < 3.

Case2: If a,b € U(R), then there are x,y € U(R) such that ax = by = 1. Also for any
idempotent element e? = e £{0,1}.

a(xe) =eand b(y(1—e)) =1—e.Sincee(l—e) = 0,thena—xe—y(1—e)—bis
apath and djgy(a,b) < 3.
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Case 3: if a e U(R) and b € Z(R)". First, if there exists e? = e & {0, 1} such that be = 0,
then a—a~"'(1—e) —e —b is a path. So dy(a,b) < 3. If for any e* =e £ {0,1},
be + 0.Since b € Z(R)*, then there is ¢ # ¢? so that bc = 0.

Ifce = 0,thena—a te—c —b.So dnry(a,b) < 3.

If ce # 0,thena—a~"(1 — e) —ce —b. Therefore for any cases dz(a, b) < 3.
Theorem 2.3: For any ring R, the g(JI(R)) =3 except the cases R = Z,, F3[Y]/
(Y2), Zy, F,[Y1/(Y?) or Z,, then g (JI(R)) = oo.

Proof : Clearly If R = Z,, F5[Y]/(Y?), Zy,F,[Y]/(Y?) or Z,, then g (JI(R)) = oo. Suppose
R is non-isomorphic to Zy, F5[Y]/(Y?), Z9,F,[Y]/(Y?) or Z,, then there are two cases:
Casel: If R is local ring, then JI(R) = I{R). So there is ze Z(R)" adjacent with any
elements in Z(R)*. Since R is non isomorphic to Zy, F5[Y]/(Y?), Zy,F,[Y]/(Y?) or Z,, then
either 7(R) is star graph or has circle of length 3. If R is star graph which is a contradiction
by [2, Theorem 2.5]. So JI(R) = [I{R) has circle of length 3. Hence the g (JI(R)) = 3.
Case2: If R is non- local ring, then there exists e? = e ¢ {0,1}and 1 —e —(1 —¢e) —1
is a circle of length 3. So g (JI(R)) = 3.

Corollary 2.4: Let JI(R) is an idempotent divisor graph of ring R, then JI(R) is tree if and
only if R = Z,, F5[Y]/(Y?), Zy,F,[Y]/(Y?) or Z,.

Corollary 2.5: For any non-local ring R, o(JI(R)) = 3.

Proposition 2.6: IfR = F, x F, x ... x F, (n-times), then JI(R) = Kj,n_;.

Proof: Since every element in R is an idempotent, then every non zero two elements are
adjacent in JI(R). Hence JI(R) is complete and V(JI(R)) = |R*|, s0 JI(R) = Kan_;.
Proposition 2.7: JI(R) is a complete graph if and only if R is a Boolean ring or local with
Z(R)? = 0.

Proof: Suppose that JI(R) is a complete, if R local, then by [9, Theorem 2.5] Z(R)? = 0. If R
is a non-local ring, and for any a # 1 since a.1 = a and JI(R) is a complete, then a is an
idempotent element in R. Therefore, R Boolean ring.

The converse is obvious.

Proposition 2.8: For every non - local ring R, then degygy(u) = |[I(R)| — 2, for every
u e U(R).

Proof: Let u €U(R), then for every e e I(R) — {0, 1} we have u —u~e. Since u™le # u,
then u™'e € Njry(u) and degpgy(u) = [I(R)| — 2.

Theorem 2.9: For any non - local ring R, if diam(JI(R)) < 2, then Cent(JI(R)) cI(R)
Proof: Since diam(JI(R)) < 2,thenrad(JI(R)) = Oor1.

If rad(JI(R)) = 0, then diam(JI(R)) = 0, which is a contradiction since R is non- local.

If rad(JI(R)) = 1, then either JI(R) complete, so by Proposition 2.7 R is a Boolean ring and
every element idempotent, therefore every element in JI(R) is central, we are done . If JI(R)
not complete graph, then for any ae Cent(JI(R)), adjacent with every elements in R and
a —1, therefore a.1 = a is an idempotent element in R — {0,1}. So Cent(JI(R)) < I(R).
Theorem 2.10: For any non - local ring R, a graph JI(R) has no end vertex.

Proof: For any a € R*, there are three cases:

Casel: If a eU(R), since a £{a e, a™1(1 — e)}, for every idempotent element e =
e’ #{0,1} and a'e # a”'(1 —e), then {a'e,a”'(1—e)}cNyg(a). So
degnry(a) = 2.

Case2: If a el (R) — {0,1},then {1 — a, 1}c Nygy(a). So degyry(a) = 2.

Case3: If a e Z(R)" —I(R). Since R finite, then either a = a™ or a™ =0 for some
nmeZ".
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If a = a™, then there is k € Z* such that a® idempotent element in R and since aeZ(R)*,
then there are b € Z(R)* —{a} so that ab = 0. Therefore {b,a* '} cNyi)(a). So
degﬂ(R)(a) > 2.

Ifa™ = 0andn = 2. Butab = 0 forsome b € Z(R)* — {a}.

Therefore {b,a — b}}c Ny(g)(a). S0 degnryay = 2

If n > 3, then a.a™ ! = 0. Which implies that a” 1R = {0, a" 1}. Now for any idempotent
element e {0, 1}. Either a®*e = 0 or a™ ! for all cases, there are idempotent element
f {0,1} such that a"'f=0. If a"?f # 0 then {a"',a"?f} < Ny (a). So
degny(a) = 2. 1f a"2f = 0, then {a"%, a">f} < Ny (a). If we repeat this process,
we can get af = 0. This means that there is at least two elements adjacent to a.

3. Planarity and Cliques of Idempotent Divisor Graph

In this part, we investigate the planarity, and the cliqgue number of the idempotent divisor
graph.

Proposition 3.1: Suppose that R = K x K', where K and K~ are fields, then o(JI(R)) = 3.
Proof: Since R = KxK', then the only idempotent elements in R are
{(0,0),(1,0),(0,1),(1,1)}. For any (a,b) eR. If aand b # 0, then (a, b) adjacent with
only elements (a™%,0),(0,b™1). So (a,b)£K,. Also if a = 0 and b # 0, then (a,b)
adjacent with only elements (x, b~1), for every xeK. But (x,b~1) adjacent with only
elements (x~1,0) or (0,b™1) and non-adjacent with (0,b™1) . So (a, b)) £ K4. Similarly if
a#* 0and b = 0, then we have (a, b) ) # K, and hence o(JI(R)) = 3.

Theorem 3.2: If R = R, xR,, where R; and R, are local rings but not fields, then
o(JI(R)) =3 if R = Z,xZ,, Z, xF,[Y]/ (Y®) or F[Y]/(Y?) x F,[Y]/(Y?). Otherwise
o(JI(R)) = 4.

Proof: If R = Z,xZ,, Z, x F,[Y]/ (Y®) or F,[Y]/ (Y?) x F,[Y]/(Y?), then w(JI(R)) = 3
see Fig 3.1. Suppose R is non-isomorphic Z,xZ,, Z, x F,[Y]/(Y?) or F,[Y]/ (Y?) x F,[Y]/
(Y?). Since R; and R, are local but not fields, then there exists (z;,z,) € R with z; € Z(R,)*
and z, € Z(R,)", thus there are a; eZ(R;)* — {z,} and a, €Z(R,)" such that z;a; = z,a, =
0. Therefore the set {(z;, z;),(a;,0),(0,a,),(a;,z,)} induced a sub-graph K,. So
o(JI(R)) = 4.

Figure 3.1- J1 (A; x A;), where A;and A, = Z,o0r

Recall that “a graph G is said to be planar if it can be drawn in the plane in such a way that
pairs of edges intersect only at vertices, if at all. If G has no such representation, G is called
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non-planar. It we know that a graph G is planar if and only if contained no sub-graph Kz or
Kss * [11]

Proposition 3.3: For any local ring R, a graph JI(R) is planar if and only if R is isomorphic to
one of the following table:

Table 3.1- local rings with |TTR)] is planar

Ring(s) type Graph
Zyor F[Y]/(Y?) K,
Zy Zor F3[Y]/(Y?) K,

F[Y1, Y51/ (Y1, Y2)?, Zu[Y]/ (2Y,Y2), K

or F[Y]/(Y?) 3
Zu[Y1/(2Y,Y? = 2), Zg or F,[Y]/(Y?) K2
Zys or Fs[Y]/(Y?) K,
Zy7, F3[Y]/(Y3) or Zg[Y]/(3Y, Y?£3) K6

Zyo, B[Y1/(Y*), ZuIY1/[Y?], Z,4[Y]/[2Y,Y? = 2],Z,[Y]/
[2Y,Y2 — 2Y — 2] or Z,[Y]/[2Y,Y3 — 2]
Zu[Y]/(Y?-2), Zg[Y]/(2Y,Y? = 4), [V, V,1/ (Y — Y2, Y, Y,) or
Z,[, L1/ (Y = 2,10 Y,, Y7 = 2,2Y,)

Zu[YV1, o1/ (Y2, 1Yo = 2,Y7) , Zu[Y]/(Y?) or Zu[Y]/(Y? + Y +
D
Proof: Since R local, then JI(R) = I{R). Therefore the prove follows by Propositions 2,3

and 4 in [13].

Theorem 3.4: If R = F, x F,, then JI(R) is a planar if and only if F,, = F, or F5 for
i =12

Proof: Without loss generality, let F,, = F, or Fs. First, if F, =F,, then R = F,x F,,
since w(JI(R)) = 3, by Proposition 3.1. Therefore, JI(R) does not contain a sub-graph K.
Now we shall to prove JI(R) does not contain K33 sub-graph. If not, then there exist disjoint
two subsets Vy = {(ay, b1), (a2, b2), (a3, bs) } and V, = {(x1,y1), (x2,¥2), (x3,¥3)} such that
every element in V; adjacent with every element in V,, and a4, a,, as, x;, x, and x5 € F,, and
by, bs, b3, y1,y, and y; € F,. Since R have exactly idempotent elements (0, 0), (1,0), (0,1)
and (1,1), then (a;, b;)(x;, ;) €{(0,0),(1,0),(0,1)}. So b;y; = Oor1,ifb; # 0or 1 for
all i = 1,2,3, then y; = 0 or b for all j =1,23. But x; € F,, then we have V, =
{(0,b; ), (1,b;1),(1,0) }. Therefore V; = {(0,b;),(1,b;),(0,1) }. But (1,b)(1,b;1) =
(1,1) a contradiction. Also, if b; = 0 or 1 for all i = 1,2,3 we get a contradiction.
Therefore, JI(R) does not contain K33 sub- graph and JI(R) is a planar. Similarly, we can
show that if F,, = F;, then JI(R) is a planar. Finally, if F;, #F, or F5 for i = 1,2. Then there
exist a;,a, €F;, —{0,1} and by,b, € F;, —{0,1}. Whence V; = {(a4,0),(ay,0),(1,0) }
and V, = {(0,b1),(0,b,),(0,1)} are disjoint sub-sets induced Ks3 sub-graph in JI(R).
Therefor R not planar.

Theorem3.5: For any ring R, a graph JI(R) is planar if and only if R isomorphic one of the
following rings in table 3.1 or R isomorphic one of the following rings:

FyxFy,FsxFy, FoxZy,Fax Fy[Y]/ (Y?),Fyx Zgor Fy x F5[Y]/ (Y?)

Proof: IfR = Ry xR, x ... x R, where R; local ring forall i = 1,2,...n and n > 3. The set
{(10,..,0),(01,0,...,0),(1,1,0,...,0),(0,0,...,1),(1,1, ..., 1) } cV({JI(R)) so induced a
sub-graph Ks, therefore JI(R) is not planer. If n = 2, then R = R; x R,, where Ry, R, are
local rings, there are three cases:

K, + (4K, UK,)
K; + (K U Cy)

K, + (2K, U Cy)
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Casel: If R, and R, are fields, then by Theorem3.4 JI(R) is planar if and only if R =
F, x Fq, or F; x Fq,, where Fq, is a field order g,.

Case2: If R; and R, are not fields, then |R,|, |R;| = 4. Obviously JI(R) not planar.

Case3: If R, is a field and R, not field. Let R, = F, or F; and |Z(R;)| = 2, then |R,| = 4,
which implies that R, = Z, or F,[Y] / (Y?), so JI(R) is planar see Fig. 3.2 . [If Z(R,)| = 3,
then there exists a,b €Z(R,), so that ab=0. Therefore the vertices
(1,0),(1,a),(1,b),(0,a), (0, b) are adjacent, whence JI(R) induced a sub-graph Ks, therefore
JI(R) not planar. If |R;| = F,, then it is easy to show that a graph JI(R) is not planar.
Finally, if n = 1, then R is local and a complete proved it’s follow by proposition 3.3. and
table 3.1

J(Fyx Z,) or J(Fx F,[Y]/(Y?) J(F3x Z,) or J(F3x F,[Y]/(Y?)

Figure 3.2
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