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Abstract

The idea of the paper is to consolidate Mahgoub transform and variational
iteration method (MTVIM) to solve fractional delay differential equations (FDDES).
The fractional derivative was in Caputo sense. The convergences of approximate
solutions to exact solution were quick. The MTVIM is characterized by ease of
application in various problems and is capable of simplifying the size of
computational operations. Several non-linear (FDDEs) were analytically solved as
illustrative examples and the results were compared numerically. The results for
accentuating the efficiency, performance, and activity of suggested method were
shown by comparisons with Adomian Decomposition Method (ADM), Laplace
Adomian Decomposition Method (LADM), Modified Adomian Decomposition
Method (MADM) and Homotopy Analysis Method (HAM).

Keywords: Variational Iteration Method; Mahgoub Transform; Delay Differential
Equations of Fractional Order; Derivatives of Caputo; Approximate Solution.
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1. Introduction
Fractional differential equations (FDEs) have a great effectiveness on modeling processes
in fluid mechanics, mathematical biology, physics, population growth, and so on [1-3]. The
best way to describe scientific problems has been the usage of differential equations with

fractional derivatives. The main importance of this kind of equations is illustrated in pure
mathematics and applications, such as water flow in pipe, blood flow, the analysis of
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pollution, and many other applications [4-6]. It is known that the description of standard
models mathematically in integer order is not adequate in various cases. The theory of delay
differential equations (DDESs) describes a kind of functional differential equations which takes
into account the history of a phenomenon [7]. The DDEs can be used to describe dynamical
models of numerous phenomena in life [8]. Therefore, the FDDEs have a large number of
applications and present remarkably efficient models to formulate scientific problems [9, 10].
It is important to note that finding exact solutions to non-linear FDDEs needs some new
methods. The study of exact solution of FDDEs is a complex process. The approximate and
numerical methods have been used to solve this class of equations, providing a good tool to
solve some types of non-linear problems.

In the last three decades, many researchers focused on approximate solution of the FDDEs.
Some approximate methods have been modified, such as Mahgoub Adomian decomposition
method [11], solving fractional delay differential equations by new approach [12], iterative
decomposition method [13], DGJ method [14], Laplace Adomian decomposition method [15],
and homotopy analysis method [16].

The proposed method in this paper consists of Mahgoub transform and the variational
iteration method. Mahgoub Transform was previously used with ADM to solve FDDEs [11].
In fact, we formulate the Mahgoub Transform to be associated with the variation iteration
method to solve a class of non-linear of FDDEs.

The paper has the following structure ; Section 2 consists of main concepts of Mahgoub
transform and fractional calculus. The MTVIM is presented in section 3. In section 4,
numerical experiments of fractional order derivative are given to illustrate the efficiency of
the considered method. Finally, in section 5, the conclusions are drawn.

2. Mahgoub Transform and Fractional Calculus

This section consists of essential concepts and definitions with features to Mahgoub transform
and fractional calculus.

Definition 2.1 [14, 16 ]: Let w(z) be areal valued function, z > 0, then w(z) belongs to the
space C,, w € R if there is a real number p > w such that w(z) = zPw,(z), where
w4(2) € C[0, ], and it belongs to the space C}, if o™ € C,,, r € N U {0}.

Definition 2.2 [ 14, 16 ]: The fractional integral of Riemann-Liouville of ¢ > 0 of w(z) €
Cpw>—1 is:

Jw(z) = %g)foz(z — 1) lw(t)dr, >0 ... (1)
J'w(3) = 0(2)

Definition 2.3 [14, 17 ]: The fractional derivative of Caputo of w(z) € Cy is:
Diw(z) = JTD"w(z) = F(Tl_c) fOZ(z — )" 1w ()dr, 2>0 ..(2)
Forr—-1<¢<r,reN, 3>0, weCCl,.
Definition 2.4 [17]: Let A be the set of continuous functions with exponential order and
defined by:

1zl

A= {w(z): M, ky, k, > 0,|w(z)| < Meki, z € (=1)t x [0,00), i = 1,2} ...(3)

Let w(z) €, A then Mahgoub transform is defined as:
plw(2)] = W) = vfooow(z)e‘”z dz, 2=>0,ky <v< k, ...(4)
In the following table we submit Mahgoub transform for some elementary functions:
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Table 1-Mahgoub transform of some functions

w(3) tlo(2)]
1 1
1
Z —_
v
n!
z", n>1 -
Un
v
eaz
v—a
v
e—az
v+a
i av
inag -
v2 + q?
Cos az v*
v2 4+ g2

Theorem 2.5 [17]: Let W (u) be the Mahgoub transform of the functions of Caputo fractional
derivative of w(z) of order ¢, which is given by :

u[Diw(z)] = vsW @) — X7 v 0 (0) ...(3)
for m—1<¢<m meN
3. The Mahgoub Variational Iteration Method (MVIM)
To explain the main idea, we study the fractional delay differential equation:

Diw(z) =§(z) + N(w(3),w@()), m-1<¢<m, z>0 ... (6)
w®(0) =wl, k =
o1 .. m-—1 - (7)

where D! is derivative of order ¢ in Caputo sense, N is a non-linear bounded operator, §(z) is
a given continuous function, w is the unknown function, and 9(z) is the delay function.
The main steps involved are given as follows:
1. Take the Mahgoub transform u[. Jof eq.(6),
= u[Diw(2)] = uli(z) + N(w(z), (¥ ()]
By using Theorem (2.5), the initial conditions and linearity of the Mahgoub transform
are then expressed as:

m-—1
VW)= D 157 0D (0) = ulf(2)] + uIN (@(2), 0B (@)
i=0
= vSW () —vsw(0) — 1)]“‘10)(1)(0) — S 2w@(0) — - — pS—M-D M=) () =
ulf(z2)] + uN(w(z), w(¥(2))], ... (8)

where W (v) = plw(z)] =v foooa)(t)e‘“tdt.
2. By multiplying eqg. (8) with Lagrange multipliers and using iteration formula, we have:
Wini1(v) = Wy (v)

+ A1) [V Wi () = v50(0) = 15D (0) — V52D (0) — -~

— v<= =D M1 (0) = u[§(2)] - uIN (W (2), Wm (I (2))]] - (9)

3. Regarding the terms p[N(&,,(2), ©,(9(z))] as restricted varations, we make eq. (9)
stationary with respect to I, :

W1 (V) = W, (V) + A(V) [VS W, (V)] ... (10)
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From (10), we determine the Lagrange multiplier as:
) =-— ... (11)
4. The successive approximations are obtained by inverse Maghoub transform pu=1[.].

Wn+1(8) = wp(z) —p~t [Uic [Ung(u) —v5w(0) — 5 1w @ (0) — v$ 2@ (0) — - —

p$ =Dy m=D(0) — pi(z)] - u[N(wm<z>,wm(ﬂ(z>>]]] . (12)
1 1 1
= Omy1(2) = 0(0) + =0 (0) + — ! [;u[f(Z)]l
+pt [;u[N(wmmwm(ﬁ(z))] ]

wo(z) = \I

5 Oma(@) = 0(0) +1 >0l 13
|
kR uli@]| + 17 [N @n(2), 0m @) | J

w(z) = Tlll_r}go W (2)

4. Applications and Results
In this part, some applications to the usage of MVIM in solving FDDE are introduced.
Problem 1: Consider the following linear FDDE:

2
Dgw(z)—m )zH—%+w(§), 0<¢<1 0<z<1. .. (14)
w(0) =0, ... (15)
The exact solution is:
w(z) = 3> ... (16)

Solution
Applying MT and using initial condition yield:

= vulo@] = ulgge ] -uf5] rufo @]
W) = [F(32_ 5 Zz—g] u lz l +u [(D ( )]

By using Eq. (9):

= Wna ) = Wa @) +A0) (VW) — 1t [rs 22 + e[ 2] - i fom (2)]),
By using Eq. (11):

1 2 z
> Waia(0) = 50 [r(3 — q)zz_c] N _”l l Tl |@m (3)]
By taking inverse MT”

= W1 (8) =p lﬁu [F(:_c) zz‘c]l -t Iﬁu [é]l +ut [&u | @”
By using Eq. (13):
wo(z) = p™* l%u [F(:_c)zz‘c] —ut [ﬁ# [%]
+u- [— U wm ” m =0

— ~2 _
wm1(2) =3 9F(3+ o7
We will calculate the components w4, w,, ...

2
Z2+g‘
9T (3+¢)

:ZZ—

=
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w,(3) =23

2 1
BT s SRR IF“ [ (g)]

5 2 - 4|1 2\ 2 2 2\ %S
=% "9ty TH [F“[(E) _9r(3+g)(§) ]]

, - 1/2 2
s o B )
9T(3 + g) QU2 34+S y2+s

2 2
— 2 _ 2 2+ -1 _
27y I'(3+¢) S 9v2+¢ 34+¢ v2+2¢]
=72 - ;ZZH + Z—ZZ+c — 2 Z72+2¢
9T(3 +¢) 9T(3+¢) 34T (3 + 2¢)

w(z) = 5 ﬁ g [lgﬂ for )

2 Z\ 216
=Z2_9F(3+c) [ “[ 9F(3+§)() ]]

1 1 2 Z 2+¢ 2 Z 2+2¢
wsH [9 rG+9) (§) T 3T (3 + 20) (§) ]]

, ot 1/2 2
R o
OTr(3 + g) 9u2z 34 y2H¢

L1 2 2

+,u _(34+gvz+q 36+3¢ U2+2c)]
R e I
9 1"(3 + C) 9U2+c 34+g U2+2g 34+c U2+2q 36+3c U2+3c

2+¢ 2— 2+¢ __ 2 2+2¢

ITG+0° T9rTB+9? 3HST(3 + 2¢) °
2 2

+u

=ZZ—

24+2¢ __ 2+3¢

3 V4

_|_
34+ T'(3 + 2¢) 36+3¢ (3 4+ 3¢)

2+ 2 2+ 2
9T +¢) 9T(3 +¢) 34+ (3 + 2¢)
2

+ Z2+2§ _ 2 Z2+3§
34t¢ T'(3 + 2¢) 36+3¢ (3 + 3¢)

2+2¢

w(z) = lim w,(z) = z? 3

The approximate solution in a series form of (14)-(15), when ¢ = 1, is given by
w(z) = lim . (z) = 32
which is the exact solution of (14) -(15).

As shown in table (2), the proposed solutions using MVIM are better from the solutions
acquire by ADM, LADM, and the exact solution.

Table 2-Approximate solution of problem 1 for ¢ = 1 by using the proposed method (MVIM)
and comparison with ADM, LADM and Exact Solution

MVIM ADM LADM
z Exact
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0.1 0.01 0.01 0.01 0.01
0.2 0.04 0.04 0.04 0.04
0.3 0.09 0.09 0.09 0.09
0.4 0.16 0.16 0.16 0.16
0.5 0.25 0.25 0.25 0.25
0.6 0.36 0.36 0.36 0.36
0.7 0.49 0.49 0.49 0.49
0.8 0.64 0.64 0.64 0.64
0.9 0.81 0.81 0.81 0.81

Problem 2: Consider the following nonlinear FDDE:
Diw(x)=1-2w?(%) 0<¢<1, 0<z<1.

w(0) =0,
The exact solution is:
w(z) = sinz

Solution

Applying MT and using initial condition yields:

= vulo(@] =1~ |20 (3)],

By using Eq. (9), we obtain:

= Wit (0) = W) +20) (v W) = 1+ 20,2 (3)]),
By using Eqg. (11):

= Woaa ) = o= o [203 ()]

Taking inverse MT yields:
= wnsn = [ = w20 G
By using Eq. (13), we obtain:

_ 1] 2 =
(UO(Z) —H [UC] - I'(c+1)

s (2) = e = o [20% @)H nz0

We will calculate the components wq, w,, ...

=

zS L1 5 (BN
0@ =y~ H ek 208 (3)]
2\ \’]
S E W )

= - 2| s
¢+ 1) vs ¢+ 1)

_ 7 1 1 ['(2¢+1)
F(¢c+1) VS~ 225 T2 (¢ + 1)v2s]
A . [ 2T(2¢+ 1)
T+ H oz + Do

z$ 2T(2¢ + 1)3%¢

“T(+1) 2572+ I Bc+ 1)

¢ 1
(@) = s~ 22 )

3684

.. (17)
... (18)

.. (19)




Namah

2 (G

Iragi Journal of Science, 2021, Vol. 62, No. 10, pp: 3679-3689

2T(2 + 1) (%)3c il

—cH|2

“TG+1) v rc+1)

|-

|

[
zs _1l )
F(c+1)_u lvgul F(c+1)

©22T2(c+ DI (3¢ + 1) |

—8T(2¢+1) (%)4c
2Zc B+ 1DrBe+1)

|

|

—2T(2¢ + 1)( )

—u iﬁ“ 2\ 25T e+ DI Ge + 1)
R _lllz r'(2¢+ 1) l+ 1F —8I'(4¢ + 1) l
T+ Holvstazreie+ Duzs| TH |05 26 T3 (¢ + DTGB + Vs
_[1 —8r2(2c+ 16+ 1)
—H lF 2106 T4 (g + 1)['2(3¢ + 1)vos
R 2T(2¢ + 1)z 8T(2¢+ 1) I'(4¢ + 1)z°¢
TT(c+1) 22T%2(c+DI'Bc+1)  265T3(c+ DI B¢+ D T(5¢ + 1)

8I'2(2¢ + 1)I'(6¢ + 1)z7¢
21064 (¢ + 1)I'2(3¢ + DI (7¢ + 1)

w(z) = lim w-(2)
R 2T(2¢ + 1)z3¢
" T(c+1) 2%T2(¢+ 1r'(3¢+ 1)
8I%(2¢ + 1)I(6¢+ 1)z7¢ N
2106 T4 (¢ + 1)I'2(3¢ + DI (7¢ + 1)
The approximate solution in the series form of (17)-(18), when ¢ = 1, is given by
w(z) = lim w,(3) =sinz
T—>00
which is the exact solution of (17) -(18).

8T(2¢ + 1) I'(4¢ + 1)z5¢
266T3(¢+ 1I'(B¢+ 1) I (5¢+ 1)

As shown in table (3), the proposed method (MVIM) solutions are better from the solutions
acquire by HAM, ADM, LADM, MADM and, the exact solution.

Table 3 - Approximate solution of problem 2 for ¢ = 1 by using proposed method (MVIM)
and comparison with HAM, ADM, LADM, MADM and Exact Solution

; MVIM HAM ADM LADM MADM Exact
0.1 | 0.0998334 0.100 0.100 0.100 0.099833 0.0998334
0.2 0.198669 0.199 0.199 0.199 0.198669 0.198669
0.3 0.29552 0.296 0.296 0.296 0.29552 0.29552
0.4 0.389418 0.389 0.389 0.389 0.389419 0.389418
0.5 0.479426 0.479 0.479 0.479 0.479427 0.479426
0.6 0.564645 0.565 0.565 0.565 0.564648 0.564642
0.7 0.644224 0.644 0.644 0.644 0.644234 0.644218
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0.8 0.717371 0.717 0.717 0.717 0.717397 0.717356
0.9 0.783361 0.783 0.783 0.783 0.783421 0.783327
Problem 3: Consider the following linear FDDE:
wa(z)=zw(z)+a)(§)—z2+2,1<cS2, 0<z<1. ... (20)
w(0)=0, w®(0)=0 ... (21)
The exact solution is:
w(z) = z? ... (22)

Solution
Applying MT and using initial condition yield:

= vulo()] = ul-z2 + 21+ [0l + o (5)]

2
= voulw(z)] =2 - vz_z tu E“’(Z) tw (2)]

> vWw) =2 - Uz—z +u Ew(z) +w (g)]
By using Eq. (9):

= Wis0) = W) +10) (4 =2 42 = ufon) + on 3)])
By using Eq. (11):
= Wos0) = o~ oy o E wn(2) + 0n (3|

2
Taking the inverse MT vyields:
= omer(@) =17 [~ ] 0t [ fon@ + 00 ()]
By using Eq. (13):
2

=y 112 = 2 ] = —_
wO(Z) H vs  ust2 I'(¢+1) T(¢+3)
ZZC 2ZC+2

— _ -1|L |3 z
a)n+1(z) - I'(c+1) T(¢+3) H vc’u [4 wn(Z) + Wn (2)” nz0
We will calculate the components wq, w,, ...

2Z§ 2ZC+2

=

23S 2352

1 13
w1 (2) = Tc+1) TI(c+3) tu IF”[Z‘”O(Z) + W (g)”

z S z ¢+2
2z 25+2 e [ 1 |37/ 2z¢ 275%2 N 2 (7) 2 (7) ]
“Tc+1) TG+3) M [vc" A\Te+1D T(c+3)) Tc+1) T(c+3)

ZZC ZZC+2
T+ T(+3)
.| 3 275 2752 1 275 275t2
+u m — +—u —
s IT(c+1) T(c+3)| vs"|2T(¢c+1) 25*2T'(¢+3)

2z 2z<+2+_1[3(2 2>+1(2 2
" T(c+1) T(c+3) B gos \us ~ usr2) T s \2sps T 2vzyee2

zzg‘ 2Z§+2

_ + -l [3(2 2 )+( 2 2
T+ T+3) P la\vz T vzez) T g T gerzgacez

)
)

ZZC zzc+2 3 ZZ;‘ Z2g+2 2 ZZc
= —_ -|- — —_ P
F'(c+1) T(¢+3) 2 (F(Zg +1) T(2¢+ 3)) 2§ <
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2z 25512 1 3 z
= — —y1 — M |- —
©28) = 5 Ty M Iuc [4 w1(3) + @, (2)”
22 27512

:F(c+1)_F(c+3)

P R T 235*2 .3 7% z5*?
K vgu 4\T(c+1) F(c+3) 2\I'(2¢+1) F(2c+3)

2 ZZg Z2c+2
* ?(r(zc +1) 4r(26+ 3)))
(268 0" (@ B

F'c+1) T(+3) 2\T2¢+1) T (2¢+3)

2( G B \‘

29\ T'(2¢+1) 41“(2( + 3)

ZZC 2Z(;+2 3 ZZg Z2c+2 ZZg Z2c+2
Fc+1) T(¢+3) (r(Zg +1) T2+ 3)) 2¢ <F(2g +1) 4I(2¢+ 3))

9 Z3§ 9 Z3§+2 3 Z3c 3 Z3c+2
T 8TBe+1) 8T(Bc+3)  2¥iTBe+ 1) 2°T(3¢+3)
3 Z3§' 3 z;3§'+2 2 Z3g‘ 2 Z3§+2

TITEg 1) 25T (35 +3) | 25 T3¢+ 1) 257 (3¢ + 3)

w(z) = lim wm(2)
ZZC ZZ§+2 3 ZZ( Z2g+2
+
F(g +1) F(g + 3) <F(2§ +1) F(Zq + 3))
2 ZZg‘ Z2§+2 9 Z3g‘ 9 Z3g‘+2
+ —_— J— —_ —_—
2¢ <F(2c +1) 4T'(2¢+ 3)) 8T(3¢+1) 8T(3¢+3)
3 z3¢ 3 z3t? 3 z3¢ 3 g3t
26*1T(3¢+1) 25T(3¢+ 3) T o T3¢+ 1) 225+2T(3¢ + 3)
2 Z3§' 2 Z3§+2
+ == — +
23$T(3¢+1) 23T (3¢+3)
The approximate solution in the series form of (20)-(21), when ¢ = 2, is given by
w(z) = lim . (z) = 32
which is the exact solution of (20) -(21).

As shown in table (4), the proposed method (MVIM) solutions are better from the solutions
acquire by HAM, ADM, MADM, and the exact solution.
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Table 4- Approximate solution of problem 3 for ¢ = 2 using the proposed method (MVIM)
and comparison with HAM, ADM, MADM and the exact solution.

2 MVIM HAM ADM MADM Exact
0.1 0.01 0.01 0.01 0.009999 0.01
0.2 0.04 0.04 0.04 0.039999 0.04
0.3 0.09 0.09 0.09 0.089999 0.09
0.4 0.16 0.16 0.16 0.159999 0.16
0.5 0.25 0.25 0.25 0.249999 0.25
0.6 0.36 0.36 0.36 0.359999 0.36
0.7 0.49 0.49 0.49 0.489998 0.49
0.8 0.64 0.64 0.64 0.63995 0.64
0.9 0.81 0.81 0.809 0.809987 0.81

5. Conclusions

This paper comprises a new technique that involves the employment of Mahgoub
transform with the variational iteration method to solve non-linear FDDEs. The aim of the
algorithm is to acquire the not-required unreal suppositions. In example 1, table 2, we
achieved the same results obtained in the exact solution. Also, the results were similar to
those obtained by the ADM and, LADM. In Example 2, table 3, we reached the result that:
the values of t from 0.1 to 0.5 have the same results obtained by the exact solution, while the
values for 0.4 and 0.5 are better than those obtained by MADM. The values of t from 0.6 to
0.9 were closer to the values achieved by the exact solution than those by the MADM. Hence,
our method showed better results than MADM and all other methods. In example 3, table 4,
we found that MVIM gives the exact solution to the problem and the results are similar to
those reached by the HAM and ADM, while it was better than MADM.
In conclusion, we demonstrated that the method has an excellent effectiveness in solving
FDDEs.
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