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Abstract 

     Automated medical diagnosis is an important topic, especially in detection and 

classification of diseases. Malaria is one of the most widespread diseases, with more 

than 200 million cases, according to the 2016 WHO report. Malaria is usually 

diagnosed using thin and thick blood smears under a microscope. However, proper 

diagnosis is difficult, especially in poor countries where the disease is most 

widespread. Therefore, automatic diagnostics helps in identifying the disease 

through images of red blood cells, with the use of machine learning techniques and 

digital image processing. This paper presents an accurate model using a Deep 

Convolutional Neural Network build from scratch. The paper also proposed three 

CNN models each one trained on the Malaria RBC dataset with different 

architectures for handling the classification tasks. Furthermore, disadvantage of the 

traditional method of using transfer learning, and how to control model complexity 

to achieve better performance was discussed. The dropout regularization technique 

was used to avoid overfitting problems and minimize validation loss. Applying Data 

Augmentation technique to avoid the problem of small data in training of proposed 

models, which is a very common problem in medical dataset. Finally, removing 

noise in Malaria images using a Median blur filter, and studying how effects of that 

on training CNN models. According to the classification results, the proposed model 

achieved better classification results at accuracy 99.22 on the original Malaria RBCs 

dataset, and it has the best performance comparing with related work. 

 

Keywords: Medical Image Classification, Convolutional Neural Network, Deep 
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واسع. لحلك تداعج التذخيرات التمقائية في التعخف عمى السخض من خلال صهر الخقسية لخلايا الجم الحسخاء 
(RBC)ة الرهر الخقسية. بيجف ىحه البحث إلى تقجيم نسهذج دقيق ، مع استخجام تقشيات التعمم الآلي ومعالج

( مبشية من الرفخ. حيث تم DCNNلترشيف مخض السلاريا باستخجام الذبكة العربية التلافيفية العسيقة )
تم تجريب كل مشيا عمى هيكمية مختمفة لمتعامل مع ميسة تذخيص السخض. علاوة  (CNN)اقتخح ثلاثة نساذج 
كيد عمى مداوئ الطخيقة التقميجية لاستخجام نقل التعمم، وكيفية التحكم في تعقيج الشسهذج عمى ذلك، تم التخ 

وتقميل فقجان معجل  (Overfitting)لتجشب مذكمة  (Dropout) ايزاً استخجمت تقشية لتحقيق أداء أفزل.
ع مذكمة لمتعامل م  (Data Augmentation)التحقق من الرحة. أيزا استخجمت تقشية زيادة البيانات

البيانات الرغيخة في عسمية تجريب الشساذج السقتخحة ، وىي مذكمة شائعة ججًا في البيانات الطبية. أخيخًا، تم 
ودراسة تأثيخ ذلك عمى عسمية  Median blurإزالة الزهضاء في صهر السلاريا باستخجام مخشح الهسيط 

 22.00قق الشسهذج السقتخح أفزل الشتائج بجقة . وفقًا لشتائج الترشيف، حCNNتجريب نساذج الذبكة العسيقة 
 .عمى مجسهعة بيانات السلاريا الأصمية وكان لجيو أفزل أداء مقارنة بالأعسال ذات الرمة

1. Introduction 

     Malaria is one of the common and dangerous diseases caused by a female Anopheles 

mosquito with parasites help. It is a very infectious disease for humans and other animals. It 

remains one of the most widespread infectious diseases of mankind with 216 million cases 

worldwide in 91 countries in 2016, according to the World Health Organization (WHO) [1].  

Every year, hundreds of millions of blood films are examined for malaria, which involves a 

trained microscopy manually counting parasites and infected red blood cells (RBCs).  Precise 

counts of parasites are not only essential for malaria diagnosis but it is also important for 

drug-resistant testing, measuring drug efficacy, and classifying the severity of the disease. 

However, Microscopic diagnostics are not standardized and strongly depend on 

microscopist’s experience and skills. In low-resource settings, it is usual for microscopists to 

work in isolation, with no rigorous system in place that can ensure the upkeep of their skills 

and therefore the diagnostic quality. That leads to wrong diagnostic decisions in the field. A 

misdiagnosis involves unnecessary use of anti-malaria drugs for false-positive cases and 

going to suffer from their possible side effects, such as abdominal pain, nausea,  diarrhea, and 

sometimes severe complications [1] [2]. Therefore, the automated system became an 

important method for assisted diagnosis.  A new technique related to machine learning neural 

network called deep learning is developing recently to achieve better performance on 

classification tasks. One such form of deep-learning method is the Convolutional Neural 

Network (CNN). It is on top of image classification and recognition tasks, and it has the 

capability to simulate human vision [3].  

1.1 Related Work 

Many studies to detect malaria disease have been reported. For classification and detection 

problems, deep learning and other machine learning models have been used. Most of them are 

described below: 

- Rosado, Da Costa et al. 2016 [4].‏ The authors of this paper introduced a technique for image 

processing and analysis, using supervised classification the main factor is the use of 

exclusively acquired microscopic images with low cost and accessible tools such as 

smartphones. This image used to detect Malaria parasite using an SVM classifier, the 

automatic detection achieved on white blood cells achieved sensitivity 98.2% and 72.1% of 

specificity. 

- Dong, Jiang et al. 2017 [5]. In this paper the author evaluated Deep Convolution Neural 

Network (Transfer Learning TL) architecture, three models were trained including LeNet-5, 

AlexNet, and GoogLeNet, they were tested on the same dataset and compared with SVM. The 

dataset consists of 1032 infected RBC images and 1531 non-infected cells. All images were 

divided into two sets of approximately equal-sized. Also, the researchers used cross-
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validation at 25% test. The result of all four methods reached classification accuracies above 

90%, the SVM approach is less accurate than TL.   

- Usha and Mallikarjunaswamy 2017 [6]‏, Presented detection of Malaria using image 

processing techniques. Used images are acquired from thin blood smear slides and the 

captured color images are converted from (RGB) to gray-scale images, the noise reduction 

technique, contrast stretching for the image enhancement are employed. The infected red 

blood cell is segmented, classified using a support vector machine (SVM) with accuracy 

reached 90%.  

- Devi, Roy et al. 2018 [7], the major issues presented in their work, are feature extraction, 

selection, and classification. The features such as prediction error, the co-occurrence of linear 

binary pattern, chrominance channel histogram, and R-G color are used. For (Support Vector 

Machine (SVM), k‐Nearest Neighbors (KNN) and Naive Bayes) and hybrid classifier, 

obtained by combining the individual classifiers, is trained using the optimal feature set and 

the result is shown (sensitivity 95.86%, accuracy 98.5%, F-score 93.82%) achieved on the 

collected clinical database. 

- Poostchi, Silamut et al. 2018 [8], this survey article has shown an update on the last 

development in automated malaria diagnosis with different methods for the feature extraction 

process and classification tasks using image analysis and machine learning. Deep learning is 

referred to in this article as the last tool was developed such as (DNN, CNN) to detect 

Malaria.  

- Sadafi, Radolko et al. 2018 [9].‏ This study refers to the use of CNN in RBCs microscopic 

images on segmentation task; RBCs images are very useful for diagnosis of many diseases 

such as (Malaria, Anemia, etc.). For the learning process, the author used a different learning 

rate on different epochs the learning rate is then gradually reduced to allow the network to 

converge slowly. After training on 30 epochs the accuracy achieved at 93%. 

- Sammy V. and et al. 2019 [10]. The study aimed to evaluate performance of CNN in 

several architecture using transfer leaning (TL) to detecting Malaria. They used TL models 

such as (Resnet, Googlenet and VGGne) and they achieved accuracy range from 90 to 96 % 

in classification of Malaria disease. 

- Usha K. and et al. 2020 [11]. They used NIH Malaria dataset founded in website 

“Kaggle.com” to develop their work by utilize Discrete Wavelength Transformation (DWT). 

They presented image processing with Machine learning to optimize the classification of 

Malaria by using several methods for extracting features which are includes (Gray Level Co-

occurrence Matrix (GLCM), Histogram of Oriented Gradients (HOG), Local Binary Pattern 

(LBP)) and classify the extracted features using SVM, the proposed model was achieved 

accuracy at 97.93%. 

1.2 Deep learning  

    Deep learning (DL) is a new machine learning area that has recently become increasingly 

popular. DL algorithms can automatically learn features during the training process, and this 

is done in a much better way than using hand-coding to extract these features. Rather than 

crafting a set of rules and algorithms to extract features from the raw data [12]. Deep 

convolutional neural network (CNN), a class of artificial neural networks that have been a 

dominant method in computer vision tasks since the amazing results were shared in the object 

recognition competition known as the ImageNet Large Scale Visual Recognition Competition 

(ILSVRC) in 2012, is the most established algorithm among different deep learning models 

[13, 14]. CNN is a powerful learning algorithm for understanding image content that has 

shown exceptional performance in segmentation, classification, detection, and associated 

tasks [15]. The motivation of this method is to combine the feature extraction and 

classification processes to achieve a learning framework that overcomes the traditional 

method of features extraction (handcrafted). The use of CNN Architectures is a key 
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component of deep learning in the classification of images [16], it has demonstrated excellent 

efficiency in a lot of applications like image classification, speech recognition, object 

detection, and medical image analysis. The architecture of this method comes in several 

variants; however, they typically consist of convolutional and pooling layers, which are 

organized into modules. Either one or several fully connected layers, as in the standard neural 

feed-forward network. Modules are often stacked to form a deep model on top of each other. 

Figure 1, presents the typical CNN architecture for the classification of a toy image. The 

image is entered directly into the network, followed by a few stages of convolution and 

pooling. Finally, the last fully connected layer is the output of the class label [17]. 

 
Figure 1-Typical CNN Image Classifications [17] 

 

Overfitting is an unneglectable problem in deep CNNs, which can be effectively reduced by 

regularization. Overfitting refers to a situation where a model learns statistical regularities 

specific to the training set, i.e., ends up memorizing the irrelevant noise instead of learning 

the signal [18]. Dropout is a technique that helps to prevent overfitting and reduces validation 

error rates efficiently, the selection of which units to drop is random. In the actual system, 

each unit is acquired with a fixed probability p independent of other units, where p can be 

selected using a validation set or can simply be set to 0.5, which tends to be close to the 

optimum solution for a wide variety of tasks  [19]. Many application domains do not have 

access to large data, such as medical image classification or medical diagnosis. Therefore, 

data augmentation is a solution to the problem of training a model with a small dataset. Data 

Augmentation represents a suite of techniques that improve the size and quality of training 

datasets, so which can build better deep learning models using them [20].  

1.3 Problem Statement 

The main problems in this research are identified as follows: 

i. The Traditional methods of using transfer learning which is represented by using 

(Alexnet, Googlenet, Lenet...etc.) models, it’s not necessarily lead to optimal results, 

especially in medical image classification tasks. Thus, computer-aided diagnosis is a system 

that simulates doctors or helps them to diagnose diseases. Those models were trained on 

(ImageNet, MNIST) datasets and it's completely different from the Malaria RBCs dataset. 

ii. Classifying Malaria images according to their classes (non-infected cell, infected cell) 

with high sensitivity and more accurate results. 

iii. Handle with small training data issue in Malaria dataset. 

iv. Studying effects of removing noise with training deep models.   

1.4 Aim of this work 

The present research aims to build an accurate model using Deep Convolutional Neural 

Network from scratch by train several models with different architecture then select the best 

performance of classification for Malaria diagnosis using RBCs image dataset. Applying the 

Dropout regularization technique to avoid overfitting problem and minimize the testing error 

rate. Also, applying data augmentation technique to avoid the problem of small data in the 
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training of the proposed models, which is a very common problem in the medical dataset. 

Finally, removing noise in Malaria images using a median filter and studying how effects of 

that on deep models. 

1.5 Malaria images Dataset  

The malaria images dataset was combined from the group of researchers for the digital image 

of high magnification created by scanning an entire microscopic slide, which is available at 

the University of Alabama at Birmingham. This dataset was randomly selected from a large 

number of cell images and provided to pathologists at the University of Alabama. The dataset 

contains 2565 RBCs images that belong to two classes (the infected class with label 1, the 

non-infected class with label 0) [5]. 

2. Methodology 

The main goal of this research is to apply an algorithm that has the ability to improve image 

classification performance based on deep convolutional neural network method to diagnose 

Malaria disease via an automated system. To design a CNN model from scratch, it is required 

to specify the best layers in the model architecture. Therefore, three models were proposed 

each one trained with different architecture. The best one will be select depending on 

validation accuracy. Figure 2, shows the proposed solution to design Malaria diagnosis 

models.  

 
Figure 2-Block diagram of the proposed models. 

 

2.1 Preprocessing   

2.1.1 Removing noise from malaria RBC images: 

   The noise of Malaria RBC images was reduced using a Median blurred filter. According to 

this method, the noise was reduced at 3 * 3 which is the minimum value of noise removal in 

the image. The other sizes of the median filter such as 5*5, 7*7 are not applied because 
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images will be over smoothed and that effects quality of images.  Figure 3 Smoothed Images 

(a) infected cell, (b) non-infected cell. 

 
(a)                                                 (b) 

Figure 3- Smoothed Images (a) infected cell, (b) non-infected cell 

 

2.1.2 Apply data augmentation technique: 

     Deep learning usually uses a large dataset for training; it is common to apply data 

augmentation to handle small dataset problem. Therefore, the data augmentation optimization 

technique aided to increase the Malaria RBCs dataset depending on the geometric 

transformation of images. The geometric transformation was proposed in Table 1 was applied 

to generate new augmented training set from the original one. Figure 4 shows the result of this 

technique on a single image. 

 
Figure 4-Augmented images for (left) infected class; (Right) non-infected class 

 

2.1.3 Preparing dataset for training  

Original RBCs Malaria images dataset contains 2565 samples belonged to two classes 

infected class with label 1, and non-infected class with label 0. The dataset was randomly 

splitting into two parts using the holdout method. The first part contains 80% of all images 

were used to training models, the second part contains a 20% validation set used for testing 

model performance.  

 
Figure 5-Datasets Splitting 
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2.2 Design Model 1 Architecture  

This section involves building the basic layers of the proposed model 1. The first stage 

requires identifying how many convolution layers we need as a start, then the input image 

needs a fixed size.  

Malaria images dataset is not of fixed sizes. If input images resized at 50 * 50 then, it required 

at least three convolution and pooling layers to extract he feature map. Let C be the 

convolution layer, Relu activation function, P Max-pooling layer with stride 2 that down 

sampling the feature map to half.  

First (C1, Relu, P1) input 50*50 and the output 25 * 25, the second (C2, Relu, P2) input 

24*24 and the output 12 * 12, the third (C3, Relu, P3) input 12*12 and the output 6 * 6. 

This model was established with 14 layers. Starting with determining feature map for input 

images via the set of convolution and pooling, converted into one vector in flatten layer, and 

classified by fully connected layer. The next subsections contain details about these layers. 

2.2.1 CNN Layers configuration and define parameters of model 1 

I. Feature map layers: 

The feature map of input images has been determined utilizing three convolution layers with 

kernels and downsampling in the pooling layer. The first convolution layer contains 16 filters 

with size 3*3 with input image shape (height, width, and channel) as (50, 50, and 3); number 

3 means used color images with RGB. The value of filters will be initialized randomly and 

updated according to the backpropagation rule. The activation function Relu, followed by a 

Max-pooling layer with 2*2 filter size and stride 2, which is downsampling the feature map 

by half. The second convolution layer consisted of 32 filters with size 5*5, the activation 

function Relu, then the Max-pooling layer with 2*2 filters size and stride 2. The third 

convolution layer has 64 filters with size 3*3, the activation function Relu, then the Max-

pooling layer with 2*2 filter size and stride 2.  

II. Flatten layer 

The flatten layer involves taking all 2D output from the previous layers and convert it into one 

vector (1D); this vector is the input of the fully connected layer. 

III.Fully connected layer  

This layer is a traditional neural network with fully connected units which contains 1024 units 

((note: that means takes all vectors in flatten layer you can pike any number and train model 

with it, we trained different vector from (1024, 512, 64) and discover if all 1024 have a robust 

feature). The output layer used sigmoid because the dataset has only two classes (infected (1), 

uninfected (0)).  

2.2.2 Training and Testing of model 1 

After reading the dataset, divide it into two subsets (train, test). The training set contains 2052 

of Malaria RBC images was fitting to the proposed model. Binary cross-entropy has been 

used as a loss function; it gives a measure in the interval [0 - 1] of how separated two values. 

Binary cross-entropy can be defined as: 

    (   )    (    ( )  (   )    (   ))                           … (1) 

Where ά is the value returned by the model and α is the true label value. It's common to 

minimize     (   ) for multiple images at the same time. The cost function is a function that 

we would like to minimize for a batch of images. Let άi be the values returned by the model, 

and let αi be the true labels. S is the number of images in the batch. The mean of summation 

loss for a batch of images used as a Cost function and defined as: 

    (   )   
 

 
∑      (     )  

                                           … (2) 

The goal of the optimizer is to minimize     (   ). Adam optimizer method has been used 

to minimize cost function. In practice, Adam was the best optimizer for the proposed model. 

The other methods such as (Stochastic gradient descent (SGD), root mean square prop 

(RMSprop)) were tried but, the convergence was slower compared with Adam and cannot 
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evaluate this model at 10 epochs. The hyperparameter of Adam optimizer initialized as: 

Learning rate = 0.001, B1=0.9 the value of first moment (mean), B2=0.999 the value of 

second moment (variance), and epochs = 10, batch size = 32. 

2.2.3 Model 1 Regularization Using Dropout Technique 

The dropout regularization technique was used to prevent overfitting of the proposed model. 

This technique works by a set of random units to zero in a fully connected hidden layer. The 

dropout rate is a value that refers to how many units are dropped temporarily. For example, 

0.5 dropout rate refers to half of all units in the FC hidden layer will be dropped. In the 

proposed model, the dropping rate = 0.5 has been utilized to prevent overfitting and minimize 

validation loss, after adding the dropout layer, the total layers of model 1 became 15 layers. 

2.3 Experiment Training with data augmentation (Model 2) 

This experiment involved trials to limit the issue of small training dataset in Malaria RBCs 

images; a Data augmentation technique was proposed to handle this issue. This technique is 

effective in creating more training data samples by applying geometric transformation of each 

image. There are two ways to apply data augmentation on the input dataset. The first, use all 

images in available data and generate more data samples, then re-split the new dataset into a 

subset using cross-validation methods. The second, apply this technique only with the training 

set, and before initialize the training process. The second way has been selected to generate 

more data samples for training sets. This experiment was trained on the same architecture of 

proposed model 1. The number of trainable parameters was increased to 154113 sample after 

applying data augmentation, which needs to add a few modifications on proposed model 1 

architecture which includes: 

1- Instead of using 64 features in the first input layer of classification stage (layer 12), tried 

to increase the input unit to (256, 512) of the network depending on the previous layer 

(flatten). 

2- Minimize the number of filters at convolution layer 3 to32. 

2.4 Design Connected Convolution Architecture (Model 3) 

   This experiment involves applying connected convolution layers. These layers can extract 

more robust features from the first operation of convolving filters on input images. According 

to model 2 summary, first convolution has input image size (48, 48, 16) extracted features by 

convolving 16 filters for each color (R, G, B), followed by activation (Relu) to neglects 

negative values of convolving 16 filters on the input image. After this operation, the Max-

pooling layer extracted maximum values with another filter at size (2, 2), stride 2 which is 

down sampled the convolution outputs to half. The input RBCs images have a proposed shape 

at (50,50,3) so tried to add connected convolution layers at this stage were further exploit the 

original size of an image, and before the convolved image downsampling by max-pooling 

layer. The proposed model 3 was trained and tested on the original dataset without use of data 

augmentation. All three model’s architecture was proposed in previous experiments was 

trained and evaluate at 10 epochs; so, tried to increase the number of iterations with saving 

the best weight at 50 epochs. 

3. Result and Analysis 

3.1 Implementation issues 

In the present work, the implementation issues were used for hardware workstation laptop 

with Core i7 CPU (4 core, 8 CPU, 1600 thread), the GPU Nvidia Quadro 2 G dedicated, 16 

RAM. The software issues Python 3.7 version, Keras on TensorFlow backend, anaconda 4 

environment, open cv library.  

3.2 Experimental results of Architecture model 1 

Model 1 was established with 14 layers, the first 9 layers involved with extracting feature 

map, then converting it to one vector at (1024) in layer 10, and the last 4 layers related with 

classification stage. The classification stage (Fully Connected) consisting of input, hidden 
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layer, and Sigmoid output layer. The input image size was determined at 50 * 50 with three 

components R, G, B. Table 1 shows model 1 architecture.  

Table 1-Model 1 Architecture 
Layer name Number of kernels, stride Output image shape 

Input image - (50,50,3) 

Conv 1 16 (48,48) 

Relu - (48,48) 

Max- pooling1 2,2 (24,24) 

Conv 2 32 (22,22) 

Relu - (22,22) 

Max- pooling 2 2,2 (11,11) 

Conv 3 64 (9,9) 

Relu - (9,9) 

Max- pooling3 2,2 (4,4) 

Flatten - 1024 vector 

Input NN - 64 unit 

Relu - 64 unit 

Hidden - 64 unit 

Sigmoid - 1 unit 

From Table 1 the number of kernels increased at 16, 32, 64 which are suitable for the first 

design but, the output Flatten layer 1024 vector. Therefore, tried to choose at random from 

(1024, 512, 64) to determine how many robust features in 1024 vector that able to distinguish 

two classes and reduce the model complexity. The confusion matrix (CM) was computed on 

the test set which contains 514 samples belonging to two classes (infected with the class label 

“1”, non-infected “0”). Table 2 shows CM result of model 1 at each vector, while Table 3 

depicts the results of selecting the best vectors. 

 

Table 2-Model 1 CM with three different vectors 

Model 1 Flatten (V) True class 
Predicted class 

Positive (1) Negative (0) 

1024 V 
Positive (1) 224 22 

Negative (0) 4 264 

512 V 
Positive (1) 229 17 

Negative (0) 3 265 

64 V 
Positive (1) 231 15 

Negative (0) 0 268 

 

Table 3- result of selecting best vectors 
# Input FC Vector # of Trainable Parameter Test loss Test accuracy % 

1024 1,074,209 0.1513 94.94 

512 548,897 0.1414 96.11 

64 89,249 0.1153 97.08 

Depending on the result shown in Table 3 1024, 500 vectors had matched features map and a 

large number of trainable parameters. The 64 vectors are better testing accuracy and little 

complexity than model 1. The next step tried to identify the best learning rate of Adam 

optimization method at vector 64 and 10 epochs, Table 4 showing the result of the learning 

rate. 

Table 4- result of the different learning rate 
Learning rate of Adam Testing loss Testing accuracy % 

0.01 0.6886 52.33 

0.001 0.1153 97.08 

0.0001 0.1948 92.22 

According to the result shown in Table 4, the best learning rate is 0.001 which is a default rate 

of Adam and was suitable to update kernel and weight at 10 epochs.  
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After selecting the best vectors and learning rate of model 1. The dropout regularization 

technique was applied to avoid overfitting and minimize validation loss. Model 1 was 

retrained with the saved best result at 10 epochs Table 5 shows the result of each 10 epochs 

with dropout at rate 0.5.  

 

Table 5-Results of with/without Dropout at 10 epochs 
Apply dropout Test loss Test accuracy 

No 0.1153 97.08 

Dropout (0.5) 0.0918 97.64 

The graphs of accuracy and loss between training and testing of model 1 after applying 

dropout layer shown in Figure 6.  

 
Figure 6-Graph of loss and accuracy of model 1 at 10 epochs 

 

3.3 Experimental result of Architecture model 2 

Model 2 was trained with data augmentation. The architecture of model 2 is similar to model 

1 with few modifications to minimize the total vector in the flatten layer. Table.6 shows 

model 2 architecture.  

Table 6-Model 2 Architecture 
Layer name Number of kernels, stride output image shape 

Input image - (50,50,3) 

Conv 1 16 (48,48) 

Relu - (48,48) 

Max- pooling1 2,2 (24,24) 

Conv 2 32 (22,22) 

Relu - (22,22) 

Max- pooling 2 2,2 (11,11) 

Conv 3 32 (9,9) 

Relu - (9,9) 

Max- pooling3 2,2 (4,4) 

Flatten - 512 vectors 

Input NN - 256 unit 

Relu - 256 unit 

Hidden - 256 unit 

Dropout 0.5 128 unit 

Sigmoid - 1 unit 

From Table 6, this model is established with 15 layers. The First 9 layers related to extracting 

the feature map, then converted the output images into one vector (512 vectors) at flatten 

layer 10, and the last 5 layers involved with the classification process. Also, tried to select 

between two Flatten vectors (512, 256) to identify the best feature map and balancing the 

complexity of model 2, the dropout regularization method was implemented at rate 0.5. The 
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scope of this experiment is to train model 2 with data augmentation to obtain better 

classification accuracy of Malaria RBCs images.  

The confusion matrix of this experiment was also computed on the test set with 514 samples. 

Table 7 shows CM of model 2 with each vector at epochs=10, Table 8 shows the 

classification result of model 2 including (recall, precision). 

 

Table 7-Model 2 CM at 10 epochs 

Model 2 Flatten (V) True class 
Predicted class 

Positive (1) Negative (0) 

256 V 
Positive (1) 231 15 

Negative (0) 2 266 

512 V 
Positive (1) 234 12 

Negative (0) 6 262 

 

Table 8- model 2 classification result 
# of Vectors Test loss Test accuracy % Recall Precision 

256 0.1187 96.69 0.9390 0.9914 

512 0.1145 96.50 0.9512 0.9750 

Through the results‏ shown in Table 8, both vectors have similar results, but vector 256 

achieves the least complexity of Model 2, and thus the accuracy may improve after increasing 

the number of iterations. Compared with the first model, results did not improve after 

increasing the training data using data augmentation at 10 epochs. 

3.4 Experimental results of connected convolution architecture model 3 

The aim of this experiment is further exploited for the original size of input images. The 

connected convolution was applied in the first input image size at (48, 48). The proposed 

model was established with 17 layers. The First 12 layers are related to the extract feature 

map, and the last 5 layers involve in the classification process. Table 9 shows the architecture 

of model 3.   

Table 9-Model 3 Architecture 
Layer name Number of kernels, stride output image shape 

Input image - (50,50,3) 

Conv 1 16 (48,48) 

Conv 2 32 (46,46) 

Conv 3 32 (44,44) 

Relu - (44,44) 

Max- pooling1 2,2 (22,22) 

Conv 4 32 (18,18) 

Relu - (18,18) 

Max- pooling 2 2,2 (9,9) 

Conv 3 32 (7,7) 

Relu - (7,7) 

Max- pooling3 2,2 (3,3) 

Flatten - 228 vectors 

Input NN - 228 unit 

Relu - 228 unit 

Hidden - 228 unit 

Dropout 0.5 114 unit 

Sigmoid - 1 unit 

Model 3 was trained on the original Malaria RBCs dataset at 10 epochs, Table 10 shows the 

confusion matrix and the classification result. 
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Table 10-Model 3 CM at 10 epochs 

True class 
Predicted class 

Test loss Test accuracy % 
Positive (1) Negative (0) 

Positive (1) 232 14 
0.08   27 97.28 

Negative (0) 0 268 

According to the classification result shown in Table 10, model 3 achieved a better 

classification result on the original Malaria RBCs dataset. The next stage is to increase 

number of epochs at 50 and evaluate model’s performance. 

3.5 Evaluate models’ performance at 50 epochs 

This stage aimed to increase training iteration at (50 epochs). In the province experiments, all 

model architectures were trained at 10 epochs which are considering small number of training 

iteration. Adam optimizer cannot obtain the best weights and kernel update at epochs =10. 

But, small training iteration for all models was good for identifying errors in designing 

architectures of proposed models. The confusion matrix of the proposed models was 

computed on the testing set which contains (514 RBCs images) belong to two classes 

(infected 1, non-infected 0). Table 11 shows the confusing matrix of each model at 50 epochs. 

      

Table 11-Confusion matrix at 50 epochs 

Model True class 
Predicted class 

Positive (1) Negative (0) 

Model 1 
Positive (1) 232 14 

Negative (0) 0 268 

Model 2 
Positive (1) 238 8 

Negative (0) 5 263 

Model 3 
Positive (1) 242 4 

Negative (0) 0 268 

Depending on confusion matrix results that present in Table 11, the evaluation metrics (loss, 

accuracy) shown in Table-12 

Table 12-Classification result at 50 epochs 

Model name Testing loss Accuracy % 

Model 1 0.0931 97.28 

Model 2 0. 0894 97.47 

Model 3 0. 0487 99.22 

From the result shown in Table 12; the architecture of model 3 achieved the best test accuracy 

and test loss compared with others. This model can classify Malaria images depending on the 

feature map extracted by connected convolution and without using the data augmentation 

technique. Table 13, shows other metrics for further evaluation of model performance. These 

metrics include sensitivity (recall), specificity (precision), F1-score. 

 

Table 13-Other classification metrics result 
Model name Recall Precision F1-score 

Model 1 0.9431 1 0.9707 

Model 2 0. 9675 0. 9794 0.9734 

Model 3 0. 9837 1 0.9917 

According to the result shows in Table 13, model 3 recorded a higher score than others. 

Figure 7 shows the graphs of accuracy and loss between training and testing of model 3. 
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Figure 7-graph of loss and accuracy of model 3 at 50 epochs 

 

From figure 7, note the pointer in epochs 40 are not stable and the gap between training and 

testing is large, which indicates the model is going through overfitting problem. Also, it can 

be seen the next epochs after 40 will be stable and the gap is very small. That is because the 

effectiveness of the dropout regularization technique to prevent overfitting. While model 2 

was trained using data augmentation as shown in figure 8 the gap is small and the pointers are 

stable which indicates model 2 was avoiding overfitting because of increasing data samples 

by using data augmentation. 

 
Figure 8- Graph of loss and accuracy of model 2 at 50 epochs 

 

3.6 Training with noise reduction result 

The purpose of this experiment is to attempt to reduce noise in the original dataset of malaria 

and study how effects of that on training the proposed models. Therefore, the method of 

preprocessing which is related to removing noise by applying median blur filter was used to 

create a new dataset. The noise reduction dataset was trained on three proposed models at 50 

epochs and its results are shown in Table 14.  

 

Table 14-Confusion matrix with noise reduction DS 

Model name True class 
Predicted class 

Positive (1) Negative (0) 

Model 1 
Positive (1) 231 15 

Negative (0) 0 268 

Model 2 
Positive (1) 233 13 

Negative (0) 1 267 

Model 3 
Positive (1) 240 6 

Negative (0) 1 267 
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Table 15-classification result with noise redaction at 50 epochs 

Model name Testing loss Accuracy % 

Model 1 0.1033 97.08 

Model 2 0. 0953 97.28 

Model 3 0.0688 98.64 

 

    As the results are shown in Table 15 all models were trained and tested on a noise 

reduction dataset. The classification accuracy did not improve compared with results shown 

in Table 12 at the same epochs when models were trained without removing noise.  

3.7 Comparing with related work on the same dataset  

This section involves with comparing the results presented in Table 4.12 with other related 

work on the same dataset. Table 4.16 shows the proposed models compare with other models. 

 

Table 16-comparing with related work on the same dataset 

Model name 
Used data 

augmentation 
Accuracy 

Proposed model 1 No 97.28 

Proposed model 2 Yes 97.47 

Proposed model 3 No 99.22 

TL with LeNet-5 [5] No 96.18 

TL with AlexNet [5] Yes 95.79 

TL with GoogLeNet [5] yes 98.13 

SVM with hu- moment features [5] - 91.66 

 

      According to the comparison results shown in Table 16, the proposed model 3 achieved 

the best classification accuracy on the original Malaria dataset and without using data 

augmentation.  

3.8 Analysis  

From the three models designed, the first model extracts a feature map at 1024 vectors. 

Through the classification results reported in Table 3, vector 64 obtained the best accuracy 

result of classification for Malaria images and also achieved a balance between model 

complexity and accurate results. 

When determining the best learning rate mentioned in Table 4 for Adam's algorithm, learning 

rate 0.001 was the best choice for updating weights and filters as well. Thus, this rate will be 

used for all subsequent experiments. 

After selecting best vector from flatten layer and best learning rate and applied the dropout 

technique, the proposed model 1 achieved 97.6 accuracy for classification Malaria RBCs 

dataset. But this model misclassified with 14 samples at FN rate as shown in Table 2; the 

reason could be explained by the fact that the training data set was small, or the first model 

needed to be modified in the architecture. Consequently, the second model proposed with 

increasing the training data set using the data augmentation technique with a slight 

modification of the model's architecture. 

The second model (Model 2) was trained using the data augmentation technique on the 

training set. This proposed technique aims to increase the input images using geometric 

transformations as shown in Figure 2. Model 2 extract feature map at 512 vectors, according 

to result mentioned in Table 8; the 256 vectors of flatten layer was achieved classification 

accuracy 96.69 with less model complexity for trainable parameter and misclassified at FN = 

15, FP = 2 samples. While 512 vectors are achieved classification accuracy at 96.5 with more 

complexity and misclassified at FN = 12, FP = 6 samples. Comparing 512, and 256, 256 was 

higher accuracy and may be the result of misclassification will be improved when increasing 

number of epochs. Overall, the data augmentation technique did not improve the performance 
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of the second model compared to the first model in 10 epochs. Through this experience, it can 

be diagnosed that the training data is not little, but the second model needs to be modified in 

the proposed architecture. 

The third model modified used connected convolution architecture. These layers can extract 

more features in the original size of the input image and before Max-pooling 1 downsampling 

to half. The proposed model 3 extract feature map at 512 vectors and trained on the original 

Malaria RBCs dataset at 10 epochs. According to the result mentioned in Table 10, this model 

achieved the best classification accuracy 97.28 and misclassified with FN = 14, FP = 0 of 

samples.  

In the next stage, all proposed model was retrained with increase number of epochs at 50. As 

a comparison of evaluation results was mentioned in Table 12 the architecture of model 3 was 

achieved the best classification accuracy 99.22 with minimum loss at 0. 0487, and 

misclassified with only FN = 4 and FP = 0 of test samples according to confusion matrix 

results mentioned in Table 11. The following experiment related to studying de-noise Malaria 

input images and the effect of training the proposed models. 

According to removed noise results (shown in Figure 1), the de-noise images were used to 

retraining the proposed models at 50 epochs. As the results were mentioned in Table 14. The 

results indicate that removing noise from the input images did not improve the classification 

performance. This may be due to the difficulty of extracting features in convolution layers 

when the images are smoothed. 

The last section is related to compare our proposed models with related work on the same 

dataset. According to the results mentioned in Table 16, model 3 achieved better classification 

accuracy in the Malaria RBCs dataset.  

The results also showed that the use of transfer learning does not necessarily have the optimal 

classification accuracy, especially in diagnosing medical images. The GoogleNet model was 

trained on the ImageNet dataset and used 256 *256 image sizes, the number of trainable 

parameters 5,975,602 obtained with 22 convolution layers. While proposed model 3 has 50 * 

50 image size and 150,025, trainable parameter, 6 convolution layers. It is thus less complex 

than a GoogleNet and its design was appropriate and further accurate for diagnosis Malaria 

images. So, we were focusing on the start of the balance between model complexity and good 

results. 

4. Conclusion  

The convolutional neural network is a very efficient method that can be used to accurately 

diagnose the classification and detection of malaria. To achieve accurate results in CNN 

models, it is necessary to select the best layers in the model architecture. The selection of the 

kernel size and number in the convolution layer depends on the classification task. Adam's 

optimization method was faster in update weight and kernel with a learning rate of 0.001. The 

dropout regularization technique was an efficient method to avoid the overfitting problem and 

minimize testing loss. The data augmentation technique can be a help to solve the problem of 

a small training dataset. Building several models with different architectures was good for 

selecting the best one and specifying errors in the design CNN model. Applying connected 

convolution in the first layers was an effective method to extract more robust feature map. It 

can be more accurate than using data augmentation. The use of transferred learning conveyed 

by (Googlenet, Alexnet, etc.) did not lead to ideal classification accuracy because these 

models contain many trainable parameters, more complex, and not suitable for the 

classification problem. Which affects the extraction of a less accurate feature map and thus 

affects the classification results. Removing noise in Malaria RBCs images decreased 

classification accuracy. This indicates that it is difficult to extract the features map when the 

image is smooth and because most convolution features are edge detection. 
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