

Properties of ~ Self-Adjoint and ~ Positive Operators in b- Hilbert Space

Ghafoori Rafeeq Ghafoor*, Zeana Zaki Jamil

Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq

Abstract

In this paper, we will introduce a new concept of operators in b-Hilbert space, which is respected to ~self- adjoint operator and ~positive operator. Moreover we will show some of their properties as well as the relation between them.

Keywords: self- adjoint operator, positive operator, b-Hilbert space.

خواص المؤثرات ~ الذاتية المرافق والمؤثرات~ الموجبة في فضاء هلبرت من النمط "b"

غفوري رفيق غفور*، زينة زكي جميل

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

في هذا البحث، سوف نقدم مفاهيم جديدة لانواع المؤثرات في فضاء هلبرت من النمط "b" المتعلقة بالمؤثر ~ الموجبة. اضافة الى ذلك سوف نقوم ببرهان بعض خواصهما والعلاقة بينهما.

Introduction:

The concept of n-normed spaces was introduced at first in the 1960's by Gähler [1], as a generalization of usual normed space, where initially suggested by the area function of parallelogram spanned by the two associated vectors as follows:

Let X be a vector space over a field \mathbb{F} either real or complex space with finite or infinite dimension $d \ge n$; $n \in \mathbb{N}$ and a real-valued function $\|.,...,\|: X^n \to \mathbb{R}$ satisfying the following properties for all $x_1,...,x_n \in X^n$ and $\alpha \in \mathbb{F}$.

- 1. $||x_1, ..., x_n|| = 0$ if and only if $x_1, ..., x_n$ are linear dependent.
- $2.\|x_1,\ldots,x_n\|$ is invariant under permutation of x_1,\ldots,x_n .
- $3.||x_1,...,\alpha x_n|| = |\alpha|||x_1,...,x_n||.$
- $4.||x+y, x_2,...,x_n|| \le ||x, x_2,...,x_n|| + ||y, x_2,...,x_n||.$

 $\|.,...,\|$ is called n-norm on X and the pair $(X,\|.,...,\|)$ is called an n-normed space [2].

The related concept of 2-normed space is a real 2-inner product space, which is appeared in [3] by Diminnie. Later Gordjiet.al. in [2] extended the concept as a complex 2-inner product space, which is later called a generalized 2-inner product space [4] by the next according:

A complex valued space X is said to be a generalized 2- inner product space if there is $<(.,.),(.,.)>: X^2 \times X^2 \to \mathbb{C}$, such that for all a, b, c, d, e \in X and $\alpha \in \mathbb{C}$.

1. If a and b are linear independent in X, then < (a, b), (a, b) >> 0.

- 2 < (a, b), (c, d) > = < (c, d), (a, b) >
- 3.<(a,b),(c,d)>=-<(b,a),(c,d)>
- $4 < (\alpha a + e, b), (c, d) > = \alpha < (a, b), (c, d) > + < (e, b), (c, d) >.$

^{*}Email:Ghafoori_2018@yahoo.com

Mazaheriand Kazemiin [5] were introduced concept of b-Cauchy sequence, where b is a non-zero vector in generalized 2-inner product spaceX, then the sequence $\{x_n\}$ is called b-Cauchy sequence in X, if $\lim_{n,m\to\infty} ||x_{n-}x_{m}|, b|| = 0$.

With respected to Khan and Siddiqui in 1982 [6] were introduced many types of orthogonal, that lead Mazaheri in [7] to derived the concept of b-orthogonal in 2-normed space X which contained non-zero vector b and $x, y \in X \setminus b >$, then x is b- orthogonal to y if

 $||x, b|| \le ||x + \alpha y, b||$ for all scalar $\alpha \in \mathbb{R}$ and denoted by $x \perp^b y$. The same authors also proved theorem which is given a characterization to the concept; Let X be a generalized

2-inner product space and $x, y \in X \setminus b >$, then x is b-orthogonal to y if and only if $\langle (x, b), (y, b) \rangle = 0$.

Gordji et.al in [2] defined the concept of complex b-Hilbert space dependent on that every b-Cauchy sequence is convergence in semi normed space $(X, \|., b\|)$.

Corresponding to complex b-Hilbert space, Riyas and Ravindran in [4] introduced the concept of \sim adjoint operator: Let X be a b-Hilbert space and let T be alinear bounded operator onX such that < b > is a T-invariant subspace of X, then there exist a unique linear bounded operator T'onXsatisfying that < (T(x), b), (y, b) >=< (x, b), (T'(y), b) >, where \tilde{X} is a completion of $\frac{X}{< b>}$ which is a Hilbert space.

In this paper we will introduce some new concepts about \sim self adjoint and \sim positive operators in b-Hilbert space as well as give many properties. This paper consist two sections; in section one we will introduce the concept of \sim self -adjoint operator (1.1), and study some of their properties. In section two, we will introduce the definition of \sim positive operator (2.1) and discuss its properties, as well as show the relation with \sim self -adjoint operator.

Finally, in this paper we will use the notion $\langle x, y \rangle_b$ instead $\langle (x, b), (y, b) \rangle_b$ and denoted the set of all bounded linear operator on X by B(X).

1. Properties of~Self -Adjoint Operator

In this section, we give some properties of ~self – adjoint operator in b-Hilbert space.

Definition 1.1:

Let X be a b-Hilbert space, $T \in B(X)$ and $T' \in B(\widetilde{X})$, then T is said to be \sim **self- adjoint operator**if $T|_{\widetilde{X}} = T'$, where \widetilde{X} is a completion of $\frac{X}{\langle b \rangle}$ which is a Hilbert space.

By using the definition (1.1), we immediately get the following properties:

Proposition 1.2:

Let X be a b-Hilbert space and $T \in B(X)$. If T is \sim self-adjoint, then

- 1. T T'is∼ self-adjoint
- 2. T+ T'is \sim self-adjoint when T is restricting on X.
- 3. T T' = $T^2|_{\tilde{v}}$

Now we give the characterization of \sim self-adjoint operators.

Proposition 1.3:

Let X be a b-Hilbert space, $T \in B(X)$ and $T' \in B(\widetilde{X})$, then the following conditions are equivalent

for all x and $y \in X$.

1. T is∼ self-adjoint.

$$2. < T(x), y >_b = < T'(x), y >_b$$

$$3 < T(x), y >_b = < x, T(y) >_b$$

$$4. < T(x), x >_{b} = < x, T(x) >_{b}$$

5. < T(x), $x >_b$ is real.

Proof: $(1 \Rightarrow 2)$

By definition (1.1),
$$T|_{\tilde{X}} = T'$$
, then $T(x)$, $y >_b = < x$, $T'(y) >_b = < x$, $T(y) > = < T'(x)$, $y >_b = < x$

By (2),
$$< T(x)$$
, $y >_b = < T'(x)$, $y >_b = < x$, $T(y) >_b$.

Let y = x, since $\langle T(x), y \rangle_b = \langle x, T(y) \rangle_b$, therefore $\langle T(x), y \rangle_b = \langle x, T(x) \rangle_b$

 $(4 \Rightarrow 5)$

By (part (2) of generalize 2-inner product space),

$$<$$
 T(x), $x>_b=<$ x, T(x) $>_b=\overline{<$ T(x), $x>_b$. Therefore $<$ T(x), $x>_b$ is real.

(5⇒ 1)

Since $\langle T(x), x \rangle_b$ is real, then $\langle T(x), x \rangle_b = \overline{\langle T(x), x \rangle_b} = \langle T'(x), x \rangle_b$, therefore T is \sim self-adjoint.

The next results give us more properties of composition operators.

Proposition 1.4:

Let X be a b-Hilbert space, $T, S \in B(X)$ and $T', S' \in B(X)$. If T is \sim self –adjoint, then S'TS is \sim selfadjoint.

Proof:

Let $x, y \in X$. Then < S'TS(x), $y>_b=<$ x, S'T'S $(y)>_b=<$ (S'T'S)'(x), $y>_b$.But T is \sim self – adjoint operator, so < S'TS(x), $y>_b=<$ (S'TS)'(x), $y>_b$. Therefore by proposition (1.3), S'TS is a \sim self –adjoint operator.

Proposition 1.5:

Let X be a b-Hilbert space and $T, S \in B(X)$, such that they are \sim self-adjoint operators. Then ST is \sim self-adjoint if and only if $ST|_{\widetilde{X}} = TS|_{\widetilde{X}}$.

Proof:(\Rightarrow) Let x and y \in X. Since ST, S and Tare \sim self-adjoint operators, then by proposition (1.3), < ST(x), $y>_b=<$ T'S'(x), $y>_b=<$ TS(x), $y>_b=$ CTS(x), $y>_b=$ O,

for all $x, y \in X$. Therefore $ST|_{\tilde{x}} = TS|_{\tilde{x}}$.

 (\Leftarrow) : Now we have $\langle ST(x), y \rangle_b = \langle x, (ST)'(y) \rangle_b$. Since $ST|_{\widetilde{X}} = TS|_{\widetilde{X}}$, then

$$< ST(x), y >_b = < x, (TS)'(y) >_b = < x, S'T'(y) >_b = < x, ST(y) >_b = < (ST)'(x), y >_b.$$

Therefore by proposition (1.3), ST is \sim self-adjoint operator.

The next proposition shows the linear combination of \sim self-adjoint operators is also \sim self-adjoint.

Proposition 1.6:

Let X be a b-Hilbert space, T and S \in B(X). If T and S are \sim self-adjoint operators, then for all α and $\beta \in \mathbb{R}$, α T + β S is \sim self-adjoint operator.

Proof:

Let $x \in X$.Since T, S are \sim self-adjoint operators, then

$$<(\alpha T + \beta S)(x), y>_b = <(\alpha T' + \beta S')(x), y>_b = <\alpha T'(x), y>_b + <\beta S'(x), y>_b = _b + _b = <(\alpha T + \beta S)'(x), y>_b$$

Therefore by proposition (1.3), $\alpha T + \beta S$ is~ self-adjoint operator.

Turning to eigenvalues and eigenvectors, the next proposition shows that eigenvalues of~self-adjoint operator is real and their corresponding eigenvectors are b-orthogonal.

Proposition 1.7:

Let T: $X \to X$ be a linear bounded ~self –adjoint operator on complex b-Hilbert spaceX, then:

- 1. All the eigenvalues of T (if exist) are real.
- 2. Eigenvectors $x, y \in X \setminus b >$, which are corresponding to different eigen values of T are b- orthogonal.

Proof:

- (1):Let λ be an eigenvalue of~self –adjoint operator T, and let $x \in X \setminus b >$. Then we have, $\lambda < x, x >_b = < \lambda x, x >_b = < Tx, x >_b = < x, Tx >_b = \bar{\lambda} < x, x >_b$, since $x \in X \setminus b >$, then $< x, x >_b \neq 0$, thus $\lambda = \bar{\lambda}$. Therefore λ is real.
- (2): Let λ and μ be eigenvalues of T, and let $x, y \in X \setminus b >$. be corresponding eigenvectors to λ and μ respectively. Since T is \sim self –adjoint, then

$$\lambda < x, y >_b = < Tx, y >_b = < x, Ty >_b = \mu < x, y >_b$$
, so $(\lambda - \mu) < x, y >_b = 0$.

But $\lambda - \mu \neq 0$,, hence $\langle x, y \rangle_b = 0$. Therefore $x \perp^b y$

Properties of ~Positive Operator

In this section we discuss another kind of operator in b-Hilbert space which is ~positive operator.

Definition 2.1:

Let X be a b-Hlibert space and $T \in B(X)$, then T is said to be **positive operator**, denoted by $T \ge 0$ if and only if $T \ge 0$ for all $T \ge 0$ for all $T \ge 0$.

The following explains the relation between~positive operator and~self-adjoint operator in b-Hilbert space.

Proposition 2.2:

Let X be a b-Hilbert space, $T \in B(X)$ and $T' \in B(X)$. If T is ~positive operator, then T is ~self-adjoint operator.

Proof:

Since T is \sim positive operator, then < T(x), $x>_b \ge 0$ for all $x \in X$, thus < T(x), $x>_b$ is real, so < T(x), $x>_b = <$ x, T(x) $x>_b = <$ T'(x), $x>_b = <$ Therefore by proposition (1.3), T is $x>_b = <$ Self-adjoint.

Proposition 2.3:

Let X be a b-Hilbert space, T and $S \in B(X)$. If $T \ge 0$ and $S \ge 0$, then $\alpha T + \beta S \ge 0$ for all non negative scalars α and β .

Proof:

Since T and S are \sim positive operators, and α , $\beta \ge 0$, then

 $\alpha < T(x), x >_b + \beta < S(x), x >_b \ge 0.$ Hence $< (\alpha T + \beta S), x >_b \ge 0$, therefore $\alpha T + \beta S$ is \sim positive operator.

To show the relation between two operators have the same b-congruence class, we need first the following definition.

Definition 2.4:

Let X be any linear space over a field \mathbb{F} , $0 \neq b \in X$, T and $S \in B(X)$, we say that T is b-congruent to S means $T(x) - S(x) \in A$ for all $x \in X$.

Proposition 2.5:

Let X be a b-Hilbert space, T and S \in B(X). If T and S have the same b-congruence class, then T - S is~ positive operator.

Proof:

Let $x \in X$, Since T and S have the same b-congruence class, then $T - S \in A$ so A = A. Therefore by definition (2.1), A = A is A = A positive operator.

We will generalize~ positive operators to the following:

Definition 2.6:

Let T and S \in B(X) are operators, where X is b-Hilbert space, then T \geq S if and only if T - S \geq 0.

Proposition 2.7:

Let X be a b-Hilbert space, T_1 , T_2 , T_3 and T_4 are bounded linear operators from Xonto X, then we have the following properties:

- 1. $T_1 \le T_2$ if and only if $< T_1(x), x>_b \le < T_2(x), x>_b$ for all $x \in X$.
- 2. If $T_1 \le T_2$ and $T_2 \le T_1$, then $T_1 = T_2$.
- 3. If $T_1 \le T_2$ and $T_2 \le T_3$, then $T_1 \le T_3$.
- 4. If $T_1 \le T_2$ and $T_3 \le T_4$, then $T_1 + T_3 \le T_2 + T_4$.
- 5. If $T_1 \le T_2$ and $\alpha \ge 0$, then $\alpha T_1 \le \alpha T_2$.
- 6. If $T_1 \le T_2$, then $-T_1 \ge -T_2$.

Proof:

1): $T_1 \le T_2$ if and only if $T_2 - T_1 \ge 0$ if and only if $T_2 - T_1 \ge 0$ if and only if $T_1(x), x >_b \le 0$ if and only if $T_1(x), x >_b \le 0$ if and only if

(2): Since $T_1 \le T_2$ and $T_2 \le T_1$, then from (1), we get

 $< T_1(x), x>_b \le < T_2(x), x>_b \le < T_1(x), x>_b.$

Hence $\langle T_1(x), x \rangle_b = \langle T_2(x), x \rangle_b$ for all $x \in X$, therefore $T_1 = T_2$

(3): Since $T_1 \le T_2$ and $T_2 \le T_3$, then

 $< T_1(x), x>_b \le < T_2(x), x>_b \le < T_3(x), x>_b.$

Hence $\langle T_1(x), x \rangle_b \leq \langle T_3(x), x \rangle_b$. Therefore $T_1 \leq T_3$

(4): Since $T_1 \le T_2$ and $T_3 \le T_4$, then

$$< T_{1}(x), x>_{b} \le < T_{2}(x), x>_{b}$$
 (1) and
$$< T_{3}(x), x>_{b} \le < T_{4}(x), x>_{b}$$
 (2) Hence
$$< T_{1}(x), x>_{b} + < T_{3}(x), x>_{b} \le < T_{2}(x), x>_{b} + < T_{4}(x), x>_{b} .$$
 Therefore $T_{1} + T_{3} \le T_{2} + T_{4}$ (5):Since $T_{1} \le T_{2}$, then
$$< T_{1}(x), x>_{b} \le \alpha < T_{2}(x), x>_{b}, \text{ hence }$$
 $\alpha < T_{1}(x), x>_{b} \le \alpha < T_{2}(x), x>_{b}, \text{ thus }$ (6): Since $T_{1} \le T_{2}, \text{ then } < T_{1}(x), x>_{b} \le < T_{2}(x), x>_{b}, \text{ thus }$
$$-< T_{1}(x), x>_{b} \ge -< T_{2}(x), x>_{b}, \text{ therefore } -T_{1} \ge -T_{2}.$$

References

- 1. Gähler, S. 1964. Lineare 2-Normetrec Räume. Math.Nachr, 28(1964): 1-43.
- **2.** Gordji, M., E., Divandrai, A., Safi, M.R. and Cho, Y.J. **2013.** On Reformations of 2-Hilbert Spaces, *The Australian Journal of Mathematical Analysis and Applications*, **10**(1) articles 8: 1-11.
- **3.** Diminnie, C., Gähler, S. and white, A. **1973.** 2-Inner Product Spaces, *Demonstration*, *Math.* **6**: 525-536.
- **4.** Riyas, P. and Ravindran, K. **2015.** Riesz Theorems and ~Adjoint Operators On Generalized 2-Inner Product Spaces, *Global Journal mathematics*, **3**(1): 244-254.
- **5**. Mazaheri, H. and Kazemi, R. **2007.** Some Results on 2-Inner Product Spaces, Novi Sad. *J. Math.* **37**: 35-40.
- 6. Khan, A., Siddiqui, A. 1982. b-Orthogonal In 2-Normed Space, *Bull. Calcutta. Math, Soc.*74: 216-222.
- 7. Mazaheri, H. and Golestani, S. **2007**. Some Results On b-Orthogonality In 2- Normed Linear space, *Int. Journal of Math. Analysis*, **1**(14): 681-687.