Alhaidary and Majeed

Iraqi Journal of Science, 2021, Vol. 62, No. 9, pp: 3102-3113 DOI: 10.24996/ijs.2021.62.9.26

ISSN: 0067-2904

Commutativity Results for Multiplicative (Generalized) (α, β) Reverse Derivations on Prime Rings

Zahraa S. M. Alhaidary*, Abdulrahman H. Majeed

Department of Mathematic, College of Science, University of Baghdad, Baghdad, Iraq

Received: 7/1/2021 Accepted: 2/4/2021

Abstract

Let *R* be a prime ring, *I* be a non-zero ideal of *R*, and α, β be automorphisms on *R*. A mapping $F: R \to R$ is called a multiplicative (generalized) (α, β) reverse derivation if $F(xy) = F(y)\alpha(x) + \beta(y)d(x)$ for all $x, y \in R$, where $d: R \to R$ is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring *R* admitting a multiplicative (generalized) (α, β) reverse derivation *F* satisfying any one of the properties: (i) $\alpha(F(xy) \pm \alpha(xy)) = 0$ (ii) $\alpha(F(x)F(y) \pm \alpha(xy)) = 0$

(i) $a(F(xy) \pm a(xy)) = 0$ (ii) $a(F(x)F(y) \pm a(xy)) = 0$ (iii) $a(F(xy) \pm F(y)F(x)) = 0$ (iv) $a(F(xy) \pm F(x)F(y)) = 0$ (v) $a(F(x)F(y) \pm a(yx)) = 0$ (vi) $a(F(xy) \pm a(yx)) = 0$ for all $x, y \in I$ and for some $0 \neq a \in R$.

Keywords: Prime Ring, Reverse Derivation, Multiplicative (Generalized) (α, β) Reverse Derivation, Generalized Multiplicative (α, β) Reverse Derivation.

نتائج الإبدالية للمشتقات المعكوسة (α, β) الضربية المعممة على الحلقات الأولية

زهراء سمير مجد الحيدري* ، عبد الرحمن حميد مجيد

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

1. Introduction

Let *R* be an associative ring with the center Z(R) and $\alpha, \beta: R \to R$ denote automorphisms. For all $x, y \in R$, we write down for commutator [x, y] = xy - yx. For any $a, b \in R$, a ring *R* is called prime ring if a R b = 0 then either a = 0 or b = 0 and is called semiprime if aRa = 0 where $a \in R$, then a = 0. A ring *R* is called 2-torsion free if 2a = 0, implies that a = 0, for all $a \in R$. Over the past

forty years, many results concerning derivations of rings have been obtained. An additive mapping $d: R \to R$ is said to be a derivation of R if d(xy) = d(x)y + xd(y) where $x, y \in R$. Recall that an additive mapping d on R is said to be left multiplier if d(xy) = d(x)y for all $x, y \in R$. The concept of Left α -multipliers (centralizers) was initiated by Albash [1], an additive mapping $d: R \to R$ is called left α -multipliers (centralizers) of R if $d(xy) = d(x)\alpha(y)$ for all $x, y \in R$, where α is an endomorphism of R.

An additive mapping $d: R \to R$ is called a (α, β) derivation if $d(xy) = d(x)\alpha(y) + \beta(x)d(y)$, where $x, y \in R$. Brešar [2] expanded the concept of derivation to generalized derivation. An additive map $F: R \to R$ associated with a derivation of $d: R \to R$ is called a generalized derivation of R if F(xy) = F(x)y + xd(y) holds, where $x, y \in R$. It is clear that every derivation is a generalized derivation, but the converse needs not to be true in general. Hence, generalized derivation covers both the concepts of derivation and left multiplier maps. In [3], an additive mapping $F: R \to R$ is said to be a generalized (α, β) derivation associated with a map $d: R \to R$ such that d is a (α, β) derivation of Rif $F(xy) = F(x)\alpha(y) + \beta(x)d(y)$, where $x, y \in R$. Let H be a non-empty subset of R. We call the map $f: R \to R$ as centralizing on H if $[f(x), x] \in Z(R)$, where $x \in H$ and commuting on H if [f(x), x] = 0, where $x \in H$.

Posner [4] was the first to study the commutativity of rings in this way. He showed that if R is a prime ring with a non-zero derivation d on R and d is centralizing on R, then R is commutative.

The concept of multiplicative derivation was first introduced by Daif [5], inspired by the work of Martindale [6]. He has asked question of when is a multiplicative mapping additive? He answered his question for a multiplicative isomorphism of a ring R.

A mapping $d: R \to R$ is called a multiplicative derivation if it satisfies d(xy) = d(x)y + xd(y) for all $x, y \in R$. Of course, these maps need not to be additive. Daif and El-Sayiad [7] extended the concept of multiplicative derivation to a multiplicative generalized derivation. A map $F: R \to R$ is called a multiplicative generalized derivation if there exists a derivation $d: R \to R$ such that F(xy) = F(x)y + xd(y), where $x, y \in R$, where maps need not to be additive. In this definition, if we take d to be a mapping that is not necessarily a derivation or an additive map, then F is called a multiplicative (generalized) derivation, which was introduced by Dhara and Ali [8]. Thus, multiplicative (generalized) derivation covers both the concepts of a multiplicative derivation and a multiplicative left multiplier (centralizer) F(xy) = F(x)y that holds for all $x, y \in R$. In this paper, we define a multiplicative left α - centralizer for a map $d: R \to R$ (not necessarily additive), which satisfies that $d(xy) = d(x)\alpha(y)$ holds for all $x, y \in R$, where α is an automorphism of R. A multiplicative (generalized) derivation associated with mapping d = 0 covers the concept of multiplicative left centralizer.

In [10], the authors generalized the concept of a multiplicative (generalized) derivation to a multiplicative (generalized) (α, β) derivation of *R*, if $F(xy) = F(x) \alpha(y) + \beta(x)d(y)$ for any $x, y \in R$, where $d: R \to R$ is any map (not necessarily additive) and $\alpha, \beta: R \to R$ are automorphisms of *R*. The authors investigated the commutativity of a prime ring satisfying the following algebraic identities:

 $(i)F(xy) + \alpha(xy) = 0$ $(ii)F(xy) + \alpha(yx) = 0$ (iii)F(xy) + F(x)F(y) = 0 (iv)F(xy) = 0

 $\alpha(y) \circ H(x)$ and $(v)F(xy) = [\alpha(y), H(x)]$, for all x, y in an appropriate subset of R, where H is a multiplicative (generalized) (α, β) derivation. Herstein was the first to introduce the concept of reverse derivation [11]; a reverse derivation is an additive mapping $d: R \to R$ if d(xy) = d(y)x + d(y)xy d(x) that holds for all $x, y \in R$. He showed that if R is a prime ring and d is a nonzero reverse derivation of R, then R is a commutative integral domain and d is a derivation. Aboubakr and Gonzalez [12] generalized the notion of reverse derivation to generalized reverse derivation; an additive map $F: R \to R$ is called a generalized reverse derivation if F(xy) = F(y)x + yd(x) for all x, $y \in R$, where d is a reverse derivation of R. Other authors [13, 14] extended the concept of reverse derivation to those of (α, β) reverse derivation and generalized (α, β) reverse derivation; an additive mapping $d: R \rightarrow R$ is called (α, β) reverse derivation of a R if $d(xy) = d(y)\alpha(x) + \beta(y)d(x)$ for all $x, y \in R$, where $\alpha, \beta: R \to R$ are two mappings. An additive mapping $F: R \to R$ is called a generalized (α, β) reverse derivation associated with $d: R \to \beta$ R if $F(xy) = F(y)\alpha(x) + \beta(y)d(x)$, for all $x, y \in R$ there exists d be a (α, β) reverse derivation.

Another work [15] gave the concept of a multiplicative (generalized) reverse derivation; a map $F: R \to R$ is called a multiplicative (generalized) reverse derivation if F(xy) = F(y)x + y d(x) holds for all $x, y \in R$, where *d* is any map on *R* and *F* is not necessarily additive. The authors extended the concept of a multiplicative (generalized) reverse derivation to a multiplicative (generalized) (α, β) reverse derivation. A mapping $F: R \to R$ is called a multiplicative (generalized) (α, β) reverse derivation of *R* associated with a mapping *d* on *R* if $F(xy) = F(y)\alpha(x) + \beta(y)d(x)$ for all $x, y \in R$, where α, β are automorphisms on *R*. Gurninder and Deepak [16] proved several results of multiplicative (generalized) reverse derivations.

In this paper, we proved the commutativity of a prime ring admitting a multiplicative (generalized) (α, β) reverse derivation satisfying any one of the following identities:

(i) $a(F(xy) \pm \alpha(xy)) = 0$ (ii) $a(F(x)F(y) \pm \alpha(xy)) = 0$ (iii) $a(F(xy) \pm F(y)F(x)) = 0$

(iv) $a(F(xy) \pm F(x)F(y)) = 0$ (v) $a(F(x)F(y) \pm \alpha(yx)) = 0$ (vi) $a(F(xy) \pm \alpha(yx)) = 0$, for all $x, y \in I$ and for some $0 \neq a \in R$, where *I* is a nonzero ideal in a prime ring *R*, and α, β are automorphisms of *R*.

The following basic identities are useful in the proof of our results:

 $[x, yz] = y[x, z] + [x, y]z, \quad [xy, z] = x[y, z] + [x, z]y.$

We need the following lemma for the proof of our main results.

Lemma 1.1. [17]

(i) The center of a nonzero ideal is contained in the center of semi prime ring R. In particular, any commutative one-side ideal is contained in the center of R.

(ii) *R* is commutative if it is a prime ring with a nonzero central ideal.

2. Main Results

Lemma 2.1

Let *R* be a prime ring, *I* be a nonzero ideal of *R*, and $a \neq 0 \in R$ such that a[x, a] = 0 for all $x \in I$, then $a \in Z(R)$.

Proof

Suppose that

$$a[x,a] = 0 \text{ for all } x \in I.$$
(1)

By substituting xr in the place of x in equation (1), where $r \in R$, we get

$$ax[r,a] + a[x,a]r = 0.$$

By using equation (1), we have, ax[r, a] = 0 for all $x \in I, r \in R$. By primness of R and $0 \neq a \in R$, it implies that x[r, a] = 0. Again, by primness of R, with I is a nonzero ideal of R, we get [r, a] = 0 for all $r \in R$, implies that $a \in Z(R)$.

Lemma 2.2

Let *R* be a prime ring, *I* be a nonzero ideal of *R* and $0 \neq a \in R$ such that [x, a]x = 0 for all $x \in I$, then *R* is commutative or $a \in Z(R)$.

Proof

We suppose that

$$[x, a]x = 0 \text{ for all } x \in I.$$
⁽²⁾

By linearizing equation (2) on x, we infer that

This means that

$$[x, a]x + [x, a]y + [y, a]x + [y, a]y = 0.$$

[x + y, a](x + y) = 0 for all $x, y \in I$.

By using equation (2), we get

$$[x, a]y + [y, a]x = 0$$
 for all $x, y \in I$. (3)

By exchanging x by xr in equation (3), where
$$r \in R$$
, we obtain

$$x[r, a]y + [x, a]ry + [y, a]xr = 0 \text{ for all } x, y \in I, r \in R.$$
(4)

By multiplying equation (3) by *r* on the right, we find

$$[x, a]yr + [y, a]xr = 0 \text{ for all } x, y \in I, r \in R.$$
(5)

Comparing equation (4) and equation (5), gives

$$[x, a][r, y] + x[r, a]y = 0 \text{ for all } x, y \in I, r \in R.$$
By taking yz in place of y in equation (6), where $z \in I$, it becomes
$$(6)$$

 $[x, a]y[r, z] + [x, a][r, y]z + x[r, a]yz = 0 \text{ for all } x, y, z \in I, r \in R.$ (7) By using equation (6), we get [x, a]y[r, z] = 0 for all $x, y, z \in I, r \in R.$

By primness of R, we get either [x, a]y = 0 or [r, z] = 0.

If [x, a]y = 0 for all $x, y \in I$ then by primness of R, with I is a nonzero ideal of R, gives [I, a] = 0. So, we get $a \in Z(I)$, by Lemma (1.1), implies that $a \in Z(R)$.

On the other hand, if [R, I] = 0, implies that R contains a nonzero central ideal by Lemma (1.1), then we get R is commutative.

Lemma 2.3

Let R be a prime ring and I be a nonzero ideal of R. If [yz, t] = 0 for all $y, z, t \in I$, then R is commutative.

Proof

We suppose that [yz, t] = 0 for all $y, z, t \in I$. Which means that

y[z,t] + [y,t]z = 0.(8) By putting z = zr in equation (8), where $r \in R$, we have yz[r,t] + y[z,t]r + [y,t]zr = 0. By using equation (8), we have yz[r,t] = 0 for all $y, z, t \in I, r \in R$.

Once more, by primness of R, we get that R contains a nonzero central ideal. By Lemma (1.1), we get that R is commutative.

Lemma 2.4

Let *R* be a prime ring and $F: R \to R$ be a multiplicative (generalized)(α, β) reverse derivation of *R* associated with a map $d: R \to R$, then either *R* is commutative or *d* is the multiplicative left α -centralizer.

Proof

Since *F* is a multiplicative generalized (α, β) reverse derivation, then $F(xy) = F(y)\alpha(x) + \beta(y)d(x)$ for all $x, y \in R$. (9) By putting y = zy in equation (9), where $z \in R$, we get $F(xzy) = F(zy)\alpha(x) + \beta(zy)d(x)$

$$= F(y)\alpha(z)\alpha(x) + \beta(y)d(z)\alpha(x) + \beta(z)\beta(y)d(x)$$
(10)

On the other hand, we have

$$F(xzy) = F(y)\alpha(xz) + \beta(y)d(xz)$$
(11)
Comparing equation (10) and equation (11) we find that

$$F(y)\alpha[z,x] + \beta(y)d(z)\alpha(x) + \beta(z)\beta(y)d(x) - \beta(y)d(xz) = 0.$$
(12)

By replacing x by xz in equation (12), this gives

$$F(y)\alpha([z, x]z) + \beta(y)d(z)\alpha(x)\alpha(z) + \beta(z)\beta(y)d(xz) - \beta(y)d(xz^{2}) = 0.$$
(13)
We right multiply equation (12) by $\alpha(z)$, then we get

$$F(y)\alpha[z, x]\alpha(z) + \beta(y)d(z)\alpha(x)\alpha(z) + \beta(z)\beta(y)d(x)\alpha(z) - \beta(y)d(xz)\alpha(z) = 0.$$
 (14)
We subtract equation (14) from equation (13), we have

$$\beta(z)\beta(y)d(xz) - \beta(y)d(xz^2) - \beta(z)\beta(y)d(x)\alpha(z) + \beta(y)d(xz)\alpha(z) = 0.$$
(15)
Putting $ty = y$ in equation (15), where $t \in R$, gives

$$\beta(z)\beta(ty)d(xz) - \beta(ty)d(xz^2) - \beta(z)\beta(ty)d(x)\alpha(z) + \beta(ty)d(xz)\alpha(z) = 0.$$
(16)
We left multiply equation (15), by $\beta(t)$ to obtain

$$\beta(t)\beta(z)\beta(y)d(xz) - \beta(t)\beta(y)d(xz^2) - \beta(t)\beta(z)\beta(y)d(x)\alpha(z) + \beta(t)\beta(y)d(xz)\alpha(z) = 0$$
(17)
By subtracting equation (17) from equation (16), we have

$$[\beta(z), \beta(t)]\beta(y)(d(xz) - d(x)\alpha(z)) = 0 \text{ for all } x, y, z, t \in \mathbb{R}.$$
(18)

Let
$$y = yr$$
 in equation (18), where $y, r \in R$, then we find that
 $\beta[z, t]\beta(y)\beta(r) (d(xz) - d(x)z) = 0$

$$\beta([z,t]y)R(d(xz)-d(x)\alpha(z))=0.$$

By primness of *R*, we get either $\beta[z, t]\beta(y) = 0$ for all *z*, *t*, *y* \in *R*, or $d(xz) - d(x)\alpha(z) = 0$. If $d(xz) - d(x)\alpha(z) = 0$. This means that $d(xz) = d(x)\alpha(z)$, implies that *d* is the multiplicative left α -centralizer. On the other hand, if $\beta[z, t]\beta(y) = 0$ for all *z*, *t*, *y* \in *R*, we have

 $\beta^{-1}(\beta[z,t]y) = 0 \text{ for all } z, y, t \in R.$

That is, [z, t]y = 0 for all $z, t, y \in R$.

By primness of *R*, this implies that [z, t] = 0 for all $z, t \in R$. Then *R* is commutative. **Proposition 2.5**

Let *R* be a nocommutative prime ring and $F: R \to R$ be a mapping of *R* satisfying F(x + y) = F(x) + F(y) and $F(xy) = F(y)\alpha(x) + \beta(y)d(x)$ for all $x, y \in R$, with *d* is a map on *R*, then *d* is left α -centerlizer of *R*.

Proof

By the hypothesis, we have

$$F(xy) = F(y)\alpha(x) + \beta(y)d(x)$$
(19)

Putting x = x + y and y = z, where $x, y, z \in R$, in equation (19), yields F((x + y)z) = F(xz) + F(yz)

$$F((x+y)z) = F(xz) + F(yz)$$

= $F(z)\alpha(x) + \beta(z)d(x) + F(z)\alpha(y) + \beta(z)d(y)$ (20)

On the other hand,

$$F((x+y)z) = F(z)\alpha(x+y) + \beta(z)d(x+y)$$

= $F(z)\alpha(x) + F(z)\alpha(y) + \beta(z)d(x+y)$ (21)

Comparing equation (21) and equation (20) gives $\beta(z)(d(x + y) - d(x) - d(y)) = 0$. By putting z = zr in the above equation and using *R* as a prime ring, we find that d(x + y) = d(x) + d(y).

Then, *d* is additive and, by using Lemma (2.4), we get that *d* is left α -centerlizer. Lemma 2.6

Let *R* be a prime ring, *I* be a nonzero ideal of *R*, and $F: R \to R$ be a multiplicative (generalized) (α, β) reverse derivation associated with a map $d: R \to R$. If for some $0 \neq a \in R, a(F(xy) \pm F(y)F(x)) = 0$ for all $x, y \in I$ and d(I) = 0, then either *R* is commutative or d(R) = 0. **Proof**

Suppose that d(I) = 0.

In this instance, $F(xy) = F(y)\alpha(x)$ for all $x, y \in I$. By our hypothesis, we have

 $a F(y)(\alpha(x) \pm F(x)) = 0 \text{ for all } x, y \in I.$ (22)

Now, we substitute ty for y in equation (22), where $t \in I$, to get $a F(y)\alpha(t)(\alpha(x) \pm F(x)) + a\beta(y)d(t)(\alpha(x) \pm F(x)) = 0$ for all $x, y, t \in I$.

Since d(I) = 0, we get $a F(y) \alpha(t) (\alpha(x) \pm F(x)) = 0$.

Putting t = rt in the above relation, where $r \in R$, gives

$$a F(y) \alpha(r)\alpha(t) \left(\alpha(x) \pm F(x)\right) = 0$$

By primness of *R*, we have either a F(y) = 0, or $\alpha(t)(\alpha(x) \pm F(x)) = 0$ for all $x, t \in I$.

Putting t = tr in the above equation and using *R* as a prime ring, with *I* being a non-zero ideal of *R*, we get $\alpha(x) \pm F(x) = 0$ for all $x \in I$.

At first, we suppose that

$$aF(y) = 0$$
 for all $y \in I$. (23)

By replacing ry by y in equation (23), we find that

$$a\left(F(y)\alpha(r) + \beta(y)d(r)\right) = 0.$$

By using equation (23) in the above equation, we get $a\beta(y)d(r) = 0$ for all $y \in I, r \in R$. Putting y = ry in the above equation gives $a\beta(r)\beta(y)d(r) = 0$ for all $y \in I, r \in R$. Since β is an automorphism of R, then $a R \beta(y)d(r) = 0$. By primness of R and $a \neq 0$, we have $\beta(y)d(r) = 0$ for all $y \in I, r \in R$. That is, $\beta(I)d(r) = 0$. Since $\beta(I)$ is an ideal, then we get $\beta(I)R d(r) = 0$. Since R is a prime ring with I is a nonzero ideal of R, then we get d(R) = 0. Next, we assume that $\alpha(x) \pm F(x) = 0$ for all $x \in I$.

 $\alpha(x) \pm F(x) = 0 \quad \text{for all } x \in I.$ (24) Assume that *R* is noncommutative and using *rx* instead of *x* in equation (24), where $r \in R$, we have $\alpha(r)\alpha(x) \pm F(x)\alpha(r) \pm \beta(x)d(r) + \alpha(xr) - \alpha(xr) = 0.$

$$\alpha[r,x] \pm (\alpha(x) \pm F(x))\alpha(r) \pm \beta(x) d(r) = 0.$$

By the application of equation (24), we find that

$$\hat{\alpha}[r,x] \pm \beta(x)d(r) = 0 \quad \text{for all } x \in I, r \in R.$$
(25)

By taking *rs* in place of *r* in equation (25), where $r, s \in R$, we find that $\alpha[rs, x] \pm \beta(x) d(rs) = 0$. Applying Lemma (2.4), gives

$$\alpha(r)\alpha[s,x] + \alpha[r,x]\alpha(s) \pm \beta(x)d(r)\alpha(s) = 0.$$
⁽²⁶⁾

Multiplying the right side of equation (25) by $\alpha(s)$ yields

$$\alpha[r, x]\alpha(s) \pm \beta(x)d(r)\alpha(s) = 0 \quad \text{for all } x \in I, r, s \in R.$$
Subtract equation (27) from equation (26), gives $\alpha(r)\alpha[s, x] = 0 \quad \text{for all } x \in I, r, s \in R.$
(27)

Since α is automorphism of R, then we get r[s, x] = 0 for all $x \in I$, $s, r \in R$.

By multiplying the left side of the above equation by [s, x], we have [s, x]R[s, x] = 0.

By primness of R, we have [R, I] = 0 by Lemma (1.1), we get that R is commutative that is contradict with our assumption.

Using a similar approach, we can prove that the same product holds for the instance that a(F(xy) - F(y)F(x)) = 0 for all $x, y \in I$.

Theorem 2.7

Let *R* be a prime ring, *I* be a nonzero ideal of *R*, and *F*: $R \to R$ be a multiplicative (generalized) (α, β) reverse derivation associated with a map $d: R \to R$. If for some $0 \neq a \in R$ such that $\alpha(a) = \beta(a) = a$ and $a(F(xy) \pm \alpha(xy)) = 0$ for all $x, y \in I$, then *R* is commutative.

Proof

Suppose that R is noncommutative, consider the case

 $a(F(xy) + \alpha(xy)) = 0 \text{ for all } x, y \in I.$ Substituting yz in the place of y in equation (28), gives (28)

$$0 = a(F(xyz) + \alpha(xyz)) \text{ for all } x, y, z \in I,$$

$$0 = a(F(yz)\alpha(x) + \beta(yz)d(x) + \alpha(xyz)) + a \alpha(yzx) - a \alpha(yzx)$$

$$= a(F(yz) + \alpha(yz))\alpha(x) + a \beta(yz) d(x) + a \alpha[x, yz]$$

By using equation (28), we have

$$a(\beta(yz)d(x) + \alpha(y)\alpha[x,z] + \alpha[x,y]\alpha(z)) = 0 \text{ for all } x, y, z \in I.$$
(29)

By replacing y by ay in equation (29), we have $a(\beta(a)\beta(yz)d(x) + \alpha(a)\alpha(y)\alpha[x,z] + \alpha(a)\alpha[x,y]\alpha(z) + \alpha[x,a]\alpha(y)\alpha(z)) = 0.$

By the assumption that $\beta(a) = a, \alpha(a) = a$, we obtain $a^2\beta(yz)d(x) + a^2\alpha(y)\alpha[x,z] + a^2\alpha[x,y]\alpha(z) + a\alpha[x,a]\alpha(y)\alpha(z) = 0.$ (30)

Left multiplying equation (29), by a yields

$$a^{2}(\beta(yz)d(x) + \alpha(y)\alpha[x,z] + \alpha[x,y]\alpha(z)) = 0 \text{ for all } x, y, z \in I.$$
(31)
$$a^{2}(\beta(yz)d(x) + \alpha(y)\alpha[x,z] + \alpha[x,y]\alpha(z)) = 0 \text{ for all } x, y, z \in I.$$
(31)

Subtract equation (31) from equation (30), we obtain $a \alpha[x, a]\alpha(y)\alpha(z) = 0$ for all $x, y, z \in I$. $\alpha^{-1}(\alpha(a[x, a]yz)) = 0.$

$$a[x,a]yz = 0.$$

By primness of *R* with *I* being a nonzero ideal of *R*, we get a[x, a]y = 0 for all $x, y, z \in I$. Again, by primness of *R* and $I \neq 0$, we get a[x, a] = 0 for all $x \in I$. By Lemma (2.1), we find that $a \in Z(R)$. Since *R* is a prime ring and $0 \neq a$, then equation (29) becomes

 $\beta(yz)d(x) + \alpha(y)\alpha[x,z] + \alpha[x,y]\alpha(z) = 0 \text{ for all } x, y, z \in I.$ (32) By substituting *ty* for *y* in equation (32), we find that

$$\beta(tyz)d(x) + \alpha(ty)\alpha[x,z] + \alpha[x,ty]\alpha(z) = 0.$$

This means that

 $\beta(t)\beta(yz)d(x) + \alpha(t)\alpha(y)\alpha[x,z] + \alpha(t)\alpha[x,y]\alpha(z) + \alpha[x,t]\alpha(y)\alpha(z) = 0.$ (33) By left multiplying equation (32) by $\alpha(t)$, we get

$$\alpha(t)\beta(yz)d(x) + \alpha(t)\alpha(y)\alpha[x,z] + \alpha(t)\alpha[x,y]\alpha(z) = 0, \text{ for all } x, y, z, t \in I$$
(34)
Comparing equation (33) and equation (34), we get

$$(\beta(t) - \alpha(t))\beta(yz)d(x) + \alpha[x,t]\alpha(y)\alpha(z) = 0.$$
(35)

By putting x = xt in equation (35), we have

$$(\beta(t) - \alpha(t))\beta(yz)d(xt) + \alpha[xt,t]\alpha(y)\alpha(z) = 0$$

By Lemma (2.4), since d is a multiplicative left α -centerlizer, then

$$(\beta(t) - \alpha(t))\beta(yz)d(x)\alpha(t) + \alpha[x,t]\alpha(t)\alpha(y)\alpha(z) = 0.$$
(36)

From equation (35), we get $(\beta(t) - \alpha(t))\beta(yz)d(x) = -\alpha[x,t]\alpha(y)\alpha(z)$. By substituting the value $-\alpha[x, t]\alpha(y)\alpha(z)$ in equation (36), we find that $\alpha[x, t]\alpha[t, yz] = 0$. $\alpha^{-1}(\alpha[x,t]\alpha[t,yz]) = 0.$ (37)

$$[x, t][t, yz] = 0 \text{ for all } x, y, z, t \in I.$$

By putting $z = xz$ in equation (37), we have $[x, t]yx[t, z] + [x, t][t, yx]z = 0.$

By the application of equation (37), we obtain [x, t]yx[t, z] = 0.

By primness of R, with I being a nonzero ideal of R, implies that [I, I] = 0, therefore I is commutative. By Lemma (1.1), then R is commutative, which contradicts our assumption.

Using a similar approach, we can prove that the same product holds for the instance that a(F(xy) - $\alpha(xy) = 0$ for all $x, y \in I$.

Theorem 2.8

Let *R* be a prime ring, *I* be a nonzero ideal of *R*, and *F*: $R \rightarrow R$ be a multiplicative (generalized) (α, β) reverse derivation associated with a map $d: R \to R$. If for some $0 \neq a \in R$ such that $\alpha(a) = a$ and $a(F(x)F(y) \pm \alpha(xy)) = 0$ for all $x, y \in I$, then R is commutative.

Proof

Suppose that *R* is noncommutative, consider the case

$$a(F(x)F(y) + \alpha(xy)) = 0 \text{ for all } x, y \in I.$$
By replacing y by yt in equation (38), where $t \in I$, we obtain
$$(38)$$

$$0 = a(F(x)F(t)\alpha(y) + F(x)\beta(t)d(y) + \alpha(xyt) + \alpha(xty) - \alpha(xty))$$

 $= a(F(x)F(t) + \alpha(xt))\alpha(y) + aF(x)\beta(t)d(y) + a\alpha(x)\alpha[y,t]$

By using equation (38), we find

$$aF(x)\beta(t)d(y) + a\alpha(x)\alpha[y,t] = 0$$
 for all $x, y, t \in I$. (39)
By replacing t by zt in equation (39), where $z \in I$, we get

(42)

By replacing t by 2t in equation (39), where
$$z \in I$$
, we get

$$a(F(x)\beta(z)\beta(t)d(y) + \alpha(x)\alpha(z)\alpha[y,t] + \alpha(x)\alpha[y,z]\alpha(t)) = 0.$$
(40)
Now by replacing t with zt in equation (39) we have

$$a(F(x)\alpha(z)\beta(t)d(y) + \beta(x)d(z)\beta(t)d(y)) + a\alpha(z)\alpha(x)\alpha[y,t] = 0.$$
(41)
By subtraction equation (40) from equation (41), we have

$$aF(x)(\alpha(z) - \beta(z))\beta(t)d(y) + a\beta(x)d(z)\beta(t)d(y) + a\alpha[z,x]\alpha[y,t] - \alpha[z,x]\alpha[y,t] -$$

 $a\alpha(x)\alpha[y,z]\alpha(t) = 0$ for all $x, y, z, t \in I$.

Putting
$$y = yt$$
 in equation (42) and applying Lemma (2.4), yields

$$a(F(x)(\alpha(z) - \beta(z))\beta(t)a(y)\alpha(t) + \beta(x)a(z)\beta(t)a(y)\alpha(t) + \alpha[z, x]\alpha[y, t]\alpha(t) - \alpha(x)\alpha(y)\alpha[t, z]\alpha(t) - \alpha(x)\alpha[y, z]\alpha(t)\alpha(t)) = 0 \text{ for all } x, y, z, t \in I.$$
(43)
Multiplying the right-hand side of equation (42) by (t) gives

Multiplying the right-hand side of equation (42) by
$$(t)$$
, gives

$$aF(x)(\alpha(z) - \beta(z))\beta(t)d(y)\alpha(t) + a\beta(x)d(z)\beta(t)d(y)\alpha(t) + a\alpha[z,x]\alpha[y,t]\alpha(t) - a\alpha(x)\alpha[y,z]\alpha(t)\alpha(t) = 0.$$
(44)

Subtracting equation (43) from equation (44) gives $a\alpha(x)\alpha(y)\alpha[t,z]\alpha(t) = 0$ for all $x, y, z, t \in I$. $\alpha^{-1}\alpha(axy[t,z]t) = 0$,

$$a(axy[t,z]t) = 0$$
$$axy[t,z]t = 0.$$

By primness of R with $a \neq 0$, we get xy[t, z]t = 0. Once more, by primness of R, we find that [t, z]t = 0 for all $t, z \in I$.

Putting z = zx in the last equation and using it, yield [t, z]xt = 0 for all $x, t, z \in I$.

By primness of R, with I being a nonzero ideal of R, we get [t, z]x = 0 for all $x, t, z \in I$.

Since R is a prime and $0 \neq I$, we get [I, I] = 0, therefore, I is commutative. By Lemma (1.1), R is commutative, which is a contradiction with our assumption.

$$a(F(x)F(y) - \alpha(xy)) = 0$$
 for all $x, y \in I$.

Theorem 2.9

Let R be a prime ring, I be a nonzero ideal of R, and $F: R \to R$ be a multiplicative (generalized) (α,β) reverse derivation associated with a map $d: R \to R$. If for some $0 \neq a \in R$ such that $a(F(xy) \pm F(y)F(x)) = 0$ for all $x, y \in I$, then either d = 0 or R is commutative.

Proof

Suppose that *R* is noncommutative, consider the case

 $a(F(xy) + F(y)F(x)) = 0 \text{ for all } x, y \in I.$ (45) Substituting *zx* for *x* in equation (45), where $z \in I$, gives $0 = a(F(xy)\alpha(z) + \beta(xy)d(z) + F(y)F(x)\alpha(z) + F(y)\beta(x)d(z)$ $= a(F(y)\alpha(x)\alpha(z) + \beta(y)d(x)\alpha(z) + a(\beta(xy)d(z) + F(y)F(x)\alpha(z) + F(y)\beta(x)d(z))$ (46) Or, $a(F(y)\alpha(zx) + \beta(y)d(zx) + F(y)F(x)\alpha(z) + F(y)\beta(x)d(z)) = 0.$ By using Lemma (2.4), we get $a(F(y)\alpha(z)\alpha(x) + \beta(y)d(z)\alpha(x) + F(y)F(x)\alpha(z) + F(y)\beta(x)d(z)) = 0.$ (47) By comparing equation (47) and equation (46), we get $a(F(y)\alpha[z,x] + \beta(y)d(z)\alpha(x) - \beta(y)d(x)\alpha(z) - \beta(x)\beta(y)d(z)) = 0.$ (48) Replacing x by xz in equation (48), yields $a(F(y)\alpha[z,xz] + \beta(y)d(z)\alpha(xz) - \beta(y)d(xz)\alpha(z) - \beta(xz)\beta(y)d(z)) = 0.$ Applying Lemma (2.4), gives $a(F(y)\alpha[z,x]\alpha(z) + \beta(y)d(z)\alpha(x)\alpha(z) - \beta(y)d(x)\alpha(z)\alpha(z) - \beta(x)\beta(z)\beta(y)d(z)) = 0.(49)$ Right multiplying equation (48), by $\alpha(z)$ gives $a(F(y)\alpha[z,x]\alpha(z) + \beta(y)d(z)\alpha(x)\alpha(z) - \beta(y)d(x)\alpha(z)\alpha(z) - \beta(x)\beta(y)d(z)\alpha(z)) = 0.$ (50) Subtracting equation (49) from equation (50), gives $a\beta(x)(\beta(z)\beta(y)d(z) - \beta(y)d(z)\alpha(z)) = 0$ for all $x, y, z \in I$. (51) Putting x = rx in equation (51), where $r \in R$, and since β is automorphism of R, yields $a R \beta(x) (\beta(z)\beta(y)d(z) - \beta(y)d(z)\alpha(z)) = 0.$ Once more, by primness of *R*, we arrive at $\beta(z)\beta(y)d(z) - \beta(y)d(z)\alpha(z) = 0$ for all $y, z \in I$. (52) Let y = xy in equation (52), then we have $\beta(z)\beta(x)\beta(y)d(z) - \beta(x)\beta(y)d(z)\alpha(z) = 0$ for all $x, y, z \in I$. (53) From equation (52), we get $\beta(y)d(z)\alpha(z) = \beta(z)\beta(y)d(z)$. By substituting the value $\beta(z)\beta(y)d(z)$ in equation (53), we obtain $\beta[z, x]\beta(y)d(z) = 0$. $\beta^{-1}(\beta[z,x]\beta(v)d(z)) = 0.$

$$[z, x]y \beta^{-1}(d(z)) = 0 \text{ for all } x, y, z \in I.$$

By primness of *R*, we get either [z, x]y = 0 for all $x, y, z \in I$ or $\beta^{-1}(d(z)) = 0$.

If $\beta^{-1}(d(z)) = 0$ then d(l) = 0. By Lemma (2.6), we get d(R) = 0.

On the other hand, if [z, x]y = 0. By primness of *R*, with *I* being a nonzero ideal of *R*, we find that *I* is commutative. By Lemma (1.1), *R* is commutative, which contradicts our assumption.

Using a similar approach, we can prove that the same product holds for the instance a(F(xy) - F(y)F(x)) = 0 for all $x, y \in I$.

Theorem 2.10

Let *R* be a prime ring, *I* be a nonzero ideal of *R*, and $F: R \to R$ be a multiplicative (generalized) (α, β) reverse derivation associated with a map $d: R \to R$. If for some $0 \neq a \in R$, such that $a(F(xy) \pm F(x)F(y)) = 0$ for all $x, y \in I$, then either d = 0 or *R* is commutative.

Proof

Suppose that R is noncommutative, consider the case

$$a(F(xy) + F(x)F(y)) = 0 \text{ for all } x, y \in I.$$

$$a(F(y)\alpha(x) + \beta(y)d(x) + F(x)F(y)) = 0 \text{ for all } x, y \in I.$$
 (54)

By putting y = zy in equation (54), where $z \in I$, we obtain

$$a(F(zy)\alpha(x) + \beta(zy)d(x) + F(x)F(zy)) = 0,$$

 $a(F(y)\alpha(z)\alpha(x) + \beta(y)d(z)\alpha(x) + \beta(z)\beta(y)d(x) + F(x)F(y)\alpha(z) + F(x)\beta(y)d(z)) = 0.$ (55) Right multiply equation (54), by $\alpha(z)$, we have

 $a(F(y)\alpha(x)\alpha(z) + \beta(y)d(x)\alpha(z) + F(x)F(y)\alpha(z)) = 0.$ (56) Subtract equation (56) from equation (55), gives

 $a(F(y)\alpha[z,x] + \beta(y)d(z)\alpha(x) + F(x)\beta(y)d(z) + \beta(z)\beta(y)d(x) - \beta(y)d(x)\alpha(z)) = 0.$ (57) By writing z by zx in equation (57), we find that

 $a(F(y)\alpha[zx,x] + \beta(y)d(zx)\alpha(x) + \beta(zx)\beta(y)d(x) + F(x)\beta(y)d(zx) - \beta(y)d(x)\alpha(zx)) = 0.$

By applying Lemma (2.4), in above equation, then $\beta(y)d(x)\alpha(z)\alpha(x)) = 0$ for all $x, y, z \in I$. (58)Right multiplying equation (57), by $\alpha(x)$ gives $a(F(y)\alpha[z,x]\alpha(x) + \beta(y)d(z)\alpha(x)\alpha(x) + F(x)\beta(y)d(z)\alpha(x) + \beta(z)\beta(y)d(x)\alpha(x) - \beta(z)\beta(y)d(x)\alpha(x)) - \beta(z)\beta(y)d(x)\alpha(x) - \beta(z)\beta(y)d(x)\alpha(x) + \beta(z)\beta(y)d(x)\alpha(x) - \beta(z)\beta(x)\alpha(x) - \beta(z)\alpha(x) - \beta(z)\beta(x)\alpha(x) - \beta(z)\beta(x)\alpha(x) - \beta(z)\beta(x)\alpha(x) - \beta(z)\alpha(x) - \beta(z)\beta(x)\alpha(x) - \beta(z)\alpha(x) - \beta$ $\beta(y)d(x)\alpha(z)\alpha(x) = 0$ for all $x, y, z \in I$. (59) Subtract equation (59) from equation (58), gives $a\beta(z)\big(\beta(x)\beta(y)d(x) - \beta(y)d(x)\alpha(x)\big) = 0 \text{ for all } x, y, z \in I.$ (60)Now, we replace z by rz in equation (60), where $r \in R$, to have $a\beta(r)\beta(z)\big(\beta(x)\beta(y)d(x)-\beta(y)d(x)\alpha(x)\big)=0.$ By using R as a prime ring with $a \neq 0$, we get $\beta(z)\big(\beta(x)\beta(y)d(x) - \beta(y)d(x)\alpha(x)\big) = 0.$ By putting z = zr in the above equation, we have $\beta(z)\beta(r)\big(\beta(x)\beta(y)d(x) - \beta(y)d(x)\alpha(x)\big) = 0.$ Since *R* is a prime ring and *I* is a non-zero ideal of *R*, then we find that $\beta(x)\beta(y)d(x) - \beta(y)d(x)\alpha(x) = 0.$ (61) Let y = zy in the above equation, then we have $\beta(x)\beta(z)\beta(y)d(x) - \beta(z)\beta(y)d(x)\alpha(x) = 0.$ (62)From equation (61), to get $\beta(y)d(x)\alpha(x) = \beta(x)\beta(y)d(x)$ Substituting the value $\beta(x)\beta(y)d(x)$ in equation (62), gives $\beta[x, z]\beta(y)d(x) = 0,$ $\beta^{-1}(\beta[x,z]\beta(y)d(x)) = 0.$ That is, $[x, z]y \beta^{-1}(d(x)) = 0.$ By primness of *R*, we get either [x, z]y = 0 for all $z, y, x \in I$, or $\beta^{-1}(d(x)) = 0$. If [x, z]y = 0 since R is a prime ring and $I \neq 0$, then we get [x, z] = 0 for all $x, z \in I$. Therefore, I is commutative. By Lemma (1.1), R is commutative, which contradicts our assumption. On the other hand, if $\beta^{-1}(d(x)) = 0$ since β is automorphism of R, then we find that d(I) = 0. In this case, $F(xy) = F(y)\alpha(x)$ for all $x, y \in I$. Therefore, our hypothesis implies that $a(F(y)\alpha(x) + F(x)F(y)) = 0$ for all $x, y \in I$. (63) By putting y = zy where $z \in I$ in equation (63), we find that $a(F(y)\alpha(z)\alpha(x) + \beta(y)d(z)\alpha(x) + F(x)F(y)\alpha(z) + F(x)\beta(y)d(z)) = 0.$ Since d(I) = 0, we get $a(F(y)\alpha(z)\alpha(x) + F(x)F(y)\alpha(z)) = 0 \text{ for all } x, y, z \in I.$ (64) Multiplying the right side of equation (63), by $\alpha(z)$ implies that $a(F(y)\alpha(x)\alpha(z) + F(x)F(y)\alpha(z)) = 0 \text{ for all } x, y, z \in I.$ (65)

Subtract equation (64) from equation (65), to find that $aF(y)[\alpha(z), \alpha(x)] = 0$ for all $x, y, z \in I$.

(66)

By replacing y with yr, where $r \in R$, in equation (66), we have $a(F(r)\alpha(y)[\alpha(z), \alpha(x)] + \beta(r)d(y)[\alpha(z), \alpha(x)]) = 0.$

Since d(I) = 0, we obtain $aF(r)\alpha(y)[\alpha(z), \alpha(x)] = 0$ for all $x, y, z \in I, r \in R$. By putting y = ry in the above relation, we get $aF(r)\alpha(r)\alpha(y)\alpha[z, x] = 0$ for all $x, y, z \in I, r \in R$. $aF(r)R\alpha(y)\alpha[z, x] = 0$

By primness of *R*, we get either
$$aF(r) = 0$$
, or $\alpha(y)\alpha[z, x] = 0$ for all $y, z, x \in I$.
If $\alpha(y)\alpha[z, x] = 0$ for all $x, z, y \in I$.

If $\alpha(y)\alpha[z, x] = 0$ for all $x, z, y \in I$. By taking α^{-1} in above equation then we get y[z]

By taking α^{-1} in above equation then we get y[z, x] = 0.

By primness of *R*, with *I* be a non-zero ideal of *R*, we get [I, I] = 0, by Lemma (1.1), we conclude that *R* is commutative, which contradicts with our assumption.

Next, assume that

$$aF(r) = 0 \text{ for all } r \in R.$$
(67)

By putting r = ry in equation (67), we find that aF(ry) = 0 for all $y \in I, r \in R$.

This implies that

 $a(F(y)\alpha(r) + \beta(y)d(r)) = 0.$ By using equation (67) in the above equation, it becomes $a\beta(y)d(r) = 0.$ By putting y = ry in the above equation, we have $a\beta(r)\beta(y)d(r) = 0.$ Since *R* is a prime ring and $a \neq 0$, then $\beta(y)d(r) = 0$ for all $y \in I, r \in R$. Putting y = yr in the last equation and using *R* as a prime ring, we obtain d(R) = 0.Using a similar approach, we can prove that the same product holds for the instance

$$a(F(xy) - F(x)F(y)) = 0 \text{ for all } x, y \in I.$$

Theorem 2.11

Let *R* be a prime ring, *I* be a nonzero ideal of *R* and $F: R \to R$ be a multiplicative (generalized) (α, β) reverse derivation associated with a map $d: R \to R$. If for some $0 \neq a \in R$ such that $\alpha(a) = a$ and $\alpha(F(x)F(y) \pm \alpha(yx)) = 0$ for all $x, y \in I$, then *R* is commutative. **Proof**

Suppose that *R* is noncommutative, consider the case $a(F(x)F(y) + \alpha(yx)) = 0$ for all $x, y \in I$. (68)By substituting zy in place of y in equation (68), we obtain $0 = a(F(x)F(zy) + \alpha(zyx)) \text{ for all } x, y, z \in I,$ $= a(F(x)F(y)\alpha(z) + F(x)\beta(y)d(z) + \alpha(zyx) + a\alpha(yxz) - a\alpha(yxz))$ $= a(F(x)F(y) + \alpha(yx))\alpha(z) + aF(x)\beta(y)d(z) + a\alpha(zyx - yxz).$ By using equation (68), we have $a(F(x)\beta(y)d(z) + a\alpha[z,yx]) = 0,$ $a(F(x)\beta(y)d(z) + \alpha(y)\alpha[z, x] + \alpha[z, y]\alpha(x) = 0 \text{ for all } x, y, z \in I.$ (69) Now, by replacing *z* with *zt* in equation (69), where $t \in I$ we get $a(F(x)\beta(y)d(zt) + \alpha(y)\alpha[zt, x] + \alpha[zt, y]\alpha(x)) = 0.$ By applying Lemma (2.4), we get $a(F(x)\beta(y)d(z)\alpha(t) + \alpha(y)\alpha(z)\alpha[t,x] + \alpha(y)\alpha[z,x]\alpha(t) + \alpha(z)\alpha[t,y]\alpha(x) +$ $\alpha[z, y]\alpha(t)\alpha(x)) = 0$ for all $x, y, z, t \in I$. (70)By right multiplying equation (69), by $\alpha(t)$, we get $a(F(x)\beta(y)d(z)\alpha(t) + \alpha(y)\alpha[z,x]\alpha(t) + \alpha[z,y]\alpha(x)\alpha(t)) = 0.$ (71)Subtract equation (71) from equation (70), gives $a(\alpha(y)\alpha(z)\alpha[t,x] + \alpha(z)\alpha[t,y]\alpha(x) + \alpha[z,y]\alpha(t)\alpha(x) - \alpha[z,y]\alpha(x)\alpha(t)) = 0.$ Since $\alpha(a) = a$, then we obtain $\alpha(a)(\alpha(y)\alpha(z)\alpha[t,x] + \alpha(z)\alpha[t,y]\alpha(x) + \alpha[z,y]\alpha(t)\alpha(x) - \alpha[z,y]\alpha(x)\alpha(t)) = 0.$

$$\alpha^{-1}\alpha \big(a(yz[t,x] + z[t,y]x + [z,y][t,x]) \big) = 0.$$

$$a(yztx - yzxt + ztyx - zytx + zytx - yztx - zyxt + yzxt) = 0.$$

This implies that a z [t, yx] = 0.

By putting z = rz in the above relation, where $r \in R$, we get a R z [t, yx] = 0.

By primness of *R*, with $0 \neq a$, we get z[t, yx] = 0 for all $z, t, y, x \in I$.

Again, by primness of R, with I is a nonzero ideal of R, implies that [t, yx] = 0. By Lemma (2.3), we conclude that R is commutative, which contradicts our assumption.

Using a similar approach, we can prove that the same product holds for the instance

$$a(F(x)F(y) - \alpha(yx)) = 0 \text{ for all } x, y \in I.$$

Theorem 2.12

Let *R* be a prime ring, *I* be a nonzero ideal of *R* and $F: R \to R$ be a multiplicative (generalized) (α, β) reverse derivation associated with a map $d: R \to R$. If for some $0 \neq a \in R$, such that $\beta(a) = a$, $\alpha(a) = a$ and $\alpha(F(xy) \pm \alpha(yx)) = 0$ for all $x, y \in I$, then *R* is commutative. **Proof**

Suppose that *R* is noncommutative, consider the case

$$a(F(xy) + \alpha(yx)) = 0 \text{ for all } x, y \in I.$$
(72)

By writing *zx* by *x* in equation (72), where $z \in I$, we obtain $0 = a(F(xy)\alpha(z) + \beta(xy)d(z) + \alpha(yzx)) + a\alpha(yxz) - a\alpha(yxz)$

By using equation (72) in the above equation, we get

$$a(\beta(x)\beta(y)d(z) + \alpha(y)\alpha[z, x]) = 0 \text{ for all } x, y, z \in I.$$
(73)

By substituting ax in place of x in equation (73), we have $a(\beta(ax)\beta(y)d(z) + \alpha(y)\alpha[z,ax]) = 0.$ This means that $a(\beta(a)\beta(x) \beta(y)d(z) + \alpha(y)\alpha(a)\alpha[z, x] + \alpha(y)\alpha[z, a]\alpha(x)) = 0.$ By the assumption that $\beta(a) = a$, $\alpha(a) = a$, we obtain $a^{2} \beta(x)\beta(y)d(z) + a\alpha(y)a \alpha[z, x] + a\alpha(y)\alpha[z, a]\alpha(x) = 0.$ (74)By multiplying the left side of equation (73) by a, we get $a^2 \beta(x)\beta(y)d(z) + a^2 \alpha(y)\alpha[z, x] = 0$ for all $x, y, z \in I$. (75) Subtract equation (75) from equation (74), we find that $\alpha([\alpha(y), \alpha]\alpha[z, x] + \alpha(y)\alpha[z, \alpha]\alpha(x)) = 0 \text{ for all } x, y, z \in I.$ (76)By putting zx instead of z in equation (76), we get $a([\alpha(y), \alpha]\alpha[zx, x] + \alpha(y)\alpha[zx, \alpha]\alpha(x)) = 0,$ Which means that $a([\alpha(y), a]\alpha[z, x]\alpha(x) + \alpha(y)\alpha(z)\alpha[x, a]\alpha(x) + \alpha(y)\alpha[z, a]\alpha(x)\alpha(x)) = 0.$ By using equation (76), we get $a \alpha(y)\alpha(z)\alpha[x,a]\alpha(x) = 0$ for all $x, y, z \in I$. (77)Since $\alpha(a) = a$, we obtain $\alpha^{-1}\alpha(ayz[x,a]x) = 0.$ Implies that a y z [x, a] x = 0.Now, we replace y by ry in the above equation, where $r \in R$, to have a ry z[x, a]x = 0 for all $x, y, z \in I, r \in R$. By primness of R and $a \neq 0$, we find that yz[x, a]x = 0 for all $x, y, z \in I$. Once more, by primness of R, we get [x, a]x = 0 for all $x \in I$. By Lemma (2.2), we get $a \in Z(R)$ or R is commutative, which contradicts our assumption. Suppose that $a \in Z(R)$ and R is a prime ring, because $0 \neq a \in R$, so by equation (73), we find that $\beta(x)\beta(y)d(z) + \alpha(y)\alpha[z,x] = 0$ for all $x, y, z \in I$. (78)By putting x = tx in equation (78), where $t \in I$, we get $\beta(t)\beta(x y) d(z) + \alpha(y)\alpha(t)\alpha[z, x] + \alpha(y)\alpha[z, t]\alpha(x) = 0.$ (79) By multiplying the left side of equation (78) by $\alpha(t)$, we have $\alpha(t)\beta(x y)d(z) + \alpha(t)\alpha(y)\alpha[z, x] = 0 \text{ for all } x, y, z \in I, r \in R.$ (80) By combining equation (79) and equation (80), we obtain $(\beta(t) - \alpha(t))\beta(xy)d(z) + \alpha[y,t]\alpha[z,x] + \alpha(y)\alpha[z,t]\alpha(x) = 0.$ (81) By substituting zt in place of z in equation (81), we obtain $(\beta(t) - \alpha(t))\beta(xy)d(zt) + \alpha[y,t]\alpha[zt,x] + \alpha(y)\alpha[zt,t]\alpha(x) = 0.$ By using Lemma (2.4), we get $(\beta(t) - \alpha(t))\beta(xy)d(z)\alpha(t) + \alpha[y,t]\alpha(z)\alpha[t,x] + \alpha[y,t]\alpha[z,x]\alpha(t) +$ $\alpha(y)\alpha[z,t]\alpha(t)\alpha(x) = 0$ for all $x, y, z, t \in I$. (82) Now, by multiplying equation (81), by $\alpha(t)$ from the right, implies $(\beta(t) - \alpha(t))\beta(xy)d(z)\alpha(t) + \alpha[y,t]\alpha[z,x]\alpha(t) + \alpha(y)\alpha[z,t]\alpha(x)\alpha(t) = 0.$ (83) Subtract equation (82) from equation (83), we get $\alpha(y)\alpha[z,t]\alpha[x,t] - \alpha[y,t]\alpha(z)\alpha[t,x] = 0$. $\alpha^{-1}\alpha(y[z,t][x,t] - [y,t]z[t,x]) = 0.$ y[z,t][x,t] - [y,t]z[t,x] = 0.yztxt - yzttx - ytzxt + ytztx - ytztx + ytzxt + tyztx - tyzxt = 0.[yz, t][x, t] = 0 for all $x, y, z, t \in I$. (84)By putting x = wx in equation (84), where $w \in I$, we have [yz, t][wx, t] = 0,[yz, t]w[x, t] + [yz, t][w, t]x = 0.By Relation (84), we get Since R is a prime ring, we get either [yz, t] = 0, or w[x, t] = 0. If w[x,t] = 0 for all $x, t, w \in I$. By primness of R with I be a non-zero ideal of R, we get [I, I] = 0, which means that I is commutative, by Lemma (1.1), we conclude that R is commutative, which contradicts our assumption. Alternatively, [yz, t] = 0 for all $y, z, t \in I$. By Lemma (2.3), we conclude that *R* is commutative, which contradicts our assumption.

Using a similar approach, we can prove that the same product holds for the instance

 $a(F(xy) - \alpha(yx)) = 0$ for all $x, y \in I$.

Example 2.13

Consider the ring $R = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} : a, b, c \in Z \right\}$, where Z is the set of integers. Let us define $F, d, \alpha, \beta; R \to R$ by

$$d\left(\begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & a & bc \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}, \alpha\left(\begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}$$
$$\beta\left(\begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & -a & b \\ 0 & 0 & -c \\ 0 & 0 & 0 \end{bmatrix}.$$

Cleary, *d* is a multiplicative (α, β) reverse derivation. Let F = d, then *F* is a multiplicative (generalized) (α, β) reverse derivation associated with the mapping *d* on *R*, where α and β are automorphisms of *R*. It is easy to see that the identities $a(F(xy) \pm \alpha(xy)) = 0$, $a(F(xy) \pm \alpha(xy)) = 0$, $a(F(x)F(y) \pm \alpha(xy)) = 0$ and $a(F(x)F(y) \pm \alpha(yx)) = 0$ are satisfied for some $a \in R$ and for all $x, y \in R$. Here, *R* is not commutative, hence the primness condition of the ring in our results is essential.

References

- 1. Albash E. 2007. On Γ-centralizers of semiprime rings, *Silberian Math. J.*, 48(2):191-196.
- 2. Brešar, M. 1991. On the distance of the composition of two derivation to the generalized derivations, *Glasgow. Math. J.* 33(1): 89-93.
- **3.** Ali, A. and Kumar, D. **2007**. Derivation which acts as a homomorphism or as an anti-homomorphism in a prime ring, *International Mathematical Forum*, **2**:1105-1110.
- 4. Posner, E. c. 1957. Derivation in prime rings, Proc. Amer. Math. Soc. , 18: 1093-1100.
- 5. Daif, M. N., 1991. When is a multiplicative derivation additive, *Int. J. Math.Math. Sci.*, 14(3): 615-618.
- 6. Martindale, W.S.III. 1969. When are Multiplicative Mappings Additive, Proc. Amer.
- 7. Math. Soc. 21: 695-698.
- 8. Daif, M. N. and Tammam El-Sayiad, M.S. 1997. Multiplicative generalized derivation, which are additive, *East-west J. Math.* 9(1): 31-37.
- 9. Dhara, B. and Ali, S. 2013. On multiplicative (generalized) derivation in prime and semi prime rings, *Aequat. Math.* 86(1-2): 65-79.
- 10. Daif, M. N., Tammam El-Sayiad, M. S. and Filippis, V. D. 2014. Multiplicative of left centralizers forcing additivity, *Bol. Soc. Parana. Mat.* 32(1): 61-69
- **11.** Rehman, N.UR. , Al-Omary, R. M. and Muthana, N. M. **2019**. A note on multiplicative (generalized) (α , β)- derivation in prime rings, *Annales. Math. Silesianae*.**14** (6).
- 12. Herstein, I. N., 1957. Jordan derivation of prime rings, Proc. Amer. Math. Soc., 8:1104-1110.
- 13. Aboubakr, A. and Gonzalez, S. 2015. Generalized reverse derivation on semiprime rings, *Siberian Math.* 56(2): 199-205.
- 14. Merve Özdemir, N. A. 2018. (α, β) -Reverse derivation on prime and semi prime rings, *Int. J. Open problem compt. Math.*, 3(9): 49-59.
- **15.** Faraj, A.K. **2011**. On generalized (θ, ϕ) -reverse derivation of prime ring, *Iraqi J.Sci.*, **52**(2): 218-224.
- 16. Tiwari, S.k., Sharma, R.K. and Dhara, B. 2018. Some theorems of commutativity on semiprime ring with mapping, *Southeast Asian Bull. Math.*, 42(2): 279-292.
- **17.** Gurninder, S. Sandhu, and Deepak Kumar. **2019**. Annihlator conditions of multiplicative reverse derivations on prime rings, *International electronic journal of algebra*. **, 25**: 87-103
- 18. Herstein, I.N. 1976. Ring with Involution, Univ. of Chicago Press, and Chicago.