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Abstract

Let R be a prime ring, I be a non-zero ideal of R, and «, 8 be automorphisms
onR. A mapping F: R — R is called a multiplicative (generalized) (a, 8) reverse
derivation if F(xy) = F(y)a(x) + B(y)d(x) forall x,y € R, where d:R — R is
any map (not necessarily additive). In this paper, we proved the commutativity of a
prime ring R admitting a multiplicative (generalized) (a, 8) reverse derivation F
satisfying any one of the properties:
(D) a(Flxy) a(xy)) =0 (i) a (F()F(y) £ a(xy)) =0
(i) a (F(xy) £ F)F(x)) = 0 (iv) a (F(xy) £ F(x)F(y)) =0
WM alF)Fy) talyx)) =0w) a(F(xy) ta(yx))=0 for al x,ye€el
and for some 0 # a € R.

Keywords: Prime Ring, Reverse Derivation, Multiplicative (Generalized) (a,8)
Reverse Derivation, Generalized Multiplicative (a, ) Reverse Derivation.
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D a(Flxy) talxy)) =0 (i) a(Fx)F(Q) talxy)) =0

(i) a (F(xy) + FO)F(x)) = 0 (iv) a (F(xy) £ F(x)F(y)) =0

(V) a(F(x)F(y) £ a(yx)) =0 (vi) a(F(xy) £ a(yx)) =0 for all xyel

and for some 0 # a € R.

1. Introduction

Let R be an associative ring with the center Z(R) and a, B: R — R denote automorphisms. For all
X,y € R, we write down for commutator [x,y] = xy — yx. Forany a,b € R, aring R is called prime
ring if a R b = 0 then either a = 0 or b = 0 and is called semiprime if aRa = 0 where a € R, then
a =0. Aring R is called 2-torsion free if 2a = 0, implies that a = 0, for all a € R. Over the past
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forty years, many results concerning derivations of rings have been obtained. An additive mapping
d:R — R is said to be a derivation of R if d(xy) = d(x)y + xd(y) where x,y € R. Recall that an
additive mapping d on R is said to be left multiplier if d(xy) = d(x)y for all x,y € R. The concept
of Left a-multipliers (centralizers) was initiated by Albash [1], an additive mapping d:R — R is
called left a-multipliers (centralizers) of R if d(xy) = d(x)a(y) for all x,y € R, where « is an
endomorphism of R.

An additive mapping d:R — Ris called a (a,fB) derivation if d(xy) =d(x)a(y) + B(x)d(y),
where x, y € R. Bresar [2] expanded the concept of derivation to generalized derivation. An additive
map F:R — R associated with a derivation of d:R — R is called a generalized derivation of R if
F(xy) = F(x)y + xd(y) holds, where x,y € R. It is clear that every derivation is a generalized
derivation, but the converse needs not to be true in general. Hence, generalized derivation covers both
the concepts of derivation and left multiplier maps. In [3], an additive mapping F: R — R is said to be
a generalized (a, B) derivation associated with a map d: R — R such that d is a (a, 8) derivation of R
if F(xy) = F(x)a(y) + B(x)d(y),where x,y € R. Let H be a non-empty subset of R. We call the
map f:R — R ascentralizing on H if [f(x),x] € Z(R), where x € H and commuting on H if
[f(x),x] = 0, where x € H.

Posner [4] was the first to study the commutativity of rings in this way. He showed that if R is a
prime ring with a non-zero derivation d on R and d is centralizing on R, then R is commutative.

The concept of multiplicative derivation was first introduced by Daif [5], inspired by the work of
Martindale [6]. He has asked question of when is a multiplicative mapping additive? He answered his
question for a multiplicative isomorphism of a ring R.

A mapping d:R — R is called a multiplicative derivation if it satisfies d(xy) = d(x)y +
xd(y) for all x,y € R. Of course, these maps need not to be additive. Daif and El-Sayiad [7] extended
the concept of multiplicative derivation to a multiplicative generalized derivation. Amap F:R = R is
called a multiplicative generalized derivation if there exists a derivation d: R — R such that F(xy) =
F(x)y + xd(y),where x,y € R, where maps need not to be additive. In this definition, if we take d
to be a mapping that is not necessarily a derivation or an additive map, then F is called a
multiplicative (generalized) derivation, which was introduced by Dhara and Ali [8]. Thus,
multiplicative (generalized) derivation covers both the concepts of a multiplicative derivation and a
multiplicative generalized derivation. In [9], a mapping F: R — R (not necessarily additive) is said to
be a multiplicative left multiplier (centralizer) F(xy) = F(x)y that holds forall x,y € R. In this
paper, we define a multiplicative left a- centralizer for a map d: R —» R (not necessarily additive),
which satisfies that d(xy) = d(x)a(y) holds for all x,y € R, where « is an automorphism of R. A
multiplicative (generalized) derivation associated with mapping d = 0 covers the concept of
multiplicative left centralizer.

In [10], the authors generalized the concept of a multiplicative (generalized) derivation to a
multiplicative (generalized) (a, 8) derivation of R, if F(xy) = F(x) a(y) + f(x)d(y) forany x,y €
R, where d: R — R is any map (not necessarily additive) and a,8: R — R are automorphisms of R.
The authors investigated the commutativity of a prime ring satisfying the following algebraic
identities:

(DF(xy) + a(xy) = 0 (ii) F(xy) + a(yx) = 0 (ii)F(xy) + F(x)F(y) =0 (iv) F(xy) =

a(y)o H(x) and (v)F(xy) = [a(y), H(x)], for all x,y in an appropriate subset of R, where H is a
multiplicative (generalized) (a, ) derivation. Herstein was the first to introduce the concept of
reverse derivation [11]; a reverse derivation is an additive mapping d:R — Rifd(xy) = d(y)x +
y d(x) that holds for all x,y € R. He showed that if R is a prime ring and d is a nonzero reverse
derivation of R, then R is a commutative integral domain and d is a derivation. Aboubakr and
Gonzalez [12] generalized the notion of reverse derivation to generalized reverse derivation; an
additive map F: R — R is called a generalized reverse derivation if F(xy) = F(y)x + yd(x) for all x,
y € R, where d is a reverse derivation of R. Other authors [13, 14] extended the concept of reverse
derivation to those of (a, ) reverse derivation and generalized (a, ) reverse derivation; an additive
mapping d:R >R is called a (apf) reverse  derivation of R if
d(xy) =d®)a(x) + B(y)d(x) forall x,y € R,where @, f: R = R are two mappings. An additive
mapping F:R — R is called a generalized (a, ) reverse derivation associated with d:R —
Rif F(xy) = Fy)a(x) + B(y)d(x),forall x,y € R there exists d be a (a, ) reverse derivation.
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Another work [15] gave the concept of a multiplicative (generalized) reverse derivation; a map
F:R - R is called a multiplicative (generalized) reverse derivation if F(xy) =F(y)x+
y d(x) holds for all x,y € R, where d is any map on R and F is not necessarily additive. The authors
extended the concept of a multiplicative (generalized) reverse derivation to a multiplicative
(generalized) (a, B) reverse derivation. A mapping F: R — R is called a multiplicative (generalized)
(a,B) reverse derivation of R associated with a mapping d on R if F(xy)=F({y)a(x)+
B(y)d(x) forall x,y € R, where a, 8 are automorphisms on R. Gurninder and Deepak [16] proved
several results of multiplicative (generalized) reverse derivations.
In this paper, we proved the commutativity of a prime ring admitting a multiplicative (generalized)
(a, B) reverse derivation satisfying any one of the following identities:
() a (FCxy) £ a(xy)) = 0 (iDa (F(OF ) £ a(xy) = 0 (ii)a (F(xy) £ FO)F(x)) =0
(iv)a (F(xy) £ FG)F()) = 0 (v) a(F(x)F(¥) £ a(yx)) = 0 (vi) a(F (xy) + a(yx)) = 0, for all
x,y €1 and for some 0 # a € R,where [ is a nonzero ideal in a prime ring R, and «,f are
automorphisms of R.
The following basic identities are useful in the proof of our results:
[x,yz] = y[x,z] + [x,y]z, [xy,z] = x[y, z] + [x, z]y.
We need the following lemma for the proof of our main results.
Lemma 1.1. [17]
Q) The center of a nonzero ideal is contained in the center of semi prime ring R. In particular,
any commutative one-side ideal is contained in the center of R.
(i) R is commutative if it is a prime ring with a nonzero central ideal.
2. Main Results
Lemma 2.1
Let R be a prime ring, I be a nonzero ideal of R,and a # 0 € Rsuchthat a[x,a] = 0 forall x €1,
then a € Z(R).
Proof
Suppose that
alx,a] = 0forall x € I. 1)
By substituting xr in the place of x in equation (1), where r € R, we get
ax[r,a] + a[x,a]r =0.
By using equation (1), we have, ax[r,a] =0 forallx € I,r € R.
By primness of R and 0 # a € R, it implies that x[r,a] = 0. Again, by primness of R, with I is a
nonzero ideal of R, we get [r,a] = 0 for all r € R, implies that a € Z(R).

Lemma 2.2
Let R be a prime ring, I be a nonzero ideal of R and 0 # a € R such that [x,a]x = 0 for all x € I,
then R is commutative or a € Z(R).
Proof
We suppose that
[x,a]x = 0 forall x €1. 2
By linearizing equation (2) on x, we infer that
[x +y,a]l(x+y)=0forallx,y €.
This means that
[x,alx + [x,a]y + [y,alx + [y,al]y = 0.
By using equation (2), we get

[x,a]ly + [y,alx = 0forallx,y € I. (3)
By exchanging x by xr in equation (3), where r € R, we obtain
x[r,aly + [x,alry + [y,alxr =0forallx,y € ,r €R. 4
By multiplying equation (3) by r on the right, we find
[x,alyr + [y,alxr =0 forall x,y € I,r € R. (5)
Comparing equation (4) and equation (5), gives
[x,al[r,y] + x[r,aly =0forallx,y € I,r € R. (6)

By taking yz in place of y in equation (6), where z € I, it becomes
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[x,aly[r,z] + [x,al[r,y]z + x[r,alyz =0forall x,y,z € I,r € R. @)
By using equation (6), we get [x, a]y[r,z] = 0 forall x,y,z € I, € R.
By primness of R, we get either [x,a]ly = 0or[r,z] =0.
If [x,a]y = 0forallx,y €I then by primness of R, with Iis a nonzero ideal of R, gives [I,a] =
0.So, we get a € Z(I), by Lemma (1.1), implies that a € Z(R).
On the other hand, if [R,I] = 0, implies that R contains a nonzero central ideal by Lemma (1.1), then
we get R is commutative.
Lemma 2.3
Let R be a prime ring and | be a nonzero ideal of R. If [yz,t] =0 for all y,z,t €I, then R is
commutative.
Proof
We suppose that [yz,t] = 0 forall y,z,t € I.
Which means that

ylz,t] + [y, tlz = 0. (8)
By putting z = zr in equation (8), where r € R, we have yz[r,t] + y[z, t]r + [y, t]zr = 0.
By using equation (8), we have yz[r,t] = 0 forall y,z,t € I,r € R.
Once more, by primness of R, we get that R contains a nonzero central ideal. By Lemma (1.1), we get
that R is commutative.
Lemma 2.4
Let R be a prime ring and F: R — R be a multiplicative (generalized)(a, ) reverse derivation of R
associated with a map d:R — R, then either R is commutative or d is the multiplicative left a-
centralizer.
Proof
Since F is a multiplicative generalized (a, B) reverse derivation, then
F(xy) = F(y)a(x) + B(y)d(x) forall x,y € R. 9)
By putting y = zy in equation (9), where z € R, we get
F(xzy) = F(zy)a(x) + B(zy)d(x)

=Fa(2alx) + By)d(z)a(x) + B(z)B(y)d(x) (10)
On the other hand, we have
F(xzy) = F(y)a(xz) + B(y)d(xz) (11)
Comparing equation (10) and equation (11), we find that
F(y)alz,x] + B)d(z)a(x) + B(2)B(y)d(x) — B(y)d(xz) = 0. (12)

By replacing x by xz in equation (12), this gives
F()a([z,x]z) + B(y)d(2)a(x)a(z) + B(2)B(y)d(xz) — B(y)d(xz*) = 0. (13)
We right multiply equation (12) by a(z), then we get
F(y)alz,x]a(z) + By)d(2)a(x)a(z) + B(z)B(y)d(x)a(z) — B(y)d(xz)a(z) =0.  (14)
We subtract equation (14) from equation (13), we have
B(2)B()d(xz) — f()d(xz?) — B(2)B(y)d(x)a(z) + B(y)d(xz)a(z) = 0.  (15)
Putting ty = y in equation (15), where t € R, gives
B(2)B(ty)d(xz) — B(ty)d(xz®) — B(2)B(ty)d(x)a(z) + f(ty)d(xz)a(z) = 0. (16)
We left multiply equation (15), by 8(t) to obtain
B®B@)BH)d(xz) — B)B()d(xz*) — B(O)B(2)B()d(x)a(z) + B()B()d(xz)a(z) = 0(17)
By subtracting equation (17) from equation (16), we have
[,B(Z),B(t)]ﬁ(y)(d(xz) - d(x)a(z)) =0forall x,y,zt €R. (18)
Let y = yr in equation (18), where y,r € R, then we find that
Blz, tIB()B () (d(xz) — d(x)z) = 0.
Bz, t]y)R(d(xz) — d(x)a(z)) = 0.
By primness of R, we get either B[z, t]B(y) = 0forall z,t,y € R,or d(xz) — d(x)a(z) = 0.
If d(xz) —d(x)a(z) = 0. This means that d(xz) = d(x)a(z), implies that d is the multiplicative left
a —centralizer.
On the other hand, if B[z, t]B(y) = 0forall z,t,y € R, we have
B~ 1(Blz tly) = 0forall z,y,t € R.
Thatis, [z, t]y = 0 forall z,t,y € R.
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By primness of R, this implies that [z,t] = 0 for all z,t € R. Then R is commutative.
Proposition 2.5
Let R be a nocommutative prime ring and F: R — R be a mapping of R satisfying F(x + y) = F(x) +
F(y) and F(xy) = F(y)a(x) + B(y)d(x) for all x,y € R, with d is a map on R, then d is left a-
centerlizer of R.
Proof
By the hypothesis, we have
F(xy) = F(y)a(x) + B(y)d(x) (19)
Putting x = x + y and y = z, where x, y, z € R, in equation (19), yields
F((x + y)z) = F(xz) + F(yz)
=F(2)a(x) + p(2)d(x) + F(2)a(y) + B(2)d(y) (20)
On the other hand,
F((x + y)z) =F@alx+y)+L@)dx+y)
=F(2)a(x) + F(2)a(y) + f(2)d(x +y) (21)
Comparing equation (21) and equation (20) gives B(z)(d(x +y) — d(x) —d(y)) = 0.
By putting z = zr in the above equation and using R as a prime ring, we find that d(x + y) = d(x) +
).
Then, d is additive and, by using Lemma (2.4), we get that d is left a-centerlizer.
Lemma 2.6
Let R be a prime ring, I be a nonzero ideal of R, and F: R — R be a multiplicative (generalized) (a, 8)
reverse derivation associated with a map d: R — R. If for some 0 # a € R,a(F(xy) £+ F(y)F(x)) =
0 forall x,y € I and d(I) = 0, then either R is commutative or d(R) = 0.
Proof
Suppose that d(I) = 0.
In this instance, F(xy) = F(y)a(x) forall x,y € I.
By our hypothesis, we have
aF(y)(a(x) £ F(x))=0 forallx,y €I (22)
Now, we substitute ty for y in equation (22), where t € I, to get
a F(y)a(t)(a(x) + F(x)) + a[?(y)d(t)(a(x) + F(x)) =0forall x,y,t €.
Sinced(l) = 0,weget aF(y) a(t) (a(x) £ F(x))=0.
Putting t = rt in the above relation, where r € R, gives
aF(y) a(ma(t) (a(x) £ F(x)) =0.
By primness of R, we have either a F(y) = 0,
or a(t)(a(x) + F(x)) =0 forall x,t € I.
Putting t = tr in the above equation and using R as a prime ring, with | being a non-zero ideal of R,
we get a(x) £+ F(x) =0forall x € 1.
At first, we suppose that
aF(y) =0 forally€l. (23)
By replacing ry by y in equation (23), we find that
a(Fa() +By)dr) = o.
By using equation (23) in the above equation, we get af(y)d(r) =0 forally € I,r € R.
Putting y = ry in the above equation gives af(r)B(y)d(r) =0 forallyel,reR.
Since g is an automorphism of R, thena R B(y)d(r) = 0.
By primness of R and a # 0, we have S(y)d(r) =0forally € I,r € R.
That is, B(I)d(r) = 0.
Since B(I) is an ideal, then we get B(I)R d(r) = 0.
Since R is a prime ring with I is a nonzero ideal of R, then we get d(R) = 0.
Next, we assume that
a(x)+F(x)=0 forallx €l. (24)
Assume that R is noncommutative and using rx instead of x in equation (24), where r € R, we have
aMa(x) + F(x)a(r) £ B(x)d(r) + a(xr) —a(xr) =0.
alr,x] + (a(x) + F(x))a(r) + B(x)d(r) =0.
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By the application of equation (24), we find that

alr,x] £ B(x)d(r) =0 forallx € I,r €R. (25)
By taking s in place of r in equation (25), where r, s € R, we find that a[rs, x] + B(x )d(rs) = 0.
Applying Lemma (2.4), gives

a(r)als, x] + a[r,x]a(s) + B(x)d(r)a(s) = 0. (26)
Multiplying the right side of equation (25) by a(s) yields
alr,x]a(s) £ B(x)d(r)a(s) =0 forall x € I,r,s €R. 27)

Subtract equation (27) from equation (26), gives a(r)a[s,x] =0 forallx € I,r,s € R.

Since a is automorphism of R, then we get r[s,x] = 0forall x € I,s,r € R.

By multiplying the left side of the above equation by [s, x], we have [s, x]R[s, x] = 0.

By primness of R, we have [R,I] = 0 by Lemma (1.1), we get that R is commutative that is contradict
with our assumption.

Using a similar approach, we can prove that the same product holds for the instance that a(F(xy) —
F(y)F(x)) =0forallx,y €1.

Theorem 2.7
Let R be a prime ring, | be a nonzero ideal of R, and F: R — R be a multiplicative (generalized) (a, )
reverse derivation associated with a map d: R — R. If for some 0 # a € R such that a(a) = B(a) =
aand a(F(xy) £ a(xy)) = 0 forall x,y € I, then R is commutative.
Proof
Suppose that R is noncommutative, consider the case
a(F(xy) + a(xy)) =0forall x,y € I. (28)
Substituting yz in the place of y in equation (28), gives
0 =a(F(xyz) + a(xyz))forall x,y,z € I,
0 =a(F(yz)a(x) + B(yz)d(x) + a(xyz)) + a a(yzx) — a a(yzx)
=a(F(yz) + a(yz))a(x) + a f(yz) d(x) + a a[x, yz]
By using equation (28), we have
a(B(yz)d(x) + a(y)alx,z] + a[x,yla(z)) = 0 forallx,y,z € I. (29)
By replacing y by ay in equation (29), we have
a(B(@)Byz)d(x) + a(@)a(y)alx,z] + a(a)alx, yla(z) + alx, ala(y)a(z)) = 0.
By the assumption that f(a) = a, a(a) = a, we obtain
a’B(yz)d(x) + a?a(y)alx, z] + a®a[x, y]la(z) + a a[x, ala(y)a(z) = 0. (30)
Left multiplying equation (29), by a yields
a*(B(yz)d(x) + a(y)alx,z] + alx,yla(z)) = 0 forall x,y,z € I. (31)
Subtract equation (31) from equation (30), we obtain a a[x, ala(y)a(z) = 0forall x,y,z € I.
a~(a(a[x,alyz)) = 0.
alx,alyz = 0.
By primness of R with I being a nonzero ideal of R, we get a[x,a]y = 0 for all x,y,z € I. Again, by
primness of R and I # 0, we get a[x,a] = 0 forall x € I . By Lemma (2.1), we find that a € Z(R).
Since R is a prime ring and 0 # a, then equation (29) becomes
Byz)d(x) + a(y)alx, z] + a[x,yla(z) = 0forall x,y,z € I. (32)
By substituting ty for y in equation (32), we find that
B(tyz)d(x) + a(ty)alx, z] + a[x, tyla(z) = 0.
This means that
BB z)d(x) + a®)a(y)alx, z] + a(t)alx, y]la(z) + alx, tla(y)a(z) = 0. (33)
By left multiplying equation (32) by a(t), we get

a()B(yz)d(x) + a®)a(y)alx, z] + a(t)a[x,y]la(z) =0, forall x,y,z,t € I (34)
Comparing equation (33) and equation (34), we get
(B@®) — a(®))Blyz)d(x) + alx, tla(y)a(z) = 0. (35)

By putting x = xt in equation (35), we have

(B® — a(®)B(yz)d(xt) + alxt, tla(y)a(z) = 0.

By Lemma (2.4), since d is a multiplicative left a-centerlizer, then

(B@®) —a®)Blyz)d(x)a(t) + alx, tla(®)a(y)a(z) = 0. (36)
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From equation (35), we get (B(t) — a(t))B(yz)d(x) = —alx, tla(y)a(2).
By substituting the value —a[x, tJa(y)a(z) in equation (36), we find that a[x, t]a[t, yz] = 0.

a Y(alx, tlalt,yz]) = 0.

[x, t][t,yz] = 0forall x,y,z,t €. (37)
By putting z = xz in equation (37), we have [x, t]yx[t, z] + [x, t][t, yx]z = 0.
By the application of equation (37), we obtain [x, t]yx[t, z] = 0.
By primness of R, with | being a nonzero ideal of R, implies that[I,I] = 0, therefore I is
commutative. By Lemma (1.1), then R is commutative, which contradicts our assumption.
Using a similar approach, we can prove that the same product holds for the instance that a(F(xy) —
a(xy)) =0forallx,y €.

Theorem 2.8
Let R be a prime ring, | be a nonzero ideal of R, and F: R — R be a multiplicative (generalized) (a, 8)
reverse derivation associated with a map d: R — R. If for some 0 = a € R such that a(a) = a and
a(F(x)F(y) £ a(xy)) = 0 forall x,y € I, then R is commutative.
Proof
Suppose that R is noncommutative, consider the case
a(F(x)F(y) + a(xy)) =0forall x,y € 1. (38)
By replacing y by yt in equation (38), where t € I, we obtain
0 =a(F()F(@®)aly) + F)B)AY) + a(xyt) + a(xty) — a(xty))
= a(F()F (@) + a(xt))a(y) + aF (x)B(6)d(y) + aa(x)aly,t]
By using equation (38), we find
aF (x)B(®)d(y) + aa(x)aly,t] = 0forall x,y,t € I. (39)
By replacing t by zt in equation (39), where z € I, we get
a(F(x)B2)B®)dy) + a(x)a(2)aly, t] + a(x)aly, z]a(t)) = 0. (40)
Now, by replacing x with zx in equation (39), we have
a(F()a@)B®)d®) + B(x)d(2BM)d(y)) + aa(z)a(x)aly,t] = 0. (41)
By subtraction equation (40) from equation (41), we have
aF (x)(a(2) = B(2))BM)AY) + aB(x)d(2)B()d () + aalz x]aly, t] —
aa(x)aly, z]a(t) = 0forall x,y,z,t € 1. (42)
Putting y = yt in equation (42) and applying Lemma (2.4), yields
a(F(x)(a(2) = B(@))BMdW)a(t) + B(x)d(2)BM)d()a(t) + alz x]aly, tla(t) —
a(@)a(y)alt, z]a(t) — a(x)aly, zla(t)a(t)) = 0 forall x,y,z,t € I. (43)
Multiplying the right-hand side of equation (42) by (t) , gives
aF (x)(a(2) = B(2))BOId»)a(t) + af(x)d(2)B(E)d()a(t) + aalz x]aly, tla(t) —
aa(x)aly, zla(t)a(t) = 0. (44)
Subtracting equation (43) from equation (44) gives aa(x)a(y)alt, z]la(t) = 0 forall x,y,z,t € I.
a ta(axyl[t, z]t) = 0,
axylt, z]t = 0.
By primness of R with a # 0, we get xy|[t, z]t = 0. Once more, by primness of R, we find that
[t,z]t =0forallt,z € I.
Putting z = zx in the last equation and using it, yield [¢t, z]xt = 0 forall x,t,z € I.
By primness of R, with | being a nonzero ideal of R, we get [t, z]x = 0 forall x,t,z € I.
Since R is a prime and 0 = I, we get [I,I] = 0, therefore, | is commutative. By Lemma (1.1), R is
commutative, which is a contradiction with our assumption.
Using a similar approach, we can prove that the same product holds for the instance
a(F(x)F(y) —a(xy)) =0forallx,y € 1.
Theorem 2.9
Let R be a prime ring, I be a nonzero ideal of R, and F: R - R be a multiplicative (generalized)
(a, B) reverse derivation associated with a mapd:R — R. If for some 0 +# a € Rsuch that
a(F(xy) £ F(y)F(x)) = 0 forall x,y € [, then either d = 0 or R is commutative.
Proof
Suppose that R is noncommutative, consider the case
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a(F(xy) + F(y)F(x)) =0 forallx,y € I. (45)
Substituting zx for x in equation (45), where z € I, gives
0 =a(F(xy)a(z) + B(xy)d(z) + F(y)F (x)a(z) + F(y)B(x)d(z)
= a(Fa@®a(z) + B)dx)a(z) + a(B(xy)d(z) + FY)F (x)a(z) + F(y)B(x)d(z)) (46)
Or, a(F(y)a(zx) + B(y)d(zx) + F(y)F (x)a(z) + F(y)B(x)d(2)) = 0.
By using Lemma (2.4), we get

a(F(y)a(@a(x) + B)d(z)a(x) + F(y)F (x)a(z) + F(y)B(x)d(2)) = 0. (47)
By comparing equation (47) and equation (46), we get
a(F(y)alz x] + B()d(2)a(x) — B)d(x)a(z) — B(x)B()d(2)) = 0. (48)

Replacing x by xz in equation (48), yields
a(F(y)alz xz] + B)d(2)a(xz) — B(y)d(xz)a(z) — B(x2)B(¥)d(2)) = 0.
Applying Lemma (2.4), gives
a(F(alz xla(z) + By)d(2)a(x)a(z) - By)d(x)a(z)a(z) — B(x)B(2)B()d(2)) = 0.(49)
Right multiplying equation (48), by a(z) gives

a(F(y)alz,xla(z) + By)d(2)a(x)a(z) — By)d(x)a(z)a(z) — B(x)B(y)d(z)a(z)) = 0. (50)
Subtracting equation (49) from equation (50), gives
ap(x)(B(z)B(y)d(z) — B(y)d(z)a(z)) =0 forallx,y,z € I. (51)
Putting x = rx in equation (51), where r € R, and since f is automorphism of R, yields
aR B(x)(B(2BM)A(2) — B(y)d(2)a(z)) = 0.

Once more, by primness of R, we arrive at

B(2)B(y)d(z) — B(y)d(2)a(z) = 0forally,z € 1. (52)
Let y = xy in equation (52), then we have
B(2)B(x)B()d(z) — B(x)B(y)d(z)a(z) =0 forallx,y,z €l (53)

From equation (52), we get B (y)d(2)a(z) = B(z)B(y)d(2).
By substituting the value B(z)B(y)d(z) in equation (53), we obtain B[z, x]8(y)d(z) = 0.
B (Blzx)p(¥)d(2)) = o.

[z,x]y B~(d(2)) = 0forall x,y,z € I.
By primness of R, we get either [z, x]y = 0 for all x,,z € I or ~*(d(2)) = 0.
If B71(d(2)) = 0thend(I) = 0. By Lemma (2.6), we get d(R) = 0.
On the other hand, if [z, x]y = 0. By primness of R, with | being a nonzero ideal of R, we find that | is
commutative. By Lemma (1.1), R is commutative, which contradicts our assumption.
Using a similar approach, we can prove that the same product holds for the instance a(F(xy) —
F(y)F(x)) =0forallx,y €1.
Theorem 2.10
Let R be a prime ring, I be a nonzero ideal of R, and F: R — R be a multiplicative (generalized) (a, 8)

reverse derivation associated with a map d:R — R . If for some 0 # a € R, such that a(F(xy) +
F(x)F(y)) = 0 forall x,y € I, then either d = 0 or R is commutative.

Proof
Suppose that R is noncommutative, consider the case

a(F(xy) + F(x)F(y)) =0forall x,y €.
a(F(y)a(x) + L(y)d(x) + F(x)F(y)) =0forall x,y € 1. (54)
By putting y = zy in equation (54), where z € I, we obtain
a(F(zy)a(x) + B(zy)d(x) + F(x)F (zy)) = 0,
a(Fa(@)alx) + B)d(@a(x) + B(2)B()d(x) + F()F(y)a(z) + F(x)B()d(2)) = 0. (55)
Right multiply equation (54), by a(z), we have
a(Fa(x)a(z) + By)d(x)a(z) + F(x)F(y)a(z)) = 0. (56)
Subtract equation (56) from equation (55), gives
a(F()alz x] + B(d(2)a(x) + F(x)B()d(2) + B(2)B()d(x) — B)d(x)a(2)) = 0. (57)
By writing z by zx in equation (57), we find that
a(F(alzx, x] + By)d(zx)a(x) + B(zx)B(y)d(x) + F(x)B(y)d(zx) — B(y)d(x)a(zx)) = 0.
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By applying Lemma (2.4), in above equation, then

a(F()alz, x]a(x) + By)d(z)a(x)a(x) + B(2)B(x)B(¥)d(x) + F(x)By)d(z)a(x) —
B)d(x)a(z)a(x)) =0forall x,y,z € I. (58)
Right multiplying equation (57), by a(x) gives

a(F(y)alz xla(x) + B)d(@a(x)a(x) + F()B1)d(@)alx) + B(2)B()d(x)alx) -

B)d(X)a(z)a(x)) =0 forallx,y,ze€l (59)
Subtract equation (59) from equation (58), gives
aﬁ(z)(ﬁ(x)ﬁ(y)d(x) — ﬁ(y)d(x)a(x)) =0 forallx,y,z eI (60)

Now, we replace z by rz in equation (60), where r € R, to have

af (@) (BOLMAX) — B (x)alx)) = 0.

By using R as a prime ring with a # 0, we get

B@(BOLMAX) — Fd(x)a(x)) = 0.

By putting z = zr in the above equation, we have

B@BT)(BEIBHIA) — B(d(x)a(x)) = 0.

Since Ris a prime ring and | is a non-zero ideal of R, then we find that

Bx)BY)A(x) — B(y)d(x)a(x) = 0. (61)
Let y = zy in the above equation, then we have
BB ()d(x) — B(2)B(y)d(x)a(x) = 0. (62)

From equation (61), to get B(y)d(x)a(x) = B(x)B(y)d(x)
Substituting the value £ (x)B(y)d(x) in equation (62), gives
Blx,z]p(y)d(x) = 0,
B~ (Blx, Z1B(»)d(x)) = 0.

[x,z]ly B~ (d(x)) = 0.
By primness of R, we get either [x,z]y = 0 forall z,y,x € I, or 7*(d(x)) = 0.
If [x,z]y = 0since R is a prime ring and I # 0, then we get [x, z] = 0 for all x, z € I. Therefore, I is
commutative. By Lemma (1.1), R is commutative, which contradicts our assumption.
On the other hand, if 871( d(x)) = 0 since 8 is automorphism of R, then we find that d(I) = 0.
In this case, F(xy) = F(y)a(x) forall x,y € I.
Therefore, our hypothesis implies that
a(Fy)a(x) + F(x)F(y)) =0forall x,y €. (63)
By putting y = zy where z € I in equation (63), we find that
a(Fa@)a(x) + Bd(@a(x) + F)Fa(z) + F(x)B(y)d(2)) = 0.
Since d(I) = 0, we get

That is,

a(F(y)a(z)a(x) + F(x)F(y)a(z)) =0forall x,y,z €I (64)
Multiplying the right side of equation (63), by a(z) implies that
a(F(y)a(x)a(z) + F(x)F(y)a(z)) =0forall x,y,z€l (65)
Subtract equation (64) from equation (65), to find that
aF (Y)[a(z),a(x)] = 0forall x,y,z €. (66)

By replacing y with yr, where r € R, in equation (66), we have
a(F(r)a)la(z), a(x)] + p(r)d(y)la(z), a(x)]) = 0.
Since d(I) = 0, we obtain aF (r)a(y)[a(z),a(x)] = 0forall x,y,z € I,r € R.
By putting y = ry in the above relation, we get aF (r)a(r)a(y )a[z,x] = 0 forall x,y,z € I,r € R.
a F(r)R a(y)alz, x] = 0.
By primness of R, we get either aF(r) = 0, or a(y)a[z,x] = 0forally,z,x € I.
If a(y)alz,x] =0forall x,z,y € I.
By taking a1 in above equation then we get y[z, x] = 0.
By primness of R, with | be a non-zero ideal of R, we get [I,I] = 0, by Lemma (1.1), we conclude that
R is commutative, which contradicts with our assumption.
Next, assume that
aF(r) =0forall r € R. (67)
By putting r = ry in equation (67), we find that aF (ry) = O forall y € I,r € R.
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This implies that
a(F(y)a(r) + B(y)d(r)) = 0.
By using equation (67) in the above equation, it becomes aB(y)d(r) = 0.
By putting y = ry in the above equation, we have afB(r)B(y)d(r) = 0.
Since R isaprime ringand a # 0,then S(y)d(r) = 0forally € I,r € R.
Putting y = yr in the last equation and using R as a prime ring, we obtain d(R) = 0.
Using a similar approach, we can prove that the same product holds for the instance
a(F(xy) — F(x)F(y)) =0forallx,y € I.
Theorem 2.11
Let R be a prime ring, I be a nonzero ideal of R and F: R — R be a multiplicative (generalized) (a, 8)
reverse derivation associated with a map d: R — R. If for some 0 # a € R such that a(a) = a and
a(F(x)F(y) £ a(yx)) = 0 forall x,y € I, then R is commutative.
Proof
Suppose that R is noncommutative, consider the case
a(Fx)F(y) + a(yx)) =0forall x,y € 1. (68)
By substituting zy in place of y in equation (68), we obtain
0 =a(F(x)F(zy) + a(zyx)) forallx,y,z€ I,
= a(F()F(y)a(z) + Fx)B()d(2) + a(zyx) + aa(yxz) — aa(yxz)
= a(F()F(y) + a(yx))a(z) + aF (x)B(y)d(z) + aa(zyx — yxz).
By using equation (68), we have
a(F(x)B(y)d(2) + aalz,yx]) = 0,

a(F(x)B()d(2) + a(y)alz, x] + alz,y]la(x) = 0forallx,y,z€ . (69)

Now, by replacing z with zt in equation (69), where t € I we get
a(F(x)ﬂ(y)d(zt) + a(y)alzt, x] + alzt, y]a(x)) =0.
By applying Lemma (2.4), we get
a(F)Bd(@)a(t) + ay)a(2alt, x] + a(y)alz, x]a(t) + a(z)alt, yla(x) +

alz, yla(®)a(x)) =0 forall x,y,z,t € I. (70)
By right multiplying equation (69), by a(t), we get
a(F)B)d(2)a(t) + a)alz, x]a(t) + alz, yla(x)a(t)) = 0. (71)

Subtract equation (71) from equation (70), gives
alaa(2alt, x] + a(2)alt, y]la(x) + alz, yla(®)a(x) — alz, yla(x)a(t)) = 0.
Since a(a) = a, then we obtain
a(a)(a(y)a(z)a[t, x] +a(@)alt, yla(x) + alz, yla(t)a(x) — alz, y]a(x)a(t)) = 0.
a ta(a(yz[t,x] + z[t, ylx + [z, y][t, x])) = 0.
a(yztx — yzxt + ztyx — zytx + zytx — yztx — zyxt + yzxt) = 0.

This implies that a z [t, yx] = 0.
By putting z = rz in the above relation, where r € R, we geta R z [t, yx] = 0.
By primness of R, with 0 # a, we get z[t,yx] = 0 forall z,t,y,x € I.
Again, by primness of R, with I is a nonzero ideal of R, implies that [t, yx] = 0. By Lemma (2.3), we
conclude that R is commutative, which contradicts our assumption.
Using a similar approach, we can prove that the same product holds for the instance

a(F(x)F(y) —a(yx)) =0forallx,y € I.
Theorem 2.12
Let R be a prime ring, I be a nonzero ideal of R and F: R — R be a multiplicative (generalized) (a, 8)
reverse derivation associated with a map d:R — R. If for some 0 # a € R, such that B(a) =
a,a(a) =aand a(F(xy) £ a(yx)) = 0 forall x,y € I, then R is commutative.
Proof
Suppose that R is noncommutative, consider the case

a(F(xy)+ a(yx)) =0forall x,y € I. (72)
By writing zx by x in equation (72), where z € I, we obtain
0 =a(F(xy)a(z) + f(xy)d(z) + a(yzx)) + aa(yxz) — aa(yxz)

By using equation (72) in the above equation, we get

a(Bx)By)d(z) + a(y)a [z x]) =0forall x,y,z € I. (73)
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By substituting ax in place of x in equation (73), we have
a(B(ax)f(y)d(z) + a(y)alz,ax]) = 0.
This means that

a(B(@)B(x) B()d(2) + a(y)a(a)a(z, x] + a(y)alz, ala(x)) = 0.

By the assumption that (a) = a, a(a) = a, we obtain

a? BB ()d(2) + aa(y)a alz x] + aa(y)alz ala(x) = 0. (74)
By multiplying the left side of equation (73) by a, we get
a? B(x)B()d(z) + a? a(y)alz,x] = 0forall x,y,z € I. (75)
Subtract equation (75) from equation (74), we find that
a(la(y),alalz, x] + a(y)a[z, ala(x)) = 0forall x,y,z € I. (76)

By putting zx instead of z in equation (76), we get
a(la(y), alalzx, x] + a(y)a[zx, ala(x)) = 0,

Which means that

a([a(y), alalz, x]a(x) + a(y)a(2)alx, ala(x) + a(y)alz, ala(x)a(x)) = 0.
By using equation (76), we get

aa(y)a(2)alx,ala(x) =0forall x,y,z € I. (77)
Since a(a) = a, we obtain
a ta(ayz[x,alx) = 0.
Implies that
ayz|[x,alx =0.

Now, we replace y by ry in the above equation, where r € R, to have a ry z[x, a]x = 0 for all
x,y,zZ€Il,7r €R.
By primness of R and a # 0, we find that yz[x,a]x = 0 forall x,y,z € I.
Once more, by primness of R, we get [x,a]x = 0 forall x € I.
By Lemma (2.2), we get a € Z(R) or R is commutative, which contradicts our assumption.
Suppose that a € Z(R) and R is a prime ring, because 0 # a € R, so by equation (73), we find that

BX)BY)d(z) + a(y)alz,x] =0forall x,y,z € I (78)
By putting x = tx in equation (78), where t € I, we get
B®B(xy)d(z) + a)a(t)alz, x] + a(y)alz, t]la(x) = 0. (79)

By multiplying the left side of equation (78) by a(t), we have
a(®)B(xy)d(2) + a(t)a(y)alz,x] =0 forall x,y,z€ I,r € R. (80)
By combining equation (79) and equation (80), we obtain
(B®) — a(®))B(xy)d(2) + aly, tlalz,x] + a(y)alz tla(x) = 0. (81)
By substituting zt in place of z in equation (81), we obtain
(B@®) — a(®)B(xy)d(zt) + aly, tlalzt, x] + a(y)alzt, tla(x) = 0.
By using Lemma (2.4), we get
(B®) — a®)Bxy)d(Da(t) + aly, tla(2)alt, x] + aly, tlalz x]a(t) +
a(alz, tla(t)a(x) =0forall x,y,z,t € 1. (82)
Now, by multiplying equation (81), by a(t) from the right, implies
(B@®) = a®))Bxy)d(Da(t) + aly, tlalz x]a(t) + a()alz, tla(x)a(t) = 0. (83)
Subtract equation (82) from equation (83), we get a(y)a|z, tla[x, t] — aly, t]la(z)a[t, x] = 0.
a~ta(ylz tllx, t] — [y, tlz[t, x]) = 0.
ylz, t]lx, t] — [y, tlz[t, x] = 0.
yztxt — yzttx — ytzxt + ytztx — ytztx + ytzxt + tyztx — tyzxt = 0.
[yz t][x,t] =0 forallx,y,zt €l (84)
By putting x = wx in equation (84), where w € I, we have
[yz, t][wx, t] = 0,
[yz, tlw[x, t] + [yz, t][w, t]x = 0.
By Relation (84), we get
Since R is a prime ring, we get either [yz,t] = 0,or w(x, t] = 0.
If wix,t] =0 for all x,t,w €1.By primness of R with | be a non-zero ideal of R, we get
[1,I] = 0, which means that I is commutative, by Lemma (1.1), we conclude that R is commutative,
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which contradicts our assumption. Alternatively, [yz,t] = 0 forall y,z,t € I. By Lemma (2.3), we
conclude that R is commutative, which contradicts our assumption.
Using a similar approach, we can prove that the same product holds for the instance
a(F(xy) —a(yx)) = 0forallx,y € I.
Example 2.13
0 a b
0 0 c] ra,b,c € Z},where Z is the set of integers. Let us define

Consider the ring R:{
0 00

F,d,a,B:R - Rby

0 a b 0 a bc 0 a b 0
d([o 0 D[O 0 ]([O 0 D[o
0 0 O 0 0 O 0 0 O 0

oS O Q
o0 o
—_—

0 a b 0 —a b
Bl110 0 c|]=[0 0 —c|
0 0 O 0 0 0

Cleary, d is a multiplicative (a, ) reverse derivation. LetF =d, then F is a multiplicative

(generalized) (a,B) reverse derivation associated with the mapping d on R, where a and f are
automorphisms of R. It is easy to see that the identities a(F(xy) + a(xy)) = 0,a(F(xy) + a(yx)) =
0,a(F(x)F(y) £ a(xy)) = 0and a(F(x)F(y) + a(yx)) = 0 are satisfied for some a € R and
forall x,y € R. Here, R is not commutative, hence the primness condition of the ring in our results is
essential.
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