

ISSN: 0067-2904

On Some Approximation Properties for a Sequence of $\boldsymbol{\lambda}$-Bernstein Type Operators

Ali Jassim Muhammad*, Asma Jaber
${ }^{1}$ Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah, IRAQ.

Received: 11/12/2020
Accepted: 22/2/2021

Abstract

In 2010, Long and Zeng introduced a new generalization of the Bernstein polynomials that depends on a parameter λ and called λ-Bernstein polynomials. After that, in 2018, Lain and Zhou studied the uniform convergence for these λ polynomials and obtained a Voronovaskaja-type asymptotic formula in ordinary approximation. This paper studies the convergence theorem and gives two Voronovaskaja-type asymptotic formulas of the sequence of λ-Bernstein polynomials in both ordinary and simultaneous approximations. For this purpose, we discuss the possibility of finding the recurrence relations of the m-th order moment for these polynomials and evaluate the values of λ-Bernstein for the functions t^{m}, where m is a non-negative integer. Keywords: λ-Bernstein polynomials, Voronovaskaja type asymptotic formula, the uniform convergence, ordinary and simultaneous approximations.

$$
\begin{aligned}
& \text { علي جاسم لحمل"، ،اسماء جابر } \\
& \text { قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة البصرة، البصرة، العراق } \\
& \text { في عام 2010، قدم Zengو تعميما جديدا لمتعدة الحدود Bernstein يعتمد على معلمة } \lambda \\
& \text { سمي متعددة حدود } \lambda \text { - Bernstein. بعد ذلك، في } 2018 \text { درس Zain وZhou مبرهنة التقارب المنتظم } \\
& \text { التقريب العادي لهذه المتعددات من النمط } \lambda \text { وحصل على صيغة مشابهة لـ Voronovaskaja في التقريب } \\
& \text { العادي. هذا البحث يدرس مبرهنة التقارب ويعط صيغتين متشابهتين لصيغة Voronovaskaja لهذه المتتابعة } \\
& \text { من النمط } \lambda \text { - Bernstein ولكلا التقريبين العادي والمتعدد. لهذا الغرض ناقشنا إمكانية ايجاد علاقات } \\
& \text { تكرار العزم من الرتبة m لهذه المتتابعات وحساب قيم } \lambda \text { - Bernstein لللوال m، } m \text { هو عدد صحيح }
\end{aligned}
$$

1. Introduction

Let S be the linear space of all real functions acting on a set $X \neq \phi$. The operator $M: S \rightarrow S$ is linear and positive if it satisfies:
i) $\quad \forall \alpha, \beta \in \mathbb{R}, M(\alpha f+\beta g)=\alpha M(f)+\beta M(g)$, where $f, g \in S$;
ii) $\quad \forall f \in S: f \geq 0$, we have $M(f) \geq 0$.

[^0]Bernstein, in 2012, [1] introduced another proof of the Weierstrass approximation theorem by using a sequence of positive linear operators, named the classical Bernstein polynomials, as
$\Gamma_{n}: C[0,1] \rightarrow C[0,1], \quad \Gamma_{n}(f ; x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) b_{n, k}(x), f \in C[0,1]$.
Where

$$
b_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}, x \in[0,1]
$$

In 1932 [2], Voronovaskaja showed that for $f \in C^{2}[0,1]$, the term of n^{-1} in $\left\{B_{n}(f ; x)-\right.$ $f(x)\}$ exists and equals to $\frac{x(1-x)}{2} f^{\prime \prime}(x)$. This discovery appeared upon the evaluation of the limit $\lim _{n \rightarrow \infty} n\left\{B_{n}(f ; x)-f(x)\right\}$. So, the order of approximation by using Bernstein polynomials is $O\left(n^{-1}\right)$. This phenomenon, in general, is valid for most sequences of positive linear operators [2]. The evaluation of the approximation order for the different sequences is called Voronovaskaja-type asymptotic formulas. The order of $B_{n}(f ; x), O\left(n^{-1}\right)$ shows that the convergence of $B_{n}(f ; x)$ to the function f as n tends to infinity is very slow.

In 1953, Korovkin [3] introduced a simple tool to decide that, for a sequence of linear positive operators, M_{n} is converges to the function $f \in C[a, b]$, by checking the sequence's values of $M_{\mathrm{n}}\left(t^{m} ; x\right) \rightarrow x^{m}$ uniformly as $n \rightarrow \infty, m=0,1,2$. These are called Korovkin's conditions.
Many generalizations of Korovkin's theorem to a compact subset of the real numbers \mathbb{R} or the interval $[0, \infty)$ were introduced and studied. We refer here to Bohman [4, 1953] and Baskakov [5, 1957].

In 1962 [6], Schurer introduced a sequence based on a parameter and proved that the sequence has an approximation order depending on the parameter. After that, many kinds of research were developed and studied sequences depending on parameters; here we refer to [7, $8,9,10,11,12]$.

In 2010 [13], Long and Zeng introduced a new generalization of the classical Bernstein sequence that depends on a parameter λ, as follows:
$\Upsilon_{n, \lambda}(f ; x)=\sum_{k=0}^{n} \tilde{b}_{n, k}(\lambda ; x) f\left(\frac{k}{n}\right)$,
$\tilde{b}_{n, k}(\lambda ; x)$
$=\left\{\begin{array}{ccc}b_{n, 0}(x)-\frac{\lambda}{n+1} b_{n+1,1}(x) & ; & k=0 \\ b_{n, k}(x)+\lambda\left(\frac{n-2 k+1}{n^{2}-1} b_{n+1, k}(x)-\frac{n-2 k-1}{n^{2}-1} b_{n+1, k+1}(x)\right) & ; & (1 \leq k \leq n-1) \\ b_{n, n}(x)-\frac{\lambda}{n+1} b_{n+1, n}(x) & ; & k=n,\end{array}\right.$
where $\lambda \in[-1,1]$.
When $\lambda=0$, the function $\tilde{b}_{n, k}(\lambda ; x)$ is reduced to $b_{n, k}(x)$.
In 2018 [14], Lain and Zhou studied the uniform convergence and obtained a Voronovaskaja-type asymptotic formula for the sequence $r_{n, \lambda}(f ; x)$ in ordinary approximation.

2. Preliminary Results

Some preliminaries for the sequence $\Upsilon_{n, \lambda}(f ; x)$ are introduced in this section and will be used to achieve the main results.

We assume that $m \in N^{0}=\{0,1, \ldots\}, \phi_{n, m}(x)=\sum_{k=0}^{n} k^{m} b_{n, k}(x)$,
$\tilde{\phi}_{n, m, \lambda}(x)=\sum_{k=0}^{n} k^{m} \tilde{b}_{n, k}(\lambda ; x)$, and $\operatorname{TLP}(x)$ mean terms in lower powers of x.

Lemma 2.1

The following properties are held:
(i) $\quad x(1-x) \widetilde{b}_{n, k}^{\prime}(\lambda ; x)=$
$(k-n x) \tilde{b}_{n, k}(\lambda ; x)-x \widetilde{b}_{n, k}(\lambda ; x)+x b_{n, k}(x)-\frac{n-2 k-1}{n^{2}-1} \lambda b_{n+1, k+1}(x)$.
(ii) $\quad \tilde{\phi}_{n, 0, \lambda}(x)=1, \phi_{n, 0}(x)=1, \phi_{n+1,0}(x)=1$, and $\tilde{\phi}_{n, m+1, \lambda}(x)+\frac{2}{n^{2}-1} \lambda \phi_{n+1, m+1}(x)=$ $x(1-x) \widetilde{\phi}_{n, m+1, \lambda}^{\prime}(x)+(n+1) x \tilde{\phi}_{n, m+1, \lambda}(x)-x \phi_{n, m}(x)+\frac{1}{n+1} \lambda \phi_{n+1, m}(x), m \geq 1$.

Proof

By direct evaluation, the property (i) follows quickly.
Using the fact that $x(1-x) b_{n, k}(x)=(k-n x) b_{n, k}^{\prime}(x)$, thus

$$
\begin{aligned}
\tilde{\phi}_{n, m+1, \lambda}(x)+ & \frac{2}{n^{2}-1} \lambda \phi_{n+1, m+1}(x) \\
& =x(1-x) \widetilde{\phi}_{n, m+1, \lambda}^{\prime}(x)+(n+1) x \tilde{\phi}_{n, m+1, \lambda}(x)-x \phi_{n, m}(x) \\
& +\frac{1}{n+1} \lambda \phi_{n+1, m}(x), m \geq 1 .
\end{aligned}
$$

Then, the property (ii) holds.

Lemma 2.2

The sequence $\Upsilon_{n, \lambda}$ satisfies:
(i) $\quad \Upsilon_{n, \lambda}(1 ; x)=1$;
(ii) $\quad \Upsilon_{n, \lambda}(t ; x)=x+\frac{1-2 x+x^{n+1}-(1-x)^{n+1}}{n(n-1)} \lambda$;
(iii) $\quad \Upsilon_{n, \lambda}\left(t^{2} ; x\right)=x^{2}+\frac{x(1-x)}{n}+\lambda\left\{\frac{\left(2 x-4 x^{2}+2 x^{n+1}\right)}{n(n-1)}+\frac{x^{n+1}+(1-x)^{n+1}-1}{n^{2}(n-1)}\right\}$;
(iv) $\quad \Upsilon_{n, \lambda}\left(t^{m} ; x\right)=$
$\frac{1}{n^{m}}\left\{\frac{n!}{(n-m)!} x^{m}+\frac{m(m-1) n!}{2(n-m+1)!} x^{m-1}+T L P(x)\right\}+\frac{\lambda}{n^{m}}\left\{\frac{-2 m(n+1)!}{\left(n^{2}-1\right)(n-m+1)!} x^{m}\left(1-x^{n-m+1}\right)+\right.$ $\left(\frac{n m(m-1)(n+1)!}{2\left(n^{2}-1\right)(n-m+2)!}+\frac{m(m-1)(n+1)!}{2\left(n^{2}-1\right)(n-m+1)!}\right) x^{m-1}$

$$
\left.\left(1-x^{n-m+2}\right)+\operatorname{TLP}(x)-\frac{(-1)^{m}}{(n-1)}\left(1-(1-x)^{n+1}-x^{n+1}\right)\right\}
$$

The consequences (i)-(iii) is proved in [5]. The proof of consequence (iv) is given as follows

$$
\begin{aligned}
& \quad \Upsilon_{n, \lambda}\left(t^{m} ; x\right)=\sum_{k=0}^{n} \tilde{b}_{n, k}(\lambda ; x) \cdot t^{m}=\sum_{k=0}^{n} t^{m}\left(b_{n, k}(x)+\lambda\left\{\left(\frac{1}{n-1}-\frac{2 k}{n^{2}-1}\right) b_{n+1, k}(x)\right.\right. \\
& \left.\left.-\left(\frac{1}{n+1}-\frac{2 k}{n^{2}-1}\right) b_{n+1, k+1}(x)\right\}\right) \\
& =\sum_{k=0}^{n} t^{m} b_{n, k}(x)+\lambda\left(\sum_{k=0}^{n} t^{m}\left(\frac{1}{n-1}-\frac{2 k}{n^{2}-1}\right) b_{n+1, k}(x)-\right. \\
& \left.\quad \sum_{k=0}^{n} t^{m}\left(\frac{1}{n+1}-\frac{2 k}{n^{2}-1}\right) b_{n+1, k+1}(x)\right) \\
& \quad=\frac{1}{n^{m}}\left(\frac{n!}{(n-m)!} x^{m}+\frac{m(m-1) n!}{2(n-m+1)!} x^{m-1}+T L P(x)\right) \\
& +\frac{\lambda}{n^{m}}\left\{\frac{-2 m(n+1)!}{\left(n^{2}-1\right)(n-m+1)!} x^{m}\left(1-x^{n-m+1}\right)+\left(\frac{n m(m-1)(n+1)!}{2\left(n^{2}-1\right)(n-m+2)!}+\frac{m(m-1)(n+1)!}{2\left(n^{2}-1\right)(n-m+1)!}\right) x^{m-1}(1-\right. \\
& \left.\left.x^{n-m+2}\right)+T L P(x)-\frac{(-1)^{m}}{(n-1)}\left(1-(1-x)^{n+1}-x^{n+1}\right)\right\} . \text { Hence, the property (iv) is held. }
\end{aligned}
$$

For $f \in C[0,1]$, using the Lemma 2.2 and applying the Korovkin theorem [8], we have that $\Upsilon_{n, \lambda}(f ; x) \rightarrow f(x)$ uniformly on $[0,1]$ as $n \rightarrow \infty$.

For $m \in N^{0}$, the moment of order $r, T_{n, m, \lambda}(x)$, for the sequence $\Upsilon_{n, \lambda}(. ; x)$, is defined by

$$
T_{n, m, \lambda}(x)=\Upsilon_{n, \lambda}\left((t-x)^{m} ; x\right)=\sum_{k=0}^{n} \tilde{b}_{n, k}(\lambda ; x)(t-x)^{m}
$$

Lemma 2.3

The sequence $T_{n, m, \lambda}(x)$ has the properties
(i) $T_{n, 0, \lambda}(x)=1$;
(ii) $T_{n, 1, \lambda}(x)=\lambda \frac{1-2 x+x^{n+1}-(1-x)^{n+1}}{n^{2}(n-1)}$;
(iii) $\quad T_{n, 2, \lambda}(x)=\frac{x(1-x)}{n}+\lambda\left\{\frac{(2 n+1) x^{n+1}-2 x^{n+2}-1+(2 n+1)(1-x)^{n+1}}{n^{2}(n-1)}\right\}$;
(iv) $\quad n T_{n, m+1, \lambda}(x)+\frac{2 n}{n^{2}-1} \lambda T_{n+1, m+1}(x)=x(1-x) T_{n, m, \lambda}^{\prime}(x)+m x(1-x) T_{n, m-1, \lambda}(x)+$ $x T_{n, m, \lambda}(x)-x T_{n, m}(x)+\left(\frac{2 n x+n-1}{n^{2}-1}\right) \lambda T_{n+1, m}(x)$.
(v) $\quad T_{n, m, \lambda}(x)$ is polynomial in x degree at most m;
(vi) $\forall x \in[0,1], T_{n, m, \lambda}(x)=O\left(n^{-\left[\frac{m+1}{2}\right]}\right)$, where $\left[\frac{m+1}{2}\right]$ means the integer part of $\frac{m+1}{2}$.

Proof

By the direct evaluations, the proof of consequences (i-iii) is found immediately.
The proof of the consequence (iv) is going as:
$T_{n, m, \lambda}(x)=\sum_{k=0}^{n} \tilde{b}_{n, k}(\lambda ; x)(t-x)^{m}=\sum_{k=0}^{n} \tilde{b}_{n, k}(\lambda ; x)\left(\frac{k}{n}-x\right)^{m}$
Then,

$$
\begin{aligned}
n T_{n, m+1, \lambda}(x)+ & \frac{2 n}{n^{2}-1} \lambda T_{n+1, m+1}(x)=x(1-x) T_{n, m, \lambda}^{\prime}(x)+m x(1-x) T_{n, m-1, \lambda}(x) \\
& +x T_{n, m, \lambda}(x)-x T_{n, m}(x)+\left(\frac{2 n x+n-1}{n^{2}-1}\right) \lambda T_{n+1, m}(x)
\end{aligned}
$$

From above, the consequence (iv) is held.
For $m=0,1$ and 2 , the consequence (v) holds clearly. Now, suppose that (v) is valid for m. We show that (v) is valid for $(m+1)$. Since $x(1-x) T_{n, m \lambda}^{\prime}(x), m x(1-x) T_{n, m-1, \lambda}(x)$ are polynomials in x of degree $(m+1)$, hence $T_{n, m+1, \lambda}(x)$ is polynomial in x of degree $(m+1)$. Then, the consequence (v) is valid for all $\in N^{0}$.
Finally, from the values of $T_{n, 0, \lambda}(x), T_{n, 1, \lambda}(x)$ and $T_{n, 2, \lambda}(x)$, the consequence (vi) is held. Suppose that the result is valid for m, then by (iv), we have
$n T_{n, m+1, \lambda}(x)=O\left(n^{-\left[\frac{m+1}{2}\right]}\right)+O\left(n^{-\left[\frac{m}{2}\right]}\right)=\left\{\begin{array}{l}O\left(n^{-\left(\frac{m+1}{2}\right)}\right) ; \text { if } m \text { is odd } \\ O\left(n^{-\left(\frac{m}{2}\right)}\right) ; \text { if } m \text { is even. }\end{array}\right.$
Then,

$$
n T_{n, m+1, \lambda}(x)=\left\{\begin{array}{l}
O\left(n^{-\left(\frac{m+3}{2}\right)}\right) ; \text { if } m \text { is odd } \\
O\left(n^{-\left(\frac{m+2}{2}\right)}\right) ; \text { if } m \text { is even }
\end{array}=O\left(n^{-\left[\frac{m+2}{2}\right]}\right)\right.
$$

So, the relation is valid for $m+1$. Hence, the consequence (vi) is valid for every $x \in[0,1]$.
The next result is the Lorenz-type Lemma for derivatives of the functions $\tilde{b}_{n, k}(\lambda ; x)$.

Lemma 2.4 [15]

The following equality holds

$$
x^{r}(1-x)^{r} \tilde{b}_{n, k}^{(r)}(\lambda ; x)=\sum_{\substack{2 i+j \leq r \\ i, j \geq 0}} n^{i}(k-n x)^{j} \tilde{b}_{n, k}(\lambda ; x) Q_{i, j, r}(x),
$$

where $Q_{i, j, r}(x)$ are polynomials in x independent of n and k.

3. Main Results

In a previous study [5], the authors proved a Voronovaskaja-type asymptotic formula for the λ-Bernstein sequence and expressed it as

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left\{Y_{n, \lambda}(f ; x)-f(x)\right\}=x(1-x) \frac{f^{\prime \prime}(x)}{2} \tag{1}
\end{equation*}
$$

This formula is the same as the classical Bernstein sequence. The authors have not explained the effect of λ in this formula. So, we give a modification of the Voronovaskaja formula for the λ-Bernstein sequence in the ordinary approximation.

Theorem 3.1

For $f(x) \in C^{4}[0,1]$ and $\lambda \in[-1,1]$, we have

$$
\begin{align*}
\lim _{n \rightarrow \infty} n^{2}\left(n\left\{\Upsilon_{n, \lambda}(f ; x)-f(x)\right\}-x(1-x) \frac{f^{\prime \prime}(x)}{2}\right)=-\frac{f^{\prime \prime}(x)}{2} \lambda+\frac{f^{(3)}(x) x(1-3 x)}{2} \lambda \\
\quad+\frac{f^{(4)}(x)}{24}\left\{-6 x^{4}+12 x^{3}-7 x^{2}+x+\left(4 x^{3}+16 x^{4}\right) \lambda\right\} . \tag{2}
\end{align*}
$$

Proof

By Taylor's expansion of $f(t)$,
$f(t)=f(x)+f^{\prime}(x)(t-x)+\frac{1}{2} f^{\prime \prime}(x)(t-x)^{2}+\frac{1}{6} f^{(3)}\left(x\left((t-x)^{3}+\frac{1}{24} f^{(4)}(x)(t-x)^{4}+\right.\right.$ $\alpha(t, x)(t-x)^{4}, t \in[0,1]$
where $\alpha(t, x) \rightarrow 0$ as $t \rightarrow x$. Using (1),
$\lim _{n \rightarrow \infty} n^{2}\left(n\left\{\Upsilon_{n, \lambda}(f ; x)-f(x)\right\}-x(1-x) \frac{f^{\prime \prime}(x)}{2}\right)$
$=-\frac{f^{\prime \prime}(x)}{2} \lambda+\frac{f^{(3)}(x) x(1-3 x)}{2} \lambda+\frac{f^{(4)}(x)}{24}\left\{-6 x^{4}+12 x^{3}-7 x^{2}+x+\left(4 x^{3}+16 x^{4}\right) \lambda\right\}$
$+\lim _{n \rightarrow \infty} E$
where $E=n^{3} Y_{n, \lambda}\left(\alpha(t, x)(t-x)^{4} ; x\right)$.
Now, to show $\lim _{n \rightarrow \infty} E=0$,
$|E| \leq n^{3} \sum_{k=0}^{n} \tilde{b}_{n, k}(\lambda ; x)\left|\alpha(t, x)(t-x)^{4}\right|$
$=n^{3} \sum_{|t-x|<\delta} \tilde{b}_{n, k}(\lambda ; x)\left|\alpha(t, x)(t-x)^{4}\right|$
$+n^{3} \sum_{|t-x| \geq \delta}^{|t-x|<\delta} \tilde{b}_{n, k}(\lambda ; x)\left|\alpha(t, x)(t-x)^{4}\right|:=I_{1}+I_{2}$.
Since $\alpha(t, x) \rightarrow 0$ as $t \rightarrow x$ for given $\varepsilon>0 \exists \delta>0$ such that $|t-x|<\delta \rightarrow|\alpha(t, x)|<\varepsilon$, then,
$I_{1}=n^{3} \sum_{|t-x|<\delta} \tilde{b}_{n, k}(\lambda ; x)\left|\alpha(t, x)(t-x)^{4}\right|$
$\leq \alpha n^{3} \sum_{|t-x|<\delta}^{|t-x|<\delta} \tilde{b}_{n, k}(\lambda ; x)\left|\alpha(t, x)(t-x)^{4}\right| \leq \alpha n^{3} T_{n, 4, \lambda}(x)=\alpha O$ (1).
Since α is arbitrary, it follows that $I_{1} \rightarrow 0$ as $n \rightarrow \infty$.
For $|t-x| \geq \delta \exists C>0$ such that $\alpha(t, x)(t-x)^{2} \leq C t^{\sigma}, C$ is a constant; therefore $I_{2}=n^{3} \sum_{|t-x| \geq \delta} \tilde{b}_{n, k}(\lambda ; x)\left|\alpha(t, x)(t-x)^{4}\right|$
$\leq \sup _{x \in[0,1]}\left|n^{3} \sum_{|t-x| \geq \delta} \tilde{b}_{n, k}(\lambda ; x) C t^{\sigma}\right|$
By using Cauchy Schwarz inequality, we get
$\leq M n^{3} \sum_{i=0}^{\infty}\left(\sum_{|t-x| \geq 1} \tilde{b}_{n, k}(\lambda ; x)\right)^{\frac{1}{2}}\left(\sum_{|t-x| \geq \delta} \tilde{b}_{n, k}(\lambda ; x)(t-x)^{4 i}\right)^{\frac{1}{2}}=M n^{3}\left(T_{n, 4 i, \lambda}(x)\right)^{\frac{1}{2}}$.
$=M n^{3}\left(O\left(n^{-i}\right)\right)^{\frac{1}{2}}=O\left(n^{-s}\right) s>0$.
Hence, $I_{2}=0$ as $n \rightarrow \infty$, From which (2) is held.
Next, we show that $\frac{d^{r}}{d x^{r}} \Upsilon_{n, \lambda}(f ; x)$ is an approximation for the function $f^{(r)}(x)$.
Theorem 3.2
Suppose that $r \in N, f \in C[0,1]$ and $f^{(r)}$ exists and continuous at $x \in(0,1)$, then the following limit holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Upsilon_{n, \lambda}^{(r)}(f ; x) \rightarrow f^{(r)}(x) \tag{3}
\end{equation*}
$$

Proof

By using Taylor's expansion,

$$
f(t)=\sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!}(t-x)^{i}+\alpha(t, x)(t-x)^{r}, t \in[0,1]
$$

where $\alpha(t ; x) \rightarrow 0$ as $t \rightarrow x$. So,
$\Upsilon_{n, \lambda}^{(r)}(f(t) ; x)=\frac{d^{r}}{d x^{r}}\left\{Y_{n, \lambda}\left(\sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!}(t-x)^{i}+\Upsilon_{n, \lambda}\left(\alpha(t, x)(t-x)^{r} ; x\right)\right)\right\}$
$=\sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{i} ; x\right)+\Upsilon\left(\alpha(t, x)(t-x)^{r} ; x\right):=I_{1}+I_{2}$.
$I_{1}=\sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{i} ; x\right)=\sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} \Upsilon_{n, \lambda}^{(r)}\left(\sum_{j=0}^{i}\binom{i}{j}(-x)^{i-j} t^{j} ; x\right)$
$=\sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} \sum_{j=0}^{i}\binom{i}{j}(-x)^{i-j} \Upsilon_{n, \lambda}^{(r)}\left(t^{j} ; x\right)=\frac{f^{(r)}(x)}{r!} \Upsilon_{n, \lambda}^{(r)}\left(t^{r} ; x\right)$
Because $\Upsilon_{n, \lambda}^{(r)}\left(t^{j} ; x\right)$ is polynomial in x of degree j. Then,
$I_{1}=\left\{\frac{n!}{n^{r}(n-r)!}+\frac{-2 r(n+1)!}{n^{r}\left(n^{2}-1\right)(n-r+1)!} \lambda\right\} r!$
Then, $I_{1}=f^{(r)}(x)$ as $n \rightarrow \infty$.
The treatment of I_{2} is given below.
$I_{2}=\Upsilon_{n, \lambda}^{(r)}\left(\alpha(t, x)(t-x)^{r} ; x\right)=\sum_{k=0}^{n} \tilde{b}_{n, k}^{(r)}(\lambda ; x) \alpha\left(\frac{k}{n}, x\right)\left(\frac{k}{n}-x\right)^{r}$.
From Lemma 2.4,

$$
x^{r}(1-x)^{r} \tilde{b}_{n, k}^{(r)}(\lambda ; x)=\sum_{\substack{2 i+j \leq r \\ i, j \geq 0}} n^{i}(k-n x)^{j} \tilde{b}_{n, k}(\lambda ; x) Q_{i, j, r}(x) .
$$

Hence,

$$
\begin{aligned}
& I_{2}=\sum_{k=0}^{n} \frac{1}{x^{r}(1-x)^{r}} \sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} n^{i+j}\left(\frac{k}{n}-x\right)^{j} \tilde{b}_{n, k}(\lambda ; x) Q_{i, j, r}(x) \alpha\left(\frac{k}{n}, x\right)\left(\frac{k}{n}-x\right)^{r} . \\
& \left|I_{2}\right| \leq \sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} \frac{\left|Q_{i, j, r}(x)\right|}{(x(1-x))^{r}} n^{i+j}\left\{\sum_{k=0}^{n} \tilde{b}_{n, k}(\lambda ; x)\left|\frac{k}{n}-x\right|^{j+r} \alpha\left|\left(\frac{k}{n}, x\right)\right|\right\}
\end{aligned}
$$

Since $\alpha(t, x) \rightarrow 0$ as $t \rightarrow x$, then $\forall \varepsilon>0$ and there exists $\delta>0$ such that $\left|\alpha\left(\frac{k}{n}, x\right)\right|<$ ε, whenever $0<\left|\frac{k}{n}-x\right|<\delta$. For $\left|\frac{k}{n}-x\right| \geq \delta$, then we have $\left|\alpha\left(\frac{k}{n}, x\right)\left(\frac{k}{n}-x\right)\right| \leq \beta\left(\frac{k}{n}\right)^{\rho}$, for some $\beta>0$. Thus,

$$
\left|I_{2}\right|=\beta_{1} \sum_{\substack{2 i+j \leq r \\ i, j \geq 0}} n^{i+j}\left\{\alpha \sum_{\substack{\left.\frac{k}{n}-x \right\rvert\,<\delta}} \tilde{b}_{n, k}(\lambda ; x)\left|\frac{k}{n}-x\right|^{j+r}+\beta \sum_{\left|\frac{k}{n}-x\right| \geq \delta} \tilde{b}_{n, k}(\lambda ; x)\left(\frac{k}{n}\right)^{\rho}\right\}
$$

$:=I_{3}+I_{4}$.
Where $\beta_{1}=\sup _{\substack{2 i+j \leq r \\ i, j \geq 0}} \frac{\left|Q_{i, j, r}(x)\right|}{(x(1-x))^{r}}, x \in(0,1)$ is fixed.
Using Schwarz inequality, we conclude that

$$
\begin{aligned}
& \quad I_{3}=\alpha \beta_{1} \sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} n^{i+j}\left(\sum_{\left|\frac{k}{n}-x\right|<\delta} \tilde{b}_{n, k}(\lambda ; x)\right)^{\frac{1}{2}}\left(\sum_{\left|\frac{k}{n}-x\right|<\delta} \tilde{b}_{n, k}(\lambda ; x)\left|\frac{k}{n}-x\right|^{2(j+r)}\right)^{\frac{1}{2}} \\
& \leq \alpha \beta_{1} \sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} n^{i+j} O\left(n^{\frac{-(r+j)}{2}}\right)=\alpha \beta_{1} O\left(n^{-s}\right) .
\end{aligned}
$$

Since $\alpha>0$ is arbitrary, then $I_{3} \rightarrow 0$ as $n \rightarrow \infty$.
$I_{4}=\beta_{1} \sum_{\substack{2 i+j \leq r \\ i, j \geq 0}} n^{i+j} \sum_{\left|\frac{k}{n}-x\right| \geq \delta} \tilde{b}_{n, k}(\lambda ; x)\left(\frac{k}{n}\right)^{\rho}$
$I_{4} \leq \beta_{1} \sum_{\substack{2 i+j \leq r \\ i, j \geq 0}} n^{i+j}\left(\sum_{\left|\frac{k}{n}-x\right| \geq \delta} \tilde{b}_{n, k}(\lambda ; x)\right)^{\frac{1}{2}}\left(\sum_{\left|\frac{k}{n}-x\right| \geq \delta} \tilde{b}_{n, k}(\lambda ; x)\left(\frac{k}{n}-x\right)^{2 r}\right)^{\frac{1}{2}}$
$=\beta_{1} \sum_{\substack{2 i+j \leq r \\ i, j \geq 0}}^{i, j \geq 0} O\left(n^{i+j-s}\right)=O(1) . \quad s>i$ $i, j \geq 0$
$I_{4} \rightarrow \infty$ as $n \rightarrow \infty$. Hence, $I_{2}=O(1)$ as $n \rightarrow \infty$.
By combining the estimates of I_{1} and I_{2}, we get (3).

Theorem 3.3

Let $f \in C[0,1]$. If $f^{(r+2)}$ exists at $x \in(0,1)$, then,

$$
\begin{align*}
& \lim _{\substack{n \rightarrow \infty \\
r x(x-1)}}\left\{\mathrm{Y}_{n, \lambda}^{(r)}(f ; x)-f^{(r)}(x)\right\}=-\frac{r(r-1)}{2} f^{(r)}(x)+\frac{-2 r x+r}{2} f^{(r+1)}(x) \\
&+\frac{r(r+2)}{2} f^{(x) .} \tag{4}
\end{align*}
$$

Proof

By Taylor's expansion,
$f(t)=\sum_{i=0}^{r+2} \frac{f^{(i)}(x)}{i!}(t-x)^{i}+\alpha(t, x)(t-x)^{r+2}$.
where $\alpha(t, x) \rightarrow 0$ as $t \rightarrow x$ hence,
$n\left\{Y_{n, \lambda}^{(r)}(f ; x)-f^{(r)}(x)\right\}$ $=n\left\{\sum_{k=0}^{r+2} \frac{f^{(i)}(x)}{i!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{i} ; x\right)+\Upsilon_{n, \lambda}^{(r)}\left(\alpha(t, x)(t-x)^{r+2} ; x\right)-f^{(r)}(x)\right\}$.
$\lim _{n \rightarrow \infty} n\left\{Y_{n, \lambda}^{(r)}(f ; x)-f^{(r)}(x)\right\}$
$=\lim _{n \rightarrow \infty} n\left\{\frac{f^{(r)}(x)}{r!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{r} ; x\right)+\frac{f^{(r+1)}(x)}{(r+1)!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{r+1} ; x\right)\right.$
$\left.+\frac{f^{(r+2)}(x)}{(r+2)!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{r+2} ; x\right)-f^{(r)}(x)+\Upsilon_{n, \lambda}^{(r)}\left(\alpha(t, x)(t-x)^{r+2} ; x\right)\right\}$
$:=I_{1}+I_{2}$
Using Lemma 2.2 (iv), then
$\begin{aligned} & I_{1}=\lim _{n \rightarrow \infty}\left\{\frac{f^{(r)}(x)}{r!} \Upsilon_{n, \lambda}^{(r)}\left(t^{r} ; x\right)+\frac{f^{(r+1)}(x)}{(r+1)!}\left((r+1)(-x) \Upsilon_{n, \lambda}^{(r)}\left(t^{r} ; x\right)+\Upsilon_{n, \lambda}^{(r)}\left(t^{r+1} ; x\right)\right)\right. \\ & +\frac{f^{(r+2)}(x)}{(r+2)!}\left(\frac{(r+2)(r+1)}{2} x^{2} \Upsilon_{n, \lambda}^{(r)}\left(t^{r} ; x\right)\right. \\ & \left.\left.+(r+2)(-x) \Upsilon_{n, \lambda}^{(r)}\left(t^{r+1} ; x\right)+\Upsilon_{n, \lambda}^{(r)}\left(t^{r+2} ; x\right)\right)-f^{r}(x)\right\} \\ & =\lim _{n \rightarrow \infty}\left\{n f^{(r)}(x)\left(\frac{n!}{n^{r}(n-r)!}+\frac{-2 r(n+1)!}{n^{r}\left(n^{2}-1\right)(n-r+1)!} \lambda-1\right)\right. \\ & +n \frac{f^{(r+1)}(x)}{(r+1)!}\left((r+1)!(-x)\left(\frac{n!}{n^{r}(n-r)!}+\frac{-2 r(n+1)!}{n^{r}\left(n^{2}-1\right)(n-r+1)!} \lambda\right)\right. \\ & +\left(\frac{n!}{n^{r+1}(n-r-1)!}+\frac{-2(r+1)(n+1)!}{n^{r+1}\left(n^{2}-1\right)(n-r)!} \lambda\right)(r+1)!x \\ & \left.+\left(\frac{r n!}{2 n^{r+1}(n-r)!}+\left\{\frac{n r(n+1)!}{2 n^{r+1}\left(n^{2}-1\right)(n-r+1)!}+\frac{r(n+1)!}{2 n^{r+1}\left(n^{2}-1\right)(n-r)!}\right\} \lambda\right)(r+1)!\right) \\ & +n \frac{f^{(r+2)}(x)}{(r+2)!}\left(\frac{(r+2)!}{2} x^{2}\left(\frac{n!}{n^{r}(n-r)!}+\frac{-2 r(n+1)!}{n^{r}\left(n^{2}-1\right)(n-r+1)!} \lambda\right)\right. \\ & +(r+2)!\left(-x^{2}\right)\left(\left(\frac{n!}{n^{r+1}(n-r-1)!}+\frac{-2(r+1)(n+1)!}{n^{r+1}\left(n^{2}-1\right)(n-r)!} \lambda\right)\right. \\ & \left(\frac{r n!}{2 n^{r+1}(n-r)!}+\left\{\frac{n r(n+1)!}{2 n^{r+1}\left(n^{2}-1\right)(n-r+1)!}+\frac{r(n+1)!}{n^{r+1}\left(n^{2}-1\right)(n-r)!}\right\} \lambda\right)(r+2)!(-x) \\ & +\frac{(r+2)!}{2} x^{2}\left(\frac{n!}{n^{r+2}(n-r-2)!}+\frac{-2(r+2)(n+1)!}{n^{r+2}\left(n^{2}-1\right)(n-r-1)!} \lambda\right) \\ & +(r+2)!x\left(\frac{(r+1) n!}{2 n^{r+2}(n-r-1)!}\right. \\ & \left.\left.\quad+\left\{\frac{n(r+1)(n+1)!}{2 n^{r+2}\left(n^{2}-1\right)(n-r)!}+\frac{(r+1)(n+1)!}{2 n^{r+2}\left(n^{2}-1\right)(n-r-1)!}\right\} \lambda\right)\right\}\end{aligned} \quad:=E_{1}+E_{2}+E_{3}$.
By combining the estimates of E_{1}, E_{2}, E_{3}, as $n \rightarrow \infty$, the required is immediate, and we get
$E_{1}=-\frac{r(r-1)}{2} f^{(r)}(x) ;$
$E_{2}=\frac{-2 r x+r}{2} f^{(r+1)}(x) ;$
$E_{3}=\frac{r x(x-1)}{2} f^{(r+2)}(x)$.
Since $_{2} \rightarrow 0$ as $n \rightarrow \infty$, thus, we obtain (4).
Theorem 3.4
Let $(x) \in C[0,1]$. Then, for any $x \in(0,1)$ at which $f^{(r+4)}(x)$ exists, $\lambda \in[-1,1]$
$\lim _{n \rightarrow \infty} n^{2}\left(n\left\{\Upsilon_{n, \lambda}(f ; x)-f(x)\right\}+\frac{r(r-1)}{2} f^{(r)}(x)-\frac{(-2 r x+r)}{2} f^{(r+1)}(x)\right.$ $\left.-\frac{r x(x-1)}{2} f^{(r+2)}(x)\right)$
$=\frac{-4 x\left(r^{2}+1\right)-\left(r^{2}+r\right)}{2} \lambda f^{(r+1)}(x)+\left\{-2(r-1) x^{2}+r(r-1) x\right\} \lambda f^{(r+2)}(x)$
$+\left\{\left(-r^{2}-3 r+2\right) x^{3}+(r+1) x^{2}+\left(-2(r+3) x^{3}-\frac{\left(r^{2}+5 r+5\right)}{2} x^{2}\right) \lambda\right\} f^{(r+3)}(x)$
$+\left\{-\left(r^{2}+3 r+2\right) x^{4}+\frac{7 r^{2}-43 r+60}{12} x^{3}+\left(2(r+3) x^{4}+\frac{-17 r^{2}-55 r-84}{12} x^{3}\right) \lambda\right\} f^{(r+4)}(x)$.

Proof

By Taylor's expansion,
$f(t)=\sum_{i=0}^{r+4} \frac{f^{(i)}(x)}{i!}(t-x)^{i}+\alpha(t, x)(t-x)^{r+4}$.
where $\alpha(t, x) \rightarrow 0$ as $t \rightarrow x$, hence

$$
\begin{aligned}
& \left\{\Upsilon_{n, \lambda}^{(r)}(f ; x)-f^{(r)}(x)\right\} \\
& \begin{aligned}
= & \left\{\sum_{i=0}^{r+4} \frac{f^{(i)}(x)}{i!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{i} ; x\right)+\Upsilon_{n, \lambda}^{(r)}\left(\alpha(t, x)(t-x)^{r+4} ; x\right)-f^{(r)}(x)\right\} .
\end{aligned} \\
& \begin{aligned}
& \lim _{n \rightarrow \infty} n^{2}\left\{n\left(\Upsilon_{n, \lambda}^{(r)}(f ; x)-f^{(r)}(x)\right)+\frac{r(r+1)}{2} f^{(r)}(x)-\frac{(-2 r x+r)}{2} f^{(r+1)}(x)\right. \\
&-\left.\frac{\left(-2(r+1) x^{2}-(r+1) x\right)}{2} f^{(r+2)}(x)\right\}
\end{aligned} \\
& \left.\quad+\frac{r(r+1)}{2} f^{(r)}(x)-\frac{(-2 r x+r)}{2} f^{(r+1)}(x)-\frac{\left(-2(r+1) x^{2}-(r+1) x\right)}{2} f^{(r+2)}(x)\right\} \\
& =\lim _{n \rightarrow \infty} n^{2}\left\{n \left(\frac{f^{(r)}(x)}{r!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{r} ; x\right)+\frac{f^{(r+1)}(x)}{(r+1)!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{r+1} ; x\right)\right.\right. \\
& \quad+\frac{f^{(r+2)}(x)}{(r+2)!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{r+2} ; x\right) \\
& \quad+\frac{f^{(r+3)}(x)}{(r+3)!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{r+3} ; x\right)+\frac{f^{(r+4)}(x)}{(r+4)!} \Upsilon_{n, \lambda}^{(r)}\left((t-x)^{r+4} ; x\right)-f^{(r)}(x) \\
& \left.\quad+\Upsilon_{n, \lambda}^{(r)}\left(\alpha(t, x)(t-x)^{r+4} ; x\right)\right):=I_{1}+I_{2} .
\end{aligned}
$$

Using Lemma 1.2 (iv), then

$$
\begin{aligned}
& I_{1}=\lim _{n \rightarrow \infty} n^{2}(n\left\{\frac{f^{(r)}(x)}{r!} \Upsilon_{n, \lambda}^{(r)}\left(t^{r} ; x\right)\right. \\
&+\frac{f^{(r+1)}(x)}{(r+1)!}\left((r+1)(-x) \Upsilon_{n, \lambda}^{(r)}\left(t^{r} ; x\right)+\Upsilon_{n, \lambda}^{(r)}\left(t^{r+1} ; x\right)\right) \\
&+\frac{f^{(r+2)}(x)}{(r+2)!}\left(\frac{(r+2)(r+1)}{2} x^{2} \Upsilon_{n, \lambda}^{(r)}\left(t^{r} ; x\right)+(r+2)(-x) \Upsilon_{n, \lambda}^{(r)}\left(t^{r+1} ; x\right)+\Upsilon_{n, \lambda}^{(r)}\left(t^{r+2} ; x\right)\right) \\
&+\frac{f^{(r+3)}(x)}{(r+3)!}\left(\frac{-(r+3)(r+2)(r+1)}{6} x^{3} \Upsilon_{n, \lambda}^{(r)}\left(t^{r} ; x\right)+\frac{(r+3)(r+2)}{2}\left(x^{2}\right) \Upsilon_{n, \lambda}^{(r)}\left(t^{r+1} ; x\right)\right. \\
&\left.\quad-(r+3) x \Upsilon_{n, \lambda}^{(r)}\left(t^{r+2} ; x\right)+\Upsilon_{n, \lambda}^{(r)}\left(t^{r+3} ; x\right)\right) \\
&+\frac{f^{(r+4)}(x)}{(r+4)!}\left(\frac{(r+4)(r+3)(r+2)(r+1)}{24} x^{4} \Upsilon_{n, \lambda}^{(r)}\left(t^{r} ; x\right)\right. \\
& \quad-\frac{(r+4)(r+3)(r+2)}{6}\left(x^{3}\right) \Upsilon_{n, \lambda}^{(r)}\left(t^{r+1} ; x\right)+\frac{(r+4)(r+3)}{2} x^{2} \Upsilon_{n, \lambda}^{(r)}\left(t^{r+2} ; x\right) \\
&\left.\quad-(r+4) \Upsilon_{n, \lambda}^{(r)}\left(t^{r+3} ; x\right)+\Upsilon_{n, \lambda}^{(r)}\left(t^{r+4} ; x\right)\right)-f^{r}(x) \\
&\left.\left.+\frac{r(r-1)}{2} f^{(r)}(x)-\frac{(-2 r x+r)}{2} f^{(r+1)}(x)-\frac{r x(x-1)}{2} f^{(r+2)}(x)\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=\lim _{n \rightarrow \infty} n^{2}\left\{n f^{(r)}(x)\left(\frac{n!}{n^{r}(n-r)!}+\frac{-2 r(n+1)!}{n^{r}\left(n^{2}-1\right)(n-r+1)!} \lambda-1\right)\right. \\
&+n \frac{f^{(r+1)}(x)}{(r+1)!}\left((r+1)!(-x)\left(\frac{n!}{n^{r}(n-r)!}+\frac{-2 r(n+1)!}{n^{r}\left(n^{2}-1\right)(n-r+1)!} \lambda\right)\right. \\
&+\left(\frac{n!}{n^{r+1}(n-r-1)!}+\frac{-2(r+1)(n+1)!}{n^{r+1}\left(n^{2}-1\right)(n-r)!} \lambda\right)(r \\
&+1)!x+\left(\frac{r n!}{2 n^{r+1}(n-r)!}\right. \\
&\left.\left.+\left\{\frac{n r(n+1)!}{n^{r+1}\left(n^{2}-1\right)(n-r+1)!}+\frac{r(n+1)!}{n^{r+1}\left(n^{2}-1\right)(n-r)!}\right\} \lambda\right)(r+1)!\right) \\
&+\frac{f^{(r+2)}(x)}{(r+2)!}\left(\frac{(r+2)!}{2} x^{2}\left(\frac{n!}{n^{r}(n-r)!}+\frac{-2 r(n+1)!}{n^{r}\left(n^{2}-1\right)(n-r+1)!} \lambda\right)\right. \\
&+(r+2)!\left(-x^{2}\right)\left(\left(\frac{n!}{n^{r+1}(n-r-1)!}+\frac{-2(r+1)(n+1)!}{n^{r+1}\left(n^{2}-1\right)(n-r)!} \lambda\right)\right. \\
&+\left(\frac{r n!}{2 n^{r+1}(n-r)!}\right. \\
&\left.+\left\{\frac{n r(n+1)!}{2 n^{r+1}\left(n^{2}-1\right)(n-r+1)!}+\frac{r(n+1)!}{2 n^{r+1}\left(n^{2}-1\right)(n-r)!}\right\} \lambda\right)(r+2)!(-x) \\
&+(r+2)!x^{2}\left(\frac{n!}{n^{r+2}(n-r-2)!}+\frac{-2(r+2)(n+1)!}{n^{r+2}\left(n^{2}-1\right)(n-r-1)!} \lambda\right) \\
&+(r+2)!x\left(\frac{(r+1) n!}{2 n^{r+2}(n-r-1)!}\right. \\
&+\left\{\frac{n(r+1)(n+1)!}{2 n^{r+2}\left(n^{2}-1\right)(n-r)!}+\frac{(r+1)(n+1)!}{2 n^{r+2}\left(n^{2}-1\right)(n-r-1)!}\right\} \lambda \\
&+\frac{f^{(r+3)(x)}(r+(r+3)!}{(r+3)!}\left(\frac{n}{6} x^{3}\left(\frac{n!}{n^{r}(n-r)!}+\frac{-2 r(n+1)!}{n^{r}\left(n^{2}-1\right)(n-r+1)!} \lambda\right)\right. \\
&+\frac{(r+3)!}{2}\left(x^{3}\right)\left(\frac{n!}{n^{r+1}(n-r-1)!}+\frac{-2(r+1)(n+1)!}{n^{r+1}\left(n^{2}-1\right)(n-r)!} \lambda\right) \\
&+\left(\frac{r n!}{2 n^{r+1}(n-r)!}\right. \\
&\left.+\left\{\frac{n r(n+1)!}{2 n^{r+1}\left(n^{2}-1\right)(n-r+1)!}+\frac{-2(r+2)(n+1)!}{2 n^{r+1}\left(n^{2}-1\right)(n-r)!}\right\} \lambda\right) \frac{(r+3)!}{2}\left(x^{2}\right) \\
&-(r+3)!x^{3}\left(\frac{n!}{n^{r+2}(n-r-2)!}+\frac{r n^{r+2}\left(n^{2}-1\right)(n-r-1)!}{(n+1)}\right.
\end{aligned}
$$

$$
\left.\left.\left.\begin{array}{rl}
-(r+3)!x^{2}(& \frac{(r+1) n!}{2 n^{r+2}(n-r-1)!} \\
+ & \left.\left\{\frac{n(r+1)(n+1)!}{2 n^{r+2}\left(n^{2}-1\right)(n-r)!}+\frac{(r+1)(n+1)!}{2 n^{r+2}\left(n^{2}-1\right)(n-r-1)!}\right\} \lambda\right) \\
+ & (r+3)!x^{3}\left(\frac{n!}{n^{r+3}(n-r-3)!}+\frac{-2(r+3)(n+1)!}{n^{r+3}\left(n^{2}-1\right)(n-r-1)!} \lambda\right) \\
+ & (r+3)!x^{2}\left(\frac{(r+2) n!}{2 n^{r+3}(n-r-2)!}\right. \\
+ & \left.\left\{\frac{n(r+2)(n+1)!}{2 n^{r+3}\left(n^{2}-1\right)(n-r-1)!}+\frac{(r+2)(n+1)!}{2 n^{r+3}\left(n^{2}-1\right)(n-r-2)!}\right\} \lambda\right) \\
+ & \frac{f^{(r+4)}(x)}{(r+4)!}\left(\frac{(r+4)!}{24} x^{4}\left(\frac{n!}{n^{r}(n-r)!}+\frac{-2 r(n+1)!}{n^{r}\left(n^{2}-1\right)(n-r+1)!} \lambda\right)\right. \\
-\frac{(r+4)!}{6} x^{4} & \left(\frac{n!}{n^{r+1}(n-r-1)!}+\frac{-2(r+1)(n+1)!}{n^{r+1}\left(n^{2}-1\right)(n-r)!} \lambda\right) \\
& -\left(\frac{r n!}{2 n^{r+1}(n-r)!}\right. \\
& \left.+\left\{\frac{n r(n+1)!}{2 n^{r+1}\left(n^{2}-1\right)(n-r+1)!}+\frac{r(n+1)!}{2 n^{r+1}\left(n^{2}-1\right)(n-r)!}\right\} \lambda\right) \frac{(r+4)!}{6} x^{3} \\
& +\frac{(r+4)!}{2} x^{4}\left(\frac{n!}{n^{r+2}(n-r-2)!}+\frac{-2(r+2)(n+1)!}{n^{r+2}\left(n^{2}-1\right)(n-r-1)!} \lambda\right) \\
& +\frac{(r+4)!}{2} x^{3}\left(\frac{(r+1) n!}{2 n^{r+2}(n-r-1)!}\right. \\
& \left.+\left\{\frac{n(r+1)(n+1)!}{2 n^{r+2}\left(n^{2}-1\right)(n-r)!}+\frac{(r+1)(n+1)!}{2 n^{r+2}\left(n^{2}-1\right)(n-r-1)!}\right\} \lambda\right) \\
& -(r+4)!x^{4}\left(\frac{n!}{n^{r+3}(n-r-3)!}+\frac{-2(r+3)(n+1)!}{n^{r+3}\left(n^{2}-1\right)(n-r-1)!} \lambda\right) \\
& -(r+4)!x^{3}\left(\frac{(r+2) n!}{2 n^{r+3}(n-r-2)!}\right. \\
& \left.+\left\{\frac{n(r+2)(n+1)!}{2 n^{r+3}\left(n^{2}-1\right)(n-r-1)!}+\frac{(r+2)(n+1)!}{2 n^{r+3}\left(n^{2}-1\right)(n-r-2)!}\right\} \lambda\right) \\
& +(r+4)!x^{4}\left(\frac{n!}{n^{r+4}(n-r-4)!}\right. \\
& \left.+\frac{-2(r+4)(n+1)!}{n^{r+3}\left(n^{2}-1\right)(n-r-3)!} \lambda\right)+(r+4)!x^{3}\left(\frac{(r+3) n!}{2 n^{r+4}(n-r-3)!}\right. \\
& +\frac{r(r-1)}{2 n^{r+4}\left(n^{2}-1\right)(n-r-2)!} f^{(r)}(x)-\frac{(-2 r x+r)}{2} f^{(r+1)}(x)-\frac{r x(x-1)}{2} f^{(r+2)}(x) . \\
& (r+3)(n+1)!
\end{array} \lambda\right)\right)\right\}
$$

$:=E_{1}+E_{2}+E_{3}+E_{4}+E_{5}$.
By combining the estimates of $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$ as $n \rightarrow \infty$, we get
$E_{1}=0$;
$E_{2}=\frac{-4 x\left(r^{2}+1\right)-\left(r^{2}+r\right)}{2} \lambda f^{(r+1)}(x) ;$
$E_{3}=\left\{-2(r-1) x^{2}+r(r-1) x\right\} \lambda f^{(r+2)}(x)$;

$$
\begin{aligned}
& E_{4}=\left\{\left(-r^{2}-3 r+2\right) x^{3}+(r+1) x^{2}+\left(-2(r+3) x^{3}-\frac{\left(r^{2}+5 r+5\right)}{2} x^{2}\right) \lambda\right\} f^{(r+3)}(x) \\
& E_{5}=\left\{-\left(r^{2}+3 r\right.\right. \\
&+2) \mathrm{x}^{4}+\frac{7 \mathrm{r}^{2}-43 \mathrm{r}+60}{12} \mathrm{x}^{3}+\left(2(\mathrm{r}+3) \mathrm{x}^{4}\right. \\
&\left.\left.+\frac{-17 \mathrm{r}^{2}-55 \mathrm{r}-84}{12} \mathrm{x}^{3}\right) \lambda\right\} f^{(r+4)}(x)
\end{aligned}
$$

Since $I_{2} \rightarrow 0$ as $n \rightarrow \infty$, thus, we obtain (5).

References

[1] Bernstein S.N. "Démonstration duthéorèmede Weierstrass fondéesurla calculdes probabilities". Soc. Math. Charkow Sér. 2t., vol. 13, pp. 1-2, 1912.
[2] Voronovaskaja E. Détermination de la forme asymptotique d'ápproximation des functions par les polynômes de S.N. Bernstein, C.R. Adad. Sci, USSR, pp. 79-85, 1932.
[3] Korovkin P.P. Linear Operators and Approximation Theory, Hindustan Publ. Corp. Delhi, 1953.
[4] Bohman H. "On approximation of continuous and analytic functions". Mat., vol. 2, pp. 43-56, 1952.
[5] Baskakova V.A. "An example of a sequence of linear positive operators in the space of continuous functions", Doki. Akad. Nauk SSSR., vol. 113, pp. 249-251, 1957. (in Russian)
[6] Schurer F. "Linear positive operators in approximation Theory", Math. Inst. Techn. Univ. Delft report, 1962.
[7] Agrawal P. N. and Kasane H. S. "On the simultaneous approximation by modified Bernstein polynomials". Bull. Un. Math. Ital., vol. A (6), Issue 3, pp. 267-273, 1984.
[8] Lupus A. "A q-analogue of Bernstein operators, University of Cluj-Napoca", Seminar on numerical and statistical calculus, Nno. 9, pp. 85-92, $1987 .$.
[9] Phillips G.M. "Bernstein polynomials based on the q-integers". Ann. Numer. Math., vol. 4, pp. 511-518, 1997.
[10] Zeng X. M. and. Cheng F. "On the rates of approximation of Bernstein type operators". J. Approx. Theory, vol. 109, no. 2, pp. 242-256, 2001.
[11] Gupta V. "Some approximation properties of q-Durrmeyer operators". Appl. Math. Comput., vol. 197, pp. 172-178, 2008.
[12] Nowak G. "Approximation properties for generalized q-Bernstein polynomials". J. Math. Anal. Appl., vol. 350, pp. 50-55, 2009.
[13] Long Z. Ye, X. and Zeng X.-M. "Adjustment for Bézier curve and surface". In: International Conference on Computer Science and Education, pp. 1712-1716, 2010.
[14] Cai, Q. B, Lian B. Y. and Zhou G. "Approximation properties of λ-Bernstein operators". J. In equal. Appl. Math., vol. 61, pp. 42-54, 2018..
[15] Ditzian Z. and Ivanov K. "Bernstein-type operators and their derivatives". J. Approx. Theory, vol. 56, no. 1, pp. 72-90, 1989.

[^0]: *Email: alijasmoh@gmail.com

