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Abstract 

     In the last few years, the literature conferred a great interest in studying the 

feasibility of using memristive devices for computing. Memristive devices are 

important in structure, dynamics, as well as functionalities of artificial neural 

networks (ANNs) because of their resemblance to biological learning in synapses 

and neurons regarding switching characteristics of their resistance. Memristive 

architecture consists of a number of metastable switches (MSSs). Although the 

literature covered a variety of memristive applications for general purpose 

computations, the effect of low or high conductance of each MSS was unclear. This 

paper focuses on finding a potential criterion to calculate the conductance of each 

MMS rather than the whole conductance as reported in the literature. Anti-Hebbian 

and Hebbian (AHaH) learning rules are used to mimic the changes in memristance 

of the memristors. This research will concentrate on the effect of conductance on an 

individual MSS to simulate the nanotechnology devices of the memristors. A single 

synapse is presented by a couple of memristors to mimic its resistance switching. 

The learning circuit of artificial synapses could be used in many applications, such 

as image processing and neural networks, for pattern classification of synapses, 

represented by a map of the memeristors. These synapses are essential elements for 

data processing and information storage in both real and artificial neural systems. 

 

Keywords: Memristive, machine learning, Anti-Hebbian and Hebbian learning, 
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(ANNsبدبب تذابييا مع السذابك البيهلهجية والخلايا العربية في ) .سا يتعمق بخرائص التبجيل لسقاومتيم
عمى الخغم من أن البحهث  . (MSS)من عجد من السفاتيح الثابتة  Memristive ـالبشاء السعساري لم يتكهن 

تغطي مجسهعة متشهعة من تطبيقات  لحدابات الأغخاض العامة ، فإن تأثيخ السهصمية السشخفزة أو العالية 
لتعجيل مقاومة الجياز.  يخكد ىحا البحث عمى  AHaH(. تم استخجام طخيقة التعمم MSSغيخ واضح لكل )

بشاء بجلًا من التهصيل الكامل كسا تم استخجامو في البحهث السهجهدة .يتم   MSSتأثيخ السهصمية لكل مفتاح 
تتأثخ  MSSىحا البحث يخكد أن كل  لتقميج تبجيل السقاومة. memristorsمذبك واحج من قبل اثشين من 

بقيسة مقجار التهصيل لسحاكاة  الجياز الستشاىي في الرغخ الحي مسكن ان يدتخجم في كثيخ من التطبيقات 
تعتبخ ىحه السذابك عشاصخ أساسية مثلا معالجة صهر والذبكات العربية والسذابك يتم تسثيميا بالجياز. 

 الحقيقية والاصطشاعية.لسعالجة البيانات وتخدين السعمهمات في كل من الأنظسة العربية 
1. Introduction 

     Recently, memristor based applications have been developed rapidly through research in 

computation and human brain emulation, which is simulated as synapse in artificial neural 

networks. The artificial synapse needs to recall its previous history. In conjunction with pre-

synaptic and post-synaptic neurons, memory-resistor characteristics, which is a main 

behaviour in the memristors, can do that in an efficient method, realizing all the synaptic 

properties needed. In reality, the term memristor is an abbreviation of "memory" and 

"resistor". It is an electrical device combining the behaviours of both resister and memory. 

The resistance of the memristor is not constant but depends on the number of electrical 

charges that flow through it, which can determine the amount of the current flowing in the 

memristor. The relation between voltage (v) across the memristor and current (i) flowing 

through it at any time (t) can be expressed by the following Ohm's law: 

                          𝑣(𝑡) = 𝑀(𝑞(𝑡))𝑖(𝑡)                                                      (1) 

     where is the charge-dependent resistance or memristance (in Ohms) at time t. At any given 

time, the integral time of the current through the memristor determines the value of 

incremental memristance, as follows [1, 2]: 

                                  ∫ 𝑖
𝑡

−∞
(𝑡)𝑑(𝑡)                                                        (2) 

The relation between voltage and current is shown in Figure 1. The simulation of this circuit 

element is of much interest in the field of computation and synapse representation in real and 

artificial neural systems. For example, arithmetic operations can be implemented based on 

memristance rather than on the circuit based on voltage or current. This is important in 

hardware implementation for synapse simulation [3]. 
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Figure 1-Sinusoidal input voltage applied through the memristor reflects the relation between 

the voltage and current. 

      The simulation of memristive nano-devices as synapses has an important role in both 

computation and information storage [4]. In this case, the memristor can provide the same 

features of a synapse depending on the learning rule. This paper shows the effect of 

conductance on each MSS to find the whole conductance of the memristive. AHaH learning 

rule could be used to change the memristance of the memristor, then enabling the synapse to 

update its weights depending upon the occurrence of spikes between the input and output. 

The rest of the paper is structured as follows. In Section 2, we describe the required 

background and the relevant work. The generation of the memristive model and simulation 

are described in Sections 3 and 4. We introduce our results in Section 5. The conclusions are 

drawn in Section 6. 

2. Related works 

Several emerging technologies have been suggested to build hardware-based ANNs, such as 

memristive devices, phase change memories (PCMs) [5], and magnetic random access 

memories (MRAMs) [6]. Memristor-based artificial neurons have recently been created, but 

with restricted interaction within an interconnected network with artificial synapses. The 

resistance of memristor is not fixed, but changes depending on the amount and the direction 

of the charges flowing through it [1]. When the power goes out, the resistance will remain the 

same; therefore, it is non-volatile memory. 

It is well known in electronics that there exist only three fundamental passive circuit 

elements: the resistor, capacitor, and inductor. However, more than 50 years ago, a fourth 

fundamental circuit element, the memristor, was discovered [2]. In the earliest concept for the 

memristor proposed in 1971, Chua predicted that the memristor would be a two-terminal 

electrical device that represents the missing circuit element [2]. This device provided a 

relationship between flux and charge, but this study was only theoretical [2, 7].  

In 2008, the memristor was highlighted by Hewlett-Packard (HP) Labs when a group of 

scientists realized the first memristor electrical device, which was a nano-size device based on 

TiO2 [8], following the theory which was predicated in 1971 by Chua. In the same year, HP 

combined the memristive with CMOS neurons to produce neuromorphic circuits [9-10]. In 

this study, they overlapped the Spike Time Dependent Plasticity learning law, which is an 

updated biological synaptic rule, with memristance. Since then, memristors have witnessed 

dramatic developments and research interest. In 2009, a nonlinear memristive grid, rather than 

nonlinear resistive grids, was used for edge smoothing in two-dimensional image processing. 

The result showed that the memristive grid was more efficient than the resistive grid in noise 

elimination and edge precision [11]. In addition, it was efficient in neuromorphic computing 

[12].  

The next stage in research development was to simulate the biological synaptic process. Two, 

rather than one, memristors are required, connected serially with different polarities and can 

do arithmetic operations based on analogy circuit, rather than voltage based circuit [3-4]. In 

2014, Nugent and Timothy [13] introduced a general memristive device model based on 

AHaH learning rules, where synaptic weights are represented using two memristors connected 

serially with the same polarities. These memristors are needed to simulate AHaH circuit 

nodes. There are many memristive device models which model specific devices, but this type 

of memristor modelled a large number of devices [13-14]. 

Modelling memristive devices is believed to be very helpful for general purpose computing 

and machine learning applications, such as image processing, neural networks, 

communication systems, and neuromorphic-in-memory applications [15-21]. In this research, 

we will concentrate on simulated models of memristive devices, rather than physical devices, 
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in terms of the effect of conductance of MSS on the performance of the synaptic weights.  

This simulation improves the efficiency of learning process in terms of time and space.  

 

3. Memristive model generation 

Memristive neuromorphic device is a successful candidate for the development of artificial 

brain. The memristive model is needed for simulating AHaH node circuits [13]. The 

memristor consists of a number of MSSs (N), some are in the high conductance state (𝑁𝐵) 
and the remaining are in the low-conductance state (𝑁𝐴 = 𝑁 −𝑁𝐵). All these parameters must 

be determined to find the model. In addition, the conductance for each MSS must be 

determined in both cases; in other words, determination of the conductance of the switch in 

state A and state B.  

The conductance (𝐺𝑚 ) of the memristor for all MSSs is computed from the following 

equation: 

 

         𝐺𝑚 = (𝑁𝐵 × ((𝐺𝐵 ÷ 𝑁) − (𝐺𝐴 ÷ 𝑁))) + 𝑁 × 𝐺𝐴                                       (3) 

 

where 𝑁𝐵 is computed depending on N and 𝑁𝐴, 𝑁𝐴 = 𝑅𝑎 × 𝑁, where the initial value for the 

resistance is 𝑅𝑎 , a random value between 0 and 1 represents the lowest and the highest 

resistance, respectively. Therefore,  𝑁𝐵 = (1 − 𝑅𝑎) × 𝑁. 

4. Simulation of single memristor and synapse creation 

     In this study, memristor devices could be created from the materials of either 

chalcogenides or metal-oxides. These devices have a common architecture, with the following 

parameters: the sinusoidal voltage is used as the input voltage source with a frequency of 200 

Hz and the number of MSSs is set to 2000000. In the first step, all these channels are in state 

A (low conductance). 
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Figure 2- Two memristors to represent synapse. The voltage divider is used to compute 

output voltage at y between v and -v [13]. 
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Clearly, to simulate biological synapses, two memristors are needed [3-4] which are 

connected serially with the same polarities. Thus, both memristors compete to dissipate 

pathways to achieve AHaH rule, as in Figure 2. A voltage divider produces output y between v 

and -v. 

This model can be applied to different memristive  devices of various materials, such as 

chalcogenides, metal-oxides, AIST and GST. Both memristors used sinusoidal voltage as the 

input and the same parameters used in the single memristors, except that the time scale is 

different in order to observe the dynamical states of each memristor separately. When the 

input voltages are applied, the memristance of both devices is increased or decreased to set 

the initial weights of the synapses. Then, the output of the voltage divider is computed from 

the following equation: 

                  𝑣𝑏 = 𝐼 ÷ 𝐶𝑏                                         (4) 

     where vb is the voltage for Mb, I is the current of the memristor, and 𝐺𝑏 is the conductance 

for the second memristor (Mb). The voltage for the Ma depends on both total voltage v and the 

voltage for the Mb. 

                       𝑣𝑎 = 𝑣 − 𝑣𝑏                                     (5) 

where v and 𝑣𝑏 are the total voltage and voltage for Mb, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

Figure 3- A pre-description of a perceptron network. The postsynaptic 

neuron is an output summation of the k synapses connected by k inputs. 
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𝑂𝑢𝑡 = {
1    ⩾ 𝑡ℎ𝑟
0   < 𝑡ℎ𝑟

            (6) 

     Thus, the map weights of a particular perceptron network could be described by assigning 

each weight to a single memristor circuit, as shown in figure 3. A set of synapse weighting 

map (W1, W2, …. Wk) are arranged to transfer active signals from the inputs (1,2,….k) of the 

presynaptic neuron to the following (postsynaptic) neuron via the output. The value of the 

output is compared with a threshold, according to equation 6, to find whether its value is 

higher (or lower), and then determine the accumulated value for firing the postsynaptic 

neuron through sending an output spike. 

5. Observational studies  

     In order to create AHaH node, an array of synapses is required, with the input being 

represented as spike and bias which refer to the driven voltage source to and analog output y, 

while driven voltage source F refers to feedback. This node implements AHaH plasticity with 

circuit simulation. The mechanism of the AHaH learning rule for circuit simulations is 

achieved by several steps. First, the material used for the memristor is determined, such as 

Ag-chalcogenide, AIST, GST, or WOx, because the update in conductance is different from 

one material to another. Then, the conductance is computed from equation (3) for both 

devices of the memristors (A and B) after the input data is converted into a spike. The weight 

for each synapse is computed from the following equation: 

    𝑤 = 𝑣𝑑𝑑 × 𝐶𝐴 + 𝑣𝑠𝑠 × 𝐶𝐵                                                     (7)  

     where 𝐶𝐴 is the conductance for memristor A and 𝐶𝐵 is the conductance for memristor B. 

The input voltages (𝑣𝑑𝑑= 0.5V and 𝑣𝑠𝑠= - 0.5V) are set for the Ma and the Mb, respectively. 

Then, two processes are applied to update conductance, namely the read and write cycles. 

Through the read part, Kirchho’s Current Law (KCL) is used to produce the output voltage 

across the y, where -v and +v are set to the input spike for Ma and Mb, respectively. 

𝑣𝑦 = (𝑣𝑑𝑑 ∑ 𝐶𝐴
𝑀−1
𝑖=0 + 𝑣𝑠𝑠 ∑ 𝐶𝐵

𝑀−1
𝑖=0 ) ÷ (∑ 𝐶𝐴

𝑀−1
𝑖=0 +∑ 𝐶𝐵

𝑀−1
𝑖=0 )                       (8) 

where M is the number of active spikes input only with bias. Both Ma and Mb are competed to 

dissipate the energy pathway. The adaption in synaptic weight is implemented through the 

read and write cycles, depending on the Anti-Hebbian and Hebbian learning. In the read cycle, 

it is important to point out that with the access to the synapse, the output (𝑣𝑦) is read, but at 

the same time, adaption is happening (merging memory and processing), that is, the 

conductance is increased through Anti-Hebbian learning in the read phase. The difference 

between the driven voltage source for Ma (𝑣𝑑𝑑) and the output voltage y is the amount of the 

voltage applied across the switch 𝑣  to change its state. This represents the conductance 

adaption in Ma. If the 𝑣𝑦 accedes the height of barrier potential (the threshold value of the 

switch), then the switch changes its state and the active weights update their amount via 

generating a spike for firing the output neuron. 

In the same way, the conductance of the Mb is updated by the difference between y and 𝑣𝑠𝑠 to 

govern the neuronal firing events. In both the above cases, the conductivity of the active input 

memristor is increased, while the conductivity of the bias memristor is decreased by Anti-

Hebbian learning. This process will update the conductance of the synapses that have firing 

events, while the synapses that have no firing events will decrease.   

In the writing process, depending on the driven voltage source and the output voltage, either 

the conductance of Ma or the conductance of Mb will update. Ma is rewarded in any of the 

following cases: 

1. If feedback (F) is supervised with value 1. 

2. If y is positive and F is unsupervised with value 0. 

In the above two cases, Mb is the loser; therefore, it will decay by updating its conductance 

for active input and bias. The voltage applied across the switch is 𝑣𝑑𝑑 − 𝑣𝑠𝑠 through the 

conductance adaption for the active input and reverse polarities, while it is (−(𝑣𝑑𝑑 − 𝑣𝑠𝑠)) for 



Abbood et al.                                          Iraqi Journal of Science, 2021, Vol. 62, No. 10, pp: 3724-3732 

 

3730 

the bias input, and zero for the non-active input. Thus, the conductance of the MB will 

decrease while the Ma will be rewarded by not decaying (The voltage applied across the 

switch is zero). 

On the other hand, MB is rewarded in any of the following cases: 

1. If feedback (F) is supervised with value -1. 

2. If y is negative and F is unsupervised with value 0. 

Therefore, MA is the loser and it will decay. By the same way, when Mb is the loser, MA 

conductance will be decreased. 

 

Table1-Sample of the conductance adaption that depends on the value of the output voltage 

through the read and the write cycles for MA. The conductance is increased through the 

reading process, and if the output voltage is lower than zero, then the conductance is 

decreased through the writing process. 

Initial conductance (1/Ω) Output voltage       (mV) Read update      (1/Ω) Write update     (1/Ω) 

904200 8.338 907163 90764 

972692 11.4604 973571 973562 

983843 6.48602 984350 984347 

963994 0.9859 965115 965117 

980925 5.27301 981539 981532 

912916 -8.24796 915569 886904 

95713 -0.0994328 958072 928238 

982073 3.65474 982586 982584 

 

Table 2-A sample of the conductance adaption that depends on the value of the output voltage 

of both the read and the write cycles for MB. The conductance is increased through the 

reading process, and if the output voltage is higher than zero, then the conductance is 

decreased through the writing process. 

Initial conductance (1/Ω) Output voltage       (mV) Read update      (1/Ω) Write update     (1/Ω) 

965352 -11.6386 966536 966532 

957156 2.35617 958535 958537 

931360 4.34479 933675 902213 

945491 0.700627 947280 947274 

988854 -3.67227 989204 989193 

942652 4.73639 944518 912805 

982269 0.786579 982860 950091 

916938 6.64123 919614 888867 
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     As a result, this process is a counteraction to the reading process, because in the writing 

process the conductance is decreasing and in the reading process the conductance is 

increasing, as illustrated in Tables (1, 2). This counteraction is important to avoid the 

conductance reaching a saturated state. 

The most important advantage of the function simulation is that it has less computation than 

the circuit simulation, while both converge in the simulation results. 

V. Conclusions 

     In this work, we describe a memristive device for general purpose computing and machine 

learning through the implementation of neuromorphic learning rules based on memristive 

nano-devices. The memristor works with changing resistance depending on the current 

flowing through it. In addition, this work shows how synapse weights can be built from two 

memristors. An array of these synapses is used to build AHaH node, which could be used for 

machine learning applications with minimal computational overheads and cost. There are 

different applications of machine learning; for example, supervised and unsupervised 

classification and clustering based on a memristive nano-device, which has important 

characteristics in storage and computations. 
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