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Abstract

In This paper the generalized spline method and Caputo differential operator are
applied to solve linear fractional integro-differential equations of the second kind.
Comparison of the applied method with exact solutions reveals that the method is
tremendously effective.
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1. Introduction

The analytical solution of fractional differential equations, in general, has many difficulties,
therefore numerical methods may be suitable for approximating the solution. Polynomial splines have
been extensively used in several areas of applied mathematics such as computer graphics and
approximation theory. Therefore, one of the first generalizations in this direction are the so called
generalized splines which were introduced in the 50’s of the 20" century by Ahlberg, Nilson and
Walsh, [1]. In [2] generalized splines in R" is used to solve problems of optimal control. In [3] cubic
spline and collection method is used to solve the integral equations of second kind. In [4] the soluton
of fractional differential equations is approximated using linear multi-step methods with the
cooperation of G-spline interpolation.

generalized spline function is applied to solve fractional integro-differential equations .We are
concerned with the numerical solution of the following linear fractional integro differential equation:
DUu(x) = f(x) + f, k(e Ou()dt 041, N-I< @SN MEN  ooioiiieiiieceece, (1)
With initial conditions:u® = 6;,  i=1,...,n-1.
This section define some basic definitions of generalized spline and fractional calculus.
where D* u(x) indicates the fractional derivative of u(x).
f(x) and k(x,t) are given continuous function.
x and t are real variables varying in the interval [0,1].
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2. Preliminaries
Definition (1), [5]:The linear differential operator L of order n, defined by :
L=a,x)D" + ay_1(x)D™ 1 + -+ a;(x)D + ay(x)
Where aj(x) € C"[a,b] , C class of all functions which are n continuously differentiable defined on
[a,b]; j=0,1,...,n and a,(x)#0 on [a,b] , D=d/dx and associated with L its formal adjoints operator:
L= (—1)"D™an ()} + ()" D" Hap_1 ()} + - + (=1 D{a; ()} + ao (x)
Definition (2), [5]: Let A:a=X,<X; <...<xy=Db, Ne N be a partition on [a,b]. A real function S,
defined on [a,b] is said to be generalized spline with partition A if the following holds simultaneously:
1. Se XK [Xux]; i=1,2,...,N.
2. L'LS(X)=0; VXe[Xax]; i=12,...,N.
3. SeC?"2[a,b]

where K * [x.1,xi] class of all functions defined on [x.1,x] has derivative of order 2n, and LS(x)
linear genealized spline operator.
Definition(3), [6]: Suppose thata > 0,t > a,a,t € R.then

! n.[ (Ta)ﬂn n—1<a<neN,
DA (t) = {chz ) dt (t—1
kﬁf(t), a=neN,

Is called the Riemann-Liouville fractional derivative or the Riemann-Liouville fractional
differential operator of order a.
Definition (4), [6]: Suppose that @ > 0,t > a, a and a, t € R. The fractional operator

( ! t f(”)(r) dt n—1<a<neNnN
D.Yf(¢t) = {Fd(n Q) ), (t—o)attn ’
dt"f() a=neN,

is called the Caputo fractional derivative or Caputo fractional differential operator of order a.
Theorem,[6]: Let a eR,n—1<a <n,n € N,A€ C (set of complex numbers), then the Caputo
fractional derivative of the exponential function has the form:

Ak+ntk+n—a

D,%e’t = = AMtVOE a1 (At
_OF(k+1+n—a) 1n-a+1(A0)

where E, () is the two-parameter function of Mittag-leffler type.
3. Aproximate Solution of The Fractional Integro-Differential Equation:
Generalized spline function is applied to find the approximate solution of the fractional integro-
differential equation given in (1),Let:
SG) =Xiti¢q;(0) ,0<x<1 (3)
Be the generalized spline function of order 2n will be used to approximate eq.(1).
Where q;, j=1,2,...,2n be the basis function of generalized spline S(x),2n is order of L Lx=0 and
C1,Cy, ..., Con @re constants to be found.
Substituting (3) in (1) we obtain :
1
DX ¢ q;(x) = £ + [ k(e t) [X324 ¢ q;(0)]de (4)
Yt D“q}(x)—f k(x, ) X321 ¢ q;(O)dt = f(x) (5)
¢ [p% (q;(0) = Jy k(x,6) q;()dt]| = £(x)
Let M;(x) = D%q;(x) — [, k(x,t) q;(O)dt ,j = 1,2,....2n
Adding the initial conditions of eg.(1) as a new raw in the following matrices:
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M, (x0) My(x0) . Mazu(xo) f(xo0)
_ . . . .
. . . Cy .
1 Mi(xy) My(xy) . Map(xy) - _| £
A IR RN SO () N B I K )
S Y.
u<"-1'>1(0) u(n-i>2(0) . u<n-152n(0) 6n.—1
Or in the system form;
MC=F (7

M and F are constant matrices with dimensions (N+2)x2n and (N+2)x1 C of dimension 2nx 1
The system will construct has n equations and m coefficients s.t n > m therefore ,
Calculate , MTMC = MTF
to find the C; ,j = 1,2,...2n and substitute this solution in eq.(6) to get the approximate solution of
equation ().
4-Generalized Spline to Solve Practical Examples:
Example (1):Consider the Fredholm fractional integro-differential equation :

1 8\ (5 _0y1/2
Dzu(x) :(3)9(2\/—ﬂzx+f—2+f01xtu(t)dt,0Sx,tS 1 ...(8)
with initial condition :
u(0) =0 ...9)
The exact solution is, [7]:
u(x) =x%—x Let A be a partition for the

X-axis, St A0 =xp <xy <Xy <x3<x,<x5=1
where h=0.2,then xy = 0,x; = 0.2,x, = 0.4,x3 = 0.6 ,x, = 0.8, x5 = 1
Applying the generalized spline function to Fredholm fractional integro-differential equation (8)
Let L = D? — 4,be the differential operator of order 2,
Then it is adjoint is L"=D?-4 by using the homogeneous differential equation
L*Lu = D*u — 8D?u + 16u , we have the solutions:
uy (t) = e?t ,u,(t) = e72t ,us(t) = te?t ,u,(t) = te 2t
So that the generalized spline function in each [t;, ti«] is:
S(t) = cre?t + e + cgte?t + cpte?t ...(10)
In eq.(10) the coefficients ¢, , ¢, , €3, ¢4 are unknown four algebraic equations are needed substituting
€g.(10) in the initial condition eq.(9)
, yield:
c1+c; =0 ...(11)
Now for applying eq.(10) in eq.(8) we get
1
Dz(cie® + cye™?* + c3xe?* + ¢ xe %) — folx t(cre?t + c,e 2t + cgte?t + ¢y te™2)dt =
fx) (12)
(§)x3/2—2x1/2
where f(x) = = 5
The system will construct from eq.(11) and eq.(12) has 5 equations and 4 coefficients ,
Therefore , calculate:
MTMC = M"F ...(13)
Where M is constant matrix of dimension (5x 4) gain from eq.(12)
C=[c1 €, €3 Ca]"
F=[u(0) f(xo) f(x1) f(xz) f(xs)]"
Finally , Gauss elimination method is used to solve system (13) to find :
so the approximate solution S(x) is :
¢, =-0.086 ,c, =0.087, c; =0.102, ¢, =-0.99
S(x) = —0.086e%* + 0.087e~2* + 0.102xe?* — 0.99xe~2*
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Table 1-Numerical results of example (1)

X u(x) s(x) lu(x) —s()|
0 0 1x107 1x10°
0.1 -0.09 -0.102 0.012
0.2 -0.16 -0.172 0.012
0.3 -0.21 -0.216 6.196x10°
0.4 -0.24 -0.239 5.629x10™
0.5 -0.25 -0.245 4.765x10°
0.6 -0.24 -0.235 4.956x10
0.7 -0.21 -0.209 1.356x10°
0.8 -0.16 -0.164 4.13x10°
0.9 -0.09 -0.098 7.812x107
1 0 -3.983x10° 3.983x107

Figure-1, give the exact solution u(x) and its approximation S(x) for the considered example
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Figure 1-Exact and approximate solutions of example(1)

Example(2):

D2y(x) + Day(x) +y(x) = 2~ 2 + F(ZE) xt +x% + [1(x — Oy(0)de .(14)
with the initial conditions ’
y(0)=y(0)=0 ...(15)

the exact solution is, [8]:
y(x)=x’
let A be a partition for the x-axis , s.t: A:0 =xp < x; <x, <x3=1

where h=1/3 , thenx, = 0,x; = % , X

Applying the generalized spline function to Fredholm fractional integro-differential equation
Let L = D?, then L*Lu = D*u
2 3
We have the solutions: u;(t) = 1,u,(t) =t ,usz(t) = % ,Ug (B) =%
Which gives the generalized spline polynomial

2 3
y(t) =c; +ct+ c3%+ c4%
The coefficients ¢;,¢,,¢3 and ¢4 in eq.(16) are unknown four algebraic equations
Now substituting eq.(16) in the initial conditions eq.(15) ,we have:

2
zg ,X3:1

...(16)

1096



Hasan and Hussien Iragi Journal of Science, 2018, Vol. 59, No.2C, pp: 1093-1099

;=0 ..(17)
Now ,for applying eq.(16)in eq.(14)
C3 +%c4,) + Df(cl + xc, +X

2 x
D (c1+xcz+2 5

1 l‘fz f3
f(x—t)(cl+tcz +5c3+ —c4)dt=f(x)
re x1/2¢ F(3) x3/2¢ F(4) x5/2¢, x2 x3 1
C3+xC4 +—3- + = + - €1 +xCc +—C3+—cC4) —XCp —SXCp —
3 4 p(g) €2 () C3 (2) (1 2 T5C3 64) 17 3%XC

1
gxc3—zxc4+501+3cz+gc3 +5c4=f(x) ...(19)

where f(x) = z—§+%x3/2 + x2
3

The system will construct from eq.(17),eq.(18)and eq.(19) has 6 equations and 4 coefficients ,

therefore ,calculate :

MTMC = M"F ...(20)
Where M is constant matrix of dimension (6x4) then:

C=[cy ¢ C5 €]

F=[y(0) y (0) f(xo) f(x1) f(x;) f(x3)]"

Finally, Gauss elimination method may be wused to solve system (20) to find:

c; =-1.599%x10% , ¢, =-0.01, ¢3 =1.972, ¢, =0.539

So the approximate solution y(x):

y(x) = —=1.599 — 0.01x + 2 x? + 22253

Table-2 present a comparison between the exact and numerical solution:
Table 2-Numerical results of example (2):

3

X
C3+_

2 3
p c4)+(c1 +xc; +x—c3 +x—c4)—

2 6

1

X Exact approximate Absolute error
0 0 -1.599x10°° 1.599x10°
0.1 0.01 7.351x10° 2.649%10°
0.2 0.04 0.037 3.44x10°
0.3 0.09 0.087 3.434x10
0.4 0.16 0.158 2.09%x10°
0.5 0.25 0.251 1.13x10°
0.6 0.36 0.367 6.765x10°
0.7 0.49 0.505 0.015
0.8 0.64 0.667 0.027
0.9 0.81 0.854 0.044

1 1 1.064 0.064

Figure-2, give the exact solution ex(x) and its approximation u(x) for the considered example, in
which can see the accuracy of the obtained result and the applicability of the method.
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Figure 2-Exact and approximate solution of example (2).

Example (3) consider the Volterra linear fractional voltera integro-differential equation
—tZet t ¢
D4y(t) & )+( - )y(t) + [, efsy(s)ds ..(21)

With the |n|t|al condition :

y(0)=0 ...(22)

and the exact solution is, [9]:

y) =1t3

let A be a partition of the x-axis , StA:0 =xp < x; <Xy, < X3 <X, < x5 =1

where h = 0.2 ,thenxy =0,x; =0.2,x, =04,x,=0.6,x, =08,xs =1

Applying the generalized spline function to the Volterra linear fractional integro-differential equation

Let LL*u = D*u — 13D?u + 36u , with basis functions:

u (t) = e38,uy(t) = e™3 Jug(t) = e?t ,u,(t) =e 2

Which give the generalized spline function:

y(t) = cie3t + c,e 3t + c3e?t + e ...(23)
The coefficients ¢y, ¢,, c3 and ¢, in €q.(23) are unknown four algebraic equations

Now substituting eq.(23) in the initial condition eq.(22), we get:

cit+cy+tc3+c, =0 ...(24)

Now for applying eq.(23) in eq.(21)

D4(cle3t + c e 3t + cze?t + cue ) + ( ) (cre3t + ce7 3t + cze?t + ce™?t) —

et fo s(c1e3 + c,e735 + 325 + cue™)ds = f(b) ...(25)
6t9/4—
where f(t) = T%

As in example (2) Gauss elimination method may be used to solve system (20) for eq.(25) and
eq.(24) to find
¢, =0.043 ,c, =0.777 ,c3 = 0.026 ,c, = —0.838,
so the approximate solution y(t) is:
y(t) = 0.043e3t + 0.777e73 + 0.026e%¢ — 0.838e~2%¢
Table-3, presents a comparison between the exact and numerical solution:
Table 3-Numerical results of example (3):

x y) s() G — sG]
0 0 8x 1073 8x 1073
0.1 1x10® -0.021 0.022

0.2 8x10° -0.018 0.026

0.3 0.027 9.138x 1073 0.018
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0.4 0.064 0.058 5.881x 1073
0.5 0.125 0.128 3.477x 1073
0.6 0.216 0.222 6.494x 1073
0.7 0.343 0.345 2.081x 1073
0.8 0.512 0.504 7.926x 1073
0.9 0.729 0.711 0.018
1 1 0.981 0.019
Figure-3, give the exact solution ex(t) and its approximation s(t) for the considered example.
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Figure 3-Exact and approximate solutions of example (3).

5. Conclusions

In this paper, the application of generalized spline functions investigated to obtain approximate

solution of fractional integro-differential equations. Three test examples are considered with different
operators of order 2n. As a comparison with the exact solution , Tables- (1, 2, 3), Figures-(1, 2, 3)
showed the result.
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