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Abstract

This article addresses a new numerical method to find a numerical solution of the
linear delay differential equation of fractional order a; 1 < a < 2, the fractional
derivatives described in the Caputo sense. The new approach is to approximating
second and third derivatives. A backward finite difference method is used. Besides,
the composite Trapezoidal rule is used in the Caputo definition to match the integral
term. The accuracy and convergence of the prescribed technique are explained. The
results are shown through numerical examples.
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1. Introduction

Fractional differential equations are applied in Engineering, science, finance, applied
mathematics, bioengineering, and others [1]. However, many researchers investigated a
solution for delay fractional differential equations . In [2], AL-Saltani (2007) used a linear
multistep method to find a solution for delay fractional differential equations. Khader and
Hendy (2012) used the Legendre seudospactral method to approximate the solution of
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fractional-order delay differential equations [1]. Kaslik, and Sivasundaram (2012) presented
several analytical and numerical approaches for the stability analysis of linear fractional-order
delay differential equations [3]. Morgado et al. (2013) interested in linear fractional
differential equations with delay and they summarised existence and uniqueness theory based
on the method of steps. They also discussed the solution’s dependence on the equation [4].
Moghaddam and Mostaghim (2013) used a finite difference method to solve nonlinear
fractional delay differential equations with 0 < ¢ < 1 [5]. The Hermite wavelet method is
used by Saeed and Rehman in 2014 to find a solution for fractional delay differential
equations [6]. Igbal et al. (2015) introduced the Laguerre wavelet method and combined the
steps method to solve linear and nonlinear delay differential equations of fractional-order [7].
A new predictor-corrector process expanded by Daftardar-Gejji et al. [8] to solve fractional
delay differential equations and to perform related error analysis. Saeed et al. (2015) used the
Chebyshev wavelet method for solving the fractional delay differential equations and integro-
differential equations [9]. Xu and Lin (2016) modified the traditional Runga-Kutta method to
derive the numerical solutions of fractional delay differential equations [10]. Moghaddam et
al. [11] presented a numerical technique based on the Adams-Bashforth-Moulton scheme to
solve Variable order fractional delay differential equations. In 2016 Vivek et al. [12]
described the application of the improved predictor-corrector method to solve delay
differential equations of the fractional-order. Mohammed and Wadi (2016) generalized the
Hat function operational matrices, then combined with a process depends on steps method to
solve linear and nonlinear delay differential equations of fractional order [13]. Muthukumar
and Priya ( 2017) used shifted Jacobi polynomial to find the numerical solution of linear
fractional delay differential equation with 0 < a <1 [14]. In[15], Moghaddam, and
Mostaghim found numerical solutions and boundary conditions of nonlinear fractional
differential equations with delay using the finite difference method. In 2017 Sumudu
transform decomposition method has been introduced by Eltayeb and Abdeldaim to solve the
linear and nonlinear fractional delay differential equations [16]. In [17], Li and Wang
presented a concept of delayed Mittag-Leffler type matrix function then they studied the finite
time stability of fractional delay differential equation. Valizadeh et al. ( 2019) proposed a new
method called perturbed decomposition natural transform method to solve the fractional delay
pantograph differential equation [18]. Raslan et al. (2019) used spectral Tau method for
solving general fractional-order differential equations with a linear functional argument [19].
Malmir (2019) construct a new fractional integration operational matrix of Chebyshev
wavelets for fractional differential delay systems [20]. Yang et al. (2019) find a solutions to a
linear fractional delay differential equation of Hadamard type by introducing the Mittag-
Leffler delay matrix functions with logarithmic functions [21].

In this paper, we propose a new method for finding a numerical solution based on
backward finite difference formula for the linear fractional differential equation with a delay
of the form:

D%y() = A1 (O)y(t) + Ay (t — 1) + f (D), 1)

y() =0() fort € [-1,a] , )

where t € [a,b] and 1 < a < 2. The functions Ay, A, , f and @ are continuous on [a, b],
T > 0, y(t) the unknown function.

The structure of this paper is organized as follows: Section 2 includes basic concepts.
Section 3 provides the basic idea of the proposed approach, and section 4 describes the
solution’s algorithm. Section 5 contains numerical examples. Finally, section 6 gives
conclusions and recommendations.

with
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2. Preliminaries
This section presents notations, definitions of fractional derivative and the backward finite
differences method to approximate the second and third derivative. The description of the
composite Trapezoidal rule is also mentioned.
Definition 1 The Caputo fractional derivative operator D® of order « is defined in the
following form [19]:
1 t m) (4
Def(t) = T N (tfz)afn)m dz ,a >0 (3)

wherem —1<a<m,meN,t>0.
Definition 2 The backward four points difference formula of order two to approximate the
second derivative is [21]:

fll (xi) — 2f(x)=5f(xi_1)+4f (xi_p)—f(xi_3) ) (4)

hZ
Definition 3 The backward five points difference formula of order two to approximate the
third derivative is [21]:
f”,(xi) — 5f(xi)—18f(xi—1)+24’f(2x}il;2)—14f(xi—3)+3f(xi—4-) ’ (5)
where h represents the distance between points.
Definition 4 Suppose that the interval [a, b] is subdivided into s equally spaced intervals

[X) , Xi+1] OFf width h = bs;a, by using the equally spaced nodes x;, = a+ kh, k =0,1,...,s.
The composite Trapezoidal rule for s subintervals is (21):
b _
[} Feo)dx = 358 (F () + f (X)) - (6)
3. Method of Solution

This section introduces a numerical solution of fractional delay differential equation of order
1 < a < 2 using the finite differences method. First of all, an approximate to the fractional

derivative D is proposed fort =t; =a+ jh,j =1,2,..,land h = b;—a:
According to definition.1 and the value of 1 < a < 2, we obtain:
DUf(t) = o fy L ndz (7)

r2-a)”’0 (t—z)*-1
The following results obtained by applying integration by parts formula for the integral in

eq.7:
Df(O) = Grarame | OF ™ = [ Q@ (e~ 2)*dz| . ®)

using the composite Trapezoidal rule in eq.6 for the integral in eq.8, to get:

[y F@ @)@ =2 dz = 3 [FP )t ~ 02 + 2 51L, fO (t) (¢~ ) > +
FO)(t - tj)z_“] .

Substituting eq.8 ineq.7, fort = t; ,j = 0,1, ..., 1, yields:

DU (O)lems, = O

22—l (2-a)

j-1

h -
— PO +2 Y FOE (G~ ) || S =12,
m=1

Then, for the 2" and 3™ derivatives that appear previous equation, the backward difference
formula (eq.4 and eq.5) are used to obtain:

1234



Hameed and Mustafa Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1232-1239

Daf(t)|t=tj

B 1 2f(0) —5f(a—h) +4f(a—2h) — f(a — 3h) 2a

T R-r-oa h? t
h|5£(0) — 18f (a — h) + 24 (a — 2h) — 14f (a — 3h) + 3f(a — 4h) ,__

2 2h3 b

B ]Z_l Sf(xm) _ 18f(xm_1) + 24f(;c;ln3_2) — 14f(xm—3) + 3f(xm—4) (tj

—t) . =121 9)

Now, a numerical solution of delay differential equation with fractional order is considered by
substitutingt = t;,j = 1,2,...l ineq.1, then we get:
Dey(O)le=r; = A1(t)y(8) + Ao(t)y(t; —7) + £(&) . = 12,1
using eq.9 for approximating D*f (t) |t=tj, to obtain the following system of linear equations:
CY+D=Q , (10)
where C is a matrix of [ x [ dimension, Y, D, and Q are vectors of length I, which have the
following form:

Cyj=
. Jf i<j
Aq(t) S
_Sbu) fii=
2h?(2-)T(2~a) e
5(x—x)" " _ 18(xi-xj1)" " fi-j=
2R?2(2-T(2~a)  2h?(2-@)T(2-a) A
s(xi_xj)z_" _ 18(xi—xj+1)z_a 24(x,-—x,-+2)2_a lf i—-j=3
202(2-)T(2-a)  2R2(2-F(2-a) ' 2h?(2-WT(2—a) ’ '
S(i—x)" ™" 18(na) T 24(ximxe2)”" 14(nmxs) " ifi—j=
2h22-l(2-a) 2h?(2-)T(2-a@) ' 2h2(2-wT(2-a) 2h2(2-OT(2-a) ’ g
i(xi—xj)z_" C18(nx)T | 24(nmx) T 14(nx) | 3(rimxea) ,otherwise
22O 2-a) 2R CE-0T2-a) | ZRE-al(2-@)  2h2@-0lZ-a) ' 2h*2-oT2-a)
(11)
— T = | =
Y=[y; y, - d; = Ay(t; - ,j=12,..,
Y= vy Yy = Ao(G)y(G =7) 1j = 12,0

1235



and

qa;

Hameed and Mustafa Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1232-1239

%27 " (209—50_1+40_2—0_3)

fi—

fi~ Torew h2 Jifj=1
- xj2 "%z _ X2 7%z 18(x]-—x]-_1)2_a _ 24(xi—xi_1)2_a o 14(xj—x]-_1)2_u 6, — 24(x]-—x]-_1)2_u o ifj =
J @-or@-a) @-or@-a) @ 2r2@-or@-a) ° 2r2@-0lf2-a) 1 ' 2n2@2-l@2-a)’ %2 2n22-r2-a) ~3 J=
18(xj-%/2)" " ~24(xj=xj-2)" " 14(x-x-2)"" .
2-a 2-a 2 2 2 fexs -
%2 %24 %27 %z, 2h2(2-0)T(2—a) 2h2(2-0)I(2-a) 2h2(2-)I(2—a) 3(xj—xj_2) ip s
- _ =@ ,,ifj=3
2-0r2-a) @-Or2-a) 24(xj-x;.1)" " o + 14(x—x_1)" " 01+ 3(x-xj1)" " 9, 2h2(2—a)r(2—a)® 3.ifJ

2h2(2-)T(2-a) 2h2(2-a)I(2—a) - 2h2(2-a)l(2-a)
18(,\',-7,\',-_3)2_“ 724(,\']-7,\']-_3)2_“ 14(}[ . )z—a
- - - - j~Xj-3
X2z X2, 2’;24((2 a)l"(Z)Za_)n Zh::(z a)l'(Z)za_)u ( 2h%(2-)l(2-a) \ 3(xj—x )Z—u
. it S _ 24(xj-xj2 Xj—Xj-2 2-a | _ _3\7x-2) ifi—
fi~ orea  earewo | “maares |20 | timearas |21 T 30 1702 T gra g P-s T = 4 (12)
n 14(xi—xi_2)2_a 3(x]-—xi_z)2_n \

2h2(2-a)F(2-a)
2h2(2— a)F(Z ) _th(Z—u)I‘(Z—a)

18("/"‘1)
2h%(2-)T(2— a) —24(xj-x,)" " ra
[ 2a(y—x)*" | 2h? (2~ (2-a) / M\
i 0+ 0,

e 2t 5 2-a 2h2(2-a)F(2-a) Y
X2 %zq *22 2h2(2- xx)I‘(Z a) | 14(xj—x2) 2-a 3(xj=x1) :
- XX g . —-—21 =@ ., otherwise
fi 2-0r2-a) (- a)l‘(z a)+ 14(x,—x3) %o +Zh2(2—a)r(z—a) 1 _3Gy=x)” " th(z—a)l‘(z—u)@ 3
= 2 2h2(2-0)T(2-a)
2h2(2— (x)I‘(Z a) _ 3(xx3)
3(x,—x4) 2h%2(2-a)T(2-a)

2h2(2-)T(2—a)

(200—50_1+40_>—0_3) and (500—180_1+240_,—140_3+30_ 4)
2 Zy = 3
h (2h)
4. Algorithm of the Proposed Method:
The following steps to evaluate numerical solutions of linear fractional differential equation
with a delay using the finite difference method :

Step 1: assume that h = b%a ,neN , u y(t) = @(t) fort € [—1,al.

Step2:putx; =a+ih,withx, =aandx, =b,i=0,1,--,n

Step 3: Calculate the linear system CY + D = Q using eq.(11) and (12).

Step 4: Solve the system of step3 using the Gaussian elimination method with partial
pivoting.
5. Numerical Examples:

The following examples are constructed to illustrate the effectiveness of the proposed
technique .

Test Example 1: Consider the linear fractional differential equation with a delay of the form:
D%y(t) = 2y(t) + ty(t —1) + cost — 2sin(t — 1) — tsint, (13)
with

y(©) =t - forte[-10], (14)
where the exact solution y(t) = sint for a = 1. Figure 1 shows a comparison between
the results of using the proposed method with different values of a = 1,%,%, and Zwith the
exact solution to the problem.

where z; =
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Figure 1- Comparison between the exact and numerical solution with a = 1%% and

The previous Figure shows that the numerical solution converges to the exact solution when «
approaching one where it is the exact solution.
Test Example 2: Consider the linear fractional differential equation with a delay of the form:

D%y(t) = t?y(t — 2) + et — t?et™2? — tet . (15)

with
y(t) =14+t forte[-2,0], (16)
where the exact solution y(t) = e* for a = 1. Figure 2 shows a comparison between the

results of using the proposed method with different values of a = 1,%,§,and ZWith the
exact solution to the problem.

, x107
2

=4

3
»
4

Figure 2- Comparison between the exact and numerical solution with a = 1%% and %
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The previous Figure shows that the numerical solution converges to the exact solution when «
approaching one where it is the exact solution.

Test Example 3: Consider the linear fractional differential equation with a delay of the form:
D%y(t) = y(t) + (t — 2)y(t — 3) —cost — sin(t) — (t — 2) cos(t — 3) , a7
with

yt) =1 +§ fort e [-3,0], (18)

where the exact solution y(t) = cost for a = 1. Figure 3 shows a comparison between
the results of using the proposed method with different values of a = 1,%,%, and Zwith the
exact solution to the problem.

Figure 3- Comparison between the exact and numerical solution with « = 1,

oo

3 7
,E,and "

The previous Figure shows that the numerical solution converges to the exact solution when «
approaching one where it is the exact solution.

6. Conclusions

In this paper, a new approach is based on the backward finite difference method to
approximate linear fractional differential equations with a delay of order a,1 <a <2 in
the Caputo sense have successfully applied. The efficiency and accuracy of the achieved
numerical solutions compared with exact solutions are considered. A suitable method for the
fractional differential equation with a delay of order ;1 < a < 2 in the Caputo sense is
solved. Finally, for future work, we suggest using another form based on the forward
difference method or central finite difference method. We also recommended using other
approaches for finding an integral part in the definition of Caputo like Simpson’s rule.
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