

ISSN: 0067-2904

Weyl Module Resolution Res (6,6,4;0,0) in the Case of Characteristic Zero

Haytham Razooki Hassan ${ }^{1}$, Niran Sabah Jasim ${ }^{2}$
Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq
Department of Mathematics, College of Education for Pure Science/ Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq

Received: 14/12/2020
Accepted: 14/4/2021

Abstract

In this work, we prove by employing mapping Cone that the sequence and the subsequence of the characteristic-zero are exact and subcomplex respectively in the case of partition $(6,6,4)$.

Keywords: resolution, Lascoux resolution, Weyl module, mapping Cone, exact sequence, subcomplex.

```
    التحلل لمقاس وايل Res(6,6,4;0,0) في حالة المميز الصفري
            هيثّث رزوقي حسن 1 ، نيران صباح جاسم 2
```



```
    قسم الرياضيات، كلية الترببة للعلوم الصرفة ابن الهيثّ، جامعة بغداد
```

في هذا العمل، برهنا باستخدام تطبيق كون ان السلسلة والسلاسل الجزئية للمميز الصفري هي تامة
ومعقدة جزئيا على التوالي في حالة التجزئة $(6,6,4)$.

1. Introduction

In this work \mathcal{R} is a abelian ring with 1 and \mathcal{F} is a free R -module and $\mathcal{D}_{i} \mathcal{F}$ be the divided power algebra of degree i. The resolution of partition ($\left.p+t_{1}+t_{2}, q+t_{2}, r\right)$ which represented by below diagram and in our case $t_{1}=t_{2}=0$, [1]

Authors in [2-4] spoke about the partitions (4,4,4), (3,3,2), and (8,7,3), respectively. While in [5] the authors discussed by employing mapping Cone for the same partition.
2. The sequence of the characteristic-zero

The complex of Lascoux in the case of partition $(6,6,4)$ is:
$\mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \quad \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$
$\mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \longrightarrow \quad \oplus \quad \oplus \quad \longrightarrow \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes$
$\mathcal{D}_{4} \mathcal{F}$
$\mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{5} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \quad \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{4} \mathcal{F}$
*Email: haythamhassaan@uomustansiriyah.edu.iq

By using the pursue diagram we find the characteristic-zero sequence and proof it is a resolution.

Diagram (1)

Now define the maps by
$z_{1}(s)=\partial_{21}(s) ; s \in \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$,
$w_{1}(s)=\partial_{32}(s) ; s \in \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$,
$z_{2}(s)=\partial_{21}^{(2)}(s) ; s \in \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{5} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$, and
$k_{2}(s)=\partial_{32}(s) ; s \in \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$
At this point we need to define k_{1} which make subdiagram E in diagram (1) is commute. We define it as
$k_{1}(s)=\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)(s)$
Proposition (2.1): The subdiagram E in diagram (1) is commute.

Proof:

$\left(z_{2} \circ w_{1}\right)(s)=\left(\partial_{21}^{(2)} \partial_{32}\right)(s)$
From Capelli identities
$\partial_{21}^{(2)} \partial_{32}=\partial_{32} \partial_{21}^{(2)}-\partial_{21} \partial_{31}$
Thus
$\left(z_{2} \circ w_{1}\right)(s)=\partial_{32} \partial_{21}^{(2)}-\partial_{21} \partial_{31}$
$=\left(\partial_{32}\left(\frac{1}{2} \partial_{21} \partial_{21}\right)-\partial_{31} \partial_{21}\right)(s)$
$=\left(\frac{1}{2} \partial_{32} \partial_{21} \partial_{21}-\partial_{31} \partial_{21}\right)(s)$
$=\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right) \partial_{21}(s)$
$=\left(k_{2} \circ Z_{1}\right)(s)$
Now from the subdiagram E

We have the subsequence

Where

$$
\psi_{3}(s)=\left(-\partial_{21}(s), \partial_{32}(s)\right) \text { and } \lambda_{1}\left(s_{1}, s_{2}\right)=\partial_{21}^{(2)}\left(s_{2}\right)+\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)\left(s_{1}\right)
$$

Proposition (2.2): The subsequence

$$
0 \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \xrightarrow{\psi_{3}} \begin{gathered}
\mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \\
\mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{5} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}
\end{gathered} \stackrel{\lambda_{1}}{\longrightarrow} \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}
$$

Is a subcomplex.

Proof:

$$
\begin{aligned}
\left(\lambda_{1} \circ \psi_{3}\right)(s) & =\lambda_{1}\left(-\partial_{21}(s), \partial_{32}(s)\right) \\
= & \partial_{21}^{(2)}\left(\partial_{32}(s)\right)+\left(\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)\left(-\partial_{21}(s)\right)\right. \\
= & \left(\partial_{21}^{(2)} \partial_{32}\right)(s)-\left(\partial_{32} \partial_{21}^{(2)}\right)(s)+\left(\partial_{31} \partial_{21}\right)(s)
\end{aligned}
$$

By using Capelli identities we get

$$
\begin{gathered}
\left(\lambda_{1} \circ \psi_{3}\right)(s)=\left(\partial_{32} \partial_{21}^{(2)}\right)(s)-\left(\partial_{21} \partial_{31}\right)(s)-\left(\partial_{32} \partial_{21}^{(2)}\right)(s)+\left(\partial_{31}^{(2)}\right)(s) \\
=0
\end{gathered}
$$

Now consider the sequence

Diagram (2)
Now define the maps by
$z_{3}(s)=\partial_{21}(s) ; s \in \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{5} \mathcal{F} \otimes \mathcal{D}_{4} \mathcal{F}$,
$\lambda_{2}\left(s_{1}, s_{2}\right)=\partial_{32}^{(2)}\left(s_{1}\right)+\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right)\left(s_{2}\right) ; s_{1} \in \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}, s_{2} \in \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{5} \mathcal{F} \otimes$
$\mathcal{D}_{3} \mathcal{F}$,
Proposition (2.3): The subdiagram Q in diagram (2) is commute.

Proof:

$$
\begin{aligned}
\left(k_{2} \circ \lambda_{1}\right)\left(s_{1}, s_{2}\right) & =k_{2}\left(\partial_{21}^{(2)}\left(s_{2}\right)+\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)\left(s_{1}\right)\right) \\
& =\partial_{32}\left(\partial_{21}^{(2)}\left(s_{2}\right)+\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)\left(s_{1}\right)\right) \\
& =\left(\partial_{32} \partial_{21}^{(2)}\right)\left(s_{2}\right)+\left(\frac{1}{2} \partial_{32} \partial_{32} \partial_{21}-\partial_{32} \partial_{31}\right)\left(s_{1}\right) \\
& =\left(\partial_{32} \partial_{21}^{(2)}\right)\left(s_{2}\right)+\left(\partial_{32}^{(2)} \partial_{21}-\partial_{32} \partial_{31}\right)\left(s_{1}\right)
\end{aligned}
$$

From Capelli identities we have
$\partial_{32}^{(2)} \partial_{21}=\partial_{21} \partial_{32}^{(2)}+\partial_{32} \partial_{31}$ and $\partial_{32} \partial_{21}^{(2)}=\partial_{21}^{(2)} \partial_{32}+\partial_{21} \partial_{31}$
Thus
$\left(k_{2} \circ \lambda_{1}\right)\left(s_{1}, s_{2}\right)=\left(\partial_{21}^{(2)} \partial_{32}\right)\left(s_{2}\right)+\left(\partial_{21} \partial_{31}\right)\left(s_{2}\right)+\left(\partial_{21} \partial_{32}^{(2)}\right)\left(s_{1}\right)+\left(\partial_{32} \partial_{31}\right)\left(s_{1}\right)$

$$
\begin{gathered}
=\left(\frac{1}{2} \partial_{21} \partial_{21} \partial_{32}\right)\left(s_{2}\right)+\left(\partial_{21} \partial_{31}\right)\left(s_{2}\right)+\left(\partial_{21} \partial_{32}^{(2)}\right)\left(s_{1}\right) \\
=\partial_{21}\left(\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right)\left(s_{2}\right)+\partial_{32}^{(2)}\left(s_{1}\right)\right)=\left(z_{3} \circ \lambda_{2}\right)\left(s_{1}, s_{2}\right)
\end{gathered}
$$

We have the following sequence

Where
$\psi_{3}\left(s_{1}, s_{2}\right)=\left(-\partial_{21}^{(2)}\left(s_{2}\right)-\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)\left(s_{1}\right), \partial_{32}^{(2)}\left(s_{1}\right)+\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right)\left(s_{2}\right)\right)$
$\psi_{1}\left(s_{1}, s_{2}\right)=\partial_{32}\left(s_{1}\right)+\partial_{21}\left(s_{2}\right)$
Proposition (2.4): $\psi_{2} \circ \psi_{3}=0$.

Proof:

$\left(\psi_{2} \circ \psi_{3}\right)\left(s_{1}\right)=\psi_{2}\left(-\partial_{21}(s), \partial_{32}(s)\right), s \in \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$

$$
\begin{aligned}
& =\left(\left(-\partial_{21}^{(2)} \partial_{32}\right)\left(s_{1}\right)+\left(\frac{1}{2} \partial_{32} \partial_{21} \partial_{21}-\partial_{31} \partial_{21}\right)\left(s_{1}\right),\left(\partial_{32} \partial_{21}\left(s_{1}\right)+\left(\frac{1}{2} \partial_{21} \partial_{32} \partial_{32}+\partial_{31} \partial_{32}\right)\left(s_{1}\right)\right)\right. \\
& =\left(\left(-\partial_{21}^{(2)} \partial_{32}\right)\left(s_{1}\right)+\left(\partial_{32} \partial_{21}^{(2)}-\partial_{31} \partial_{21}\right)\left(s_{1}\right),-\left(\partial_{32}^{(2)} \partial_{21}\left(s_{1}\right)+\left(\partial_{21} \partial_{32}^{(2)}+\partial_{31} \partial_{32}\right)\left(s_{1}\right)\right)\right.
\end{aligned}
$$

By using Capelli identities we get

$$
\begin{aligned}
& \left(\psi_{2} \circ \psi_{3}\right)\left(s_{1}\right)=\left(\left(-\partial_{21}^{(2)} \partial_{32}\right)\left(s_{1}\right)+\left(\partial_{21}^{(2)} \partial_{32}\right)\left(s_{1}\right)+\left(\partial_{21} \partial_{31}\right)\left(s_{1}\right)-\left(\partial_{21} \partial_{31}\right)\left(s_{1}\right)\right. \\
& -\left(\partial_{32}^{(2)} \partial_{21}\left(s_{1}\right)+\left(\partial_{32}^{(2)} \partial_{21}\right)\left(s_{1}\right)-\left(\partial_{32} \partial_{31}\right)\left(s_{1}\right)+\left(\partial_{32} \partial_{31}\right)\left(s_{1}\right)\right)=(0,0)
\end{aligned}
$$

Proposition (2.5): $\psi_{1} \circ \psi_{2}=0$.

Proof:

$\left(\psi_{1} \circ \psi_{2}\right)\left(s_{1}, s_{2}\right)=\psi_{1}\left(-\partial_{21}^{(2)}\left(s_{2}\right)-\left(\frac{1}{2} \partial_{32} \partial_{21}-\partial_{31}\right)\left(s_{1}\right), \partial_{32}\left(s_{1}\right)+\left(\frac{1}{2} \partial_{21} \partial_{32}+\partial_{31}\right)\left(s_{2}\right)\right)$,
$=\left(-\partial_{32} \partial_{21}^{(2)}\right)\left(s_{2}\right)-\left(\frac{1}{2} \partial_{32} \partial_{32} \partial_{21}\right)\left(s_{1}\right)-\left(\partial_{32} \partial_{31}\right)\left(s_{1}\right)+\left(\partial_{21} \partial_{32}\right)\left(s_{1}\right)+\left(\frac{1}{2} \partial_{21} \partial_{21} \partial_{32}\right)\left(s_{2}\right)+$
$\left(\partial_{21} \partial_{31}\right)\left(s_{2}\right)$
$=\left(-\partial_{32} \partial_{21}^{(2)}\right)\left(s_{2}\right)-\left(\partial_{32}^{(2)} \partial_{21}\right)\left(s_{1}\right)-\left(\partial_{32} \partial_{31}\right)\left(s_{1}\right)+\left(\partial_{21} \partial_{32}^{(2)}\right)\left(s_{1}\right)+\left(\partial_{21}^{(2)} \partial_{32}\right)\left(s_{1}\right)+$ $\left(\partial_{21}^{(2)} \partial_{32}\right)\left(s_{2}\right)+\left(\partial_{21} \partial_{31}\right)\left(s_{2}\right)$
Again from Capelli identities we get
$\left(\psi_{1} \circ \psi_{2}\right)\left(s_{1}, s_{2}\right)=\left(-\partial_{21}^{(2)} \partial_{32}\right)\left(s_{2}\right)-\left(\partial_{21} \partial_{31}\right)\left(s_{2}\right)-\left(\partial_{21} \partial_{32}^{(2)}\right)\left(s_{1}\right)-\left(\partial_{32} \partial_{31}\right)\left(s_{1}\right)+$ $\left(\partial_{32} \partial_{31}\right)\left(s_{1}\right)+\left(\partial_{21} \partial_{32}\right)\left(s_{1}\right)+\left(\partial_{21}^{(2)} \partial_{32}\right)\left(s_{2}\right)+\left(\partial_{21} \partial_{31}\right)\left(s_{2}\right)$
$=0$
Theorem (2.6):.The sequence

Is exact.

Proof:

Since the diagrams, E and Q in a diagrams (1) and (2) are commute and the maps of place polarization are injective [6], [7] then the maps
$z_{1}: \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \longrightarrow \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$; and
$z_{2}: \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \longrightarrow \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$ are injective [8], [9] so we have a commuting diagram with exact rows. But from Proposition (2.2) $\lambda_{1} \circ \psi_{3}=0$ so the mapping Cone conditions are satisfied then the complex

Is exact.
Now consider the diagram (2), from Proposition (2.3) we have the diagram Q is commute and the map $z_{3}: \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{5} \mathcal{F} \otimes \mathcal{D}_{4} \mathcal{F} \longrightarrow \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{4} \mathcal{F}$ is injective [10], [11], then we have the diagram (2) commute with exact rows. But $\psi_{2} \circ \psi_{3}=0$ (Proposition (2.4)) and $\psi_{1} \circ \psi_{2}=0$ (Proposition (2.5)), then again the mapping Cone conditions are satisfied which implies the complex

Is exact.

4. Acknowledgments

The authors thank Mustansiriyah University / College of Science / Department of Mathematics, University of Baghdad / College of Education for Pure Science - Ibn Al-Haitham / Department of Mathematics and University of Baghdad / College of Science/ Department of Mathematics for their supported this work.

5. References

1. Haytham, R.H. \& Niran, S.J. 2018. Application of Weyl module in the case of two rows. J. Phys.:Conf.Ser., 1003(012051): 1-15 .
2. Haytham, R.H. 2012. The reduction of resolution of Weyl module from characteristic-free resolution in case (4,4,3). Ibn Al-Haitham J. for Pure \& Appl. Sci., 25(3): 341-355, 2012.
3. Haytham, R.H. \& Alaa, O.A. 2015. Complex of Lascoux in Partition (3,3,2). Ibn Al-Haitham J. for Pure \& Appl. Sci., 28(1):171-178.
4. Haytham, R.H. \& Niran, S.J. 2018. On free resolution of Weyl module and zero characteristic resolution in the case of partition (8,7,3). Baghdad Science Journal, 15(4): 455-465.
5. Haytham, R.H.\& Niran, S.J. 2019. Characteristic Zero Resolution of Weyl Module in the Case of the Partition (8,7,3). IOP Conf. Series: Materials Science and Engineering, 571: 1-10.
6. Annam A. A. \& Haytham, R.H. 2020. Resolution for the two-rowed weyl module inThe cases of $(6,5) /(1,0)$ and $(6,5) /(2,0)$, Iraqi Journal of Science, 61(2): 416-421.
7. Buchsbaum, D.A. \& Rota, G.C. 2001. Approaches to resolution of Weyl modules. Adv. In Applied Math., 27: 82-191.
8. Shaymaa N. Abd-Alridah \& Haytham, R.H. 2020. The Resolution of Weyl Module for Two Rows in Special Case of the Skew-Shape, Iraqi Journal of Science, 61(4): 824-830.
9. Vermani, L.R., 2003. An elementary approach to homological algebra, Chapman and Hall/CRC. Monographs and Surveys in pure and applied mathematics, 130, 2003.
10. Gadi, B. and Artin, B. 2006. Threading homology through algebra: selected patterns, Clorendon Press, Oxford, 2006.
11. Buchsbaum, D.A. 2004. A characteristic-free example of Lascoux resolution and letter place methods for intertwining numbers. European Journal of Gombinatorics, 25: 1169-1179.
