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Abstract  
     In this work, we prove by employing mapping Cone that the sequence and the 

subsequence of the characteristic-zero are exact and subcomplex respectively in the 

case of partition (6,6,4) . 
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 في حالة المميز الصفري  Res(6,6,4;0,0)لمقاس وايل  التحلل 
 

2، نيران صباح جاسم  1هيثم رزوقي حسن   
سم الرياضيات، كلية العلهم، الجامعة المستنصريةق  

 الصرفة ابن الهيثم، جامعة بغدادم الرياضيات، كلية التربية للعلهم قس
 الخلاصة:

في هذا العمل، برهنا باستخدام تطبيق كهن ان السلسلة والسلاسل الجزئية للمميز الصفري هي تامة      
 .(6,6,4)ومعقدة جزئيا على التهالي في حالة التجزئة 

1. Introduction 

     In this work   is a abelian ring with 1 and   is a free R-module and     be the divided power 

algebra of degree   . The resolution of partition                  which represented by below 

diagram and in our case        , [1] 

 

 
Authors in [2 - 4] spoke about the partitions (4,4,4), (3,3,2), and (8,7,3), respectively. While in [5] the 

authors discussed by employing mapping Cone for the same partition.  

2. The sequence of the characteristic-zero  

The complex of Lascoux in the case of partition (6,6,4) is: 

                                   
            

             
→                                         

             
→                                       

             
→           
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        By using the pursue diagram we find the characteristic-zero sequence and proof it is a resolution. 

 
Diagram (1) 

Now define the maps by 

              ;                , 

              ;               ,  

         
         ;               ,  and  

            ;                

 

At this point we need to define    which make subdiagram E in diagram (1) is commute. We define it 

as  

      ( 
 

 
          )     

Proposition (2.1): The subdiagram E in diagram (1) is commute.  

Proof: 

           (   
      )     

From Capelli identities 

   
             

           

Thus 

                 
           

 (   ( 
 

 
      )        )      

                      = ( 
 

 
                )     

                      = ( 
 

 
          )       

                   ■ 

        Now from the subdiagram E 

 
We have the subsequence 
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Where 

      (               )   and                
        ( 

 

 
          )      

 

Proposition (2.2): The subsequence 

 
Is a subcomplex. 

Proof: 

             (               ) 

                   =    
   

(      )  ( (
 

 
          ) (       ) 

                 = (   
   

   )     (      
   

)                 

By using Capelli identities we get 

           = (      
   

)                 (      
   

)     (   
   

)      

                   = 0            ■ 

 

Now consider the sequence 

 
Diagram (2) 

Now define the maps by 

              ;                , 

             
        ( 

 

 
          )       ;                            

   , 

Proposition (2.3): The subdiagram Q in diagram (2) is commute. 

Proof:  

                 (   
        ( 

 

 
          )     )  

                            =    (   
        ( 

 

 
          )     ) 

                         = (      
   )      + ( 

 

 
                )      

                         = (      
   )      + (    

             )      

From Capelli identities we have 

   
             

             and         
       

              

Thus 

               (   
      )                   (      

   )                   
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 (
 

 
         )                   (      

   )      

=    ((
 

 
          )         

   
    ) =                                

We have the following sequence 

 
Where 

          = (    
        (

 

 
          )         

        (
 

 
          )     ) 

          =                 
Proposition (2.4):        . 

Proof: 

(                             ,               

  = ((    
      )      (

 

 
                )                  (

 

 
                )     ) 

= ((    
   

   )      (      
   

       )       (   
   

        (      
   

       )     ) 

By using Capelli identities we get 

 (           ((    
      )      (   

      )                                  

 (   
   

        (   
   

   )                               ) = (0,0)  

 

Proposition (2.5):        . 

Proof: 

(                (    
        (

 

 
          )              (

 

 
          )     ),   

 (       
   

)      (
 

 
         )                                 (

 

 
         )      

              

 (       
   )      (   

      )                    (      
   )      (   

      )      

(   
      )                    

Again from Capelli identities we get 

(              (    
      )                   (      

   )                   

                            (   
      )                   

             ■ 

Theorem (2.6):.The sequence 

 
Is exact. 

Proof: 
Since the diagrams, E and Q in a diagrams (1) and (2) are commute and the maps of place polarization 

are injective [6], [7] then the maps 

              
                
→                ; and 

              
                
→                 are injective [8], [9] so we have a commuting 

diagram with exact rows. But from Proposition (2.2)         so the mapping Cone conditions are 

satisfied then the complex 
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Is exact. 

Now consider the diagram (2), from Proposition (2.3) we have the diagram Q is commute and the map 

              
                
→                 is injective [10], [11], then we have the diagram 

(2) commute with exact rows. But          (Proposition (2.4)) and          (Proposition 

(2.5)), then again the mapping Cone conditions are satisfied which implies the complex  

 
Is exact.     
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