

ISSN: 0067-2904

Application of Quasi Subordination Associated with Generalized Sakaguchi Type Functions

Nihad Hameed Shehab*, Abdul Rahman S. Juma
Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Anbar, Iraq

Received: 2/12/2020
Accepted: 27/2/2021

Abstract

In this article, a new class $\mathcal{G}_{q}^{\beta}(H, 2 u, v)$ of analytic functions which is defined by terms of a quasi-subordination is introduced. The coefficient estimates, including the classical Fekete-Szegö inequality of functions belonging to this class, are then derived. Also, several special improving results for the associated classes involving the subordination are presented.

Keywords: Univalent functions, subordination, Quasi-subordination, Fekete-Szegö coefficient.


```
            نهاد حميد شهاب " , عبدالرحمن سلمان جمعه
    قسم الرياضيات , كلية التربية للعلوم الصرفة , جامعة الانبار , الانبار , العراق
                                    الخلاصة
في هذه المقالة , يتم تقديم فئة جديدة من الدوال التحليلية التي يتم تعريفها من خلال شروط شبه
التابعية . ثم يتم اشتقاق تقديرات لمعاملات عدم المساواة فيكيتي سزيجو للدوال التي تتتمي الى هذه الفئة .
    كذللك، يتم عرض العديد من النتائج الخاصة المحسنة للئئات المرتبطة التي تتضمن التابعية
```


1.Introduction

Let \mathcal{F} symbolizes the collection of normalized functions satisfying the condition $f(0)=f^{\prime}(0)-1=0$ and given by Taylor expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the unit disk

$$
\begin{equation*}
\mathbb{D}=\{z \in \mathbb{C} \text {, such that }|z|<1\}, \tag{2}
\end{equation*}
$$

where \mathbb{C} is a complex plane.
Furthermore, let \mathcal{A} symbolizes the class of all functions in \mathcal{F} which are univalent in unit disk \mathbb{D}. Let $\mathrm{w}(\mathrm{z})$ be an analytic function in unit disk \mathbb{D} with all coefficients are real and $|w(z)| \leq 1$, such that

$$
\begin{equation*}
w(z)=w_{0}+w_{1} z+w_{2} z^{2}+\ldots \ldots \ldots \tag{3}
\end{equation*}
$$

[^0]Also, let Φ be a univalent and analytic function with positive real part in unit disk \mathbb{D}, with $\Phi(0)=1, \Phi^{\prime}(0)>0$, which maps the unit disk onto a zone starlike with respect to 1 and symmetric with respect to the real axis. The Taylor's expansion with all coefficients is real and can be written in the form

$$
\begin{equation*}
\Phi(z)=1+C_{1} z+C_{2} z^{2}+\ldots \ldots \ldots ., \tag{4}
\end{equation*}
$$

such that $\mathrm{C}_{1}>0$.
Let \mathcal{P} be the class of functions and written in the following form

$$
\begin{equation*}
\mathcal{P}(z)=1+\sum_{n=1}^{\infty} \mathcal{P}_{n} z^{n} \tag{5}
\end{equation*}
$$

For any two analytic $f(z)$ and $g(z)$ functions in unit disk \mathbb{D}, we say that $f(z)$ is subordinate to $g(z)$, written as

$$
\begin{equation*}
f(z)<g(z), \quad(z \in \mathbb{D}) \tag{6}
\end{equation*}
$$

if there exists $h(z)$ being a Schwarz function and analytic in unit disk \mathbb{D} with

$$
\begin{equation*}
k(0)=0 \text { and }|k(z)|<1, \quad(z \in \mathbb{D}), \tag{7}
\end{equation*}
$$

such that

$$
\begin{equation*}
f(z)=g(k(z)), \quad(z \in \mathbb{D}) \tag{8}
\end{equation*}
$$

Furthermore, if $g(z)$ is univalent in \mathbb{D}, then (see[1]):
$f(z) \prec g(z) \Leftrightarrow f(0)=g(0)$ and $f(\mathbb{D}) \subset g(\mathbb{D})$.
Robertson introduced the concept of quasi-subordination, in 1970 [2]. Moreover, if $f(z)$ and $g(z)$ are two analytic functions, we say that $f(z)$ is quasi-subordination to $g(z)$ in \mathbb{D}, which can be written in the form

$$
\begin{equation*}
f(z)<_{q} g(z) \quad(z \in \mathbb{D}) \tag{9}
\end{equation*}
$$

if there exist $\omega(z)$ and $k(z)$ being analytic functions with $|\omega(z)| \leq 1, k(0)=0$, and $|k(z)|<1$, such that

$$
\begin{equation*}
f(z)=\omega(z) g(k(z)) \quad(z \in \mathbb{D}) \tag{10}
\end{equation*}
$$

Note that, when $\omega(z)=1$, then $f(z)=g(k(z))$ (see [3,4]), so that

$$
f(z)<g(z) \text { in } \mathbb{D}
$$

Furthermore, if $(z)=z$, then $f(z)=\omega(z) g(z)$ and, in this case, $f(z)$ is majorized by $g(z)$, written as

$$
f(z) \ll g(z) \text { in }
$$

In this case, $f(z)<_{q} g(z) \Longrightarrow f(z)=\omega(z) g(z) \Rightarrow f(z) \ll g(z) . z \in \mathbb{D}$.
Therefore, quasi-subordination is a generalization of subordination and also of majorization . [5, 6, 7].
Sakaguchi [8] introduced the class starlike \mathcal{S}^{*} functions with respect to symmetric points in unit disk \mathbb{D}, for $f \in \mathcal{A}$ satisfying $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{(f(z)-f(-z))}\right)>0,(z \in \mathbb{D})$. Similarly, Wang et al. in [9] introduced the class convex functions C_{S} with respect to symmetric points in unit disk \mathbb{D}, for $f \in \mathcal{A}$ satifying $\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{\left(f^{\prime}(z)-f^{\prime}(-z)\right)}\right)>0,(z \in \mathbb{D})$, (see, for details, [10]).
In mathematics, the Fekete-Szego is an inequality for the coefficients of univalent analytic functions found by Fekete-Szego in 1933 [11], for $0 \leq \lambda \leq 1$, and then for the Fekete-Szego functional $\left|a^{3}-\lambda a_{2}^{2}\right|$ for normalized univalent functions given by (1) [12,13,14,15,16,17,18]. The aim of the present paper is to introduce a new class of univalent functions by applying the generalized Salagean operator [19, 20].
We define the following differential operator

$$
G^{0} f(z)=f(z)
$$

$$
\begin{align*}
G^{1} f(z) & =(1-\kappa) f(z)+\kappa z f^{\prime}(z), \kappa \geq 0 \\
G^{n} f(z) & =G_{\kappa}\left(G^{n-1} f(z) .\right. \tag{11}
\end{align*}
$$

If f is given by (1), then from (11), we see that

$$
\begin{equation*}
G^{n} f(z)=z+\sum_{n=2}^{\infty}[1+(n-1) \kappa]^{m} a_{n} z^{n} \tag{12}
\end{equation*}
$$

where $m \in N_{0}=\{0,1,2,3,4, \ldots .$.$\} and \kappa \geq 0$.

2. Preliminary Results

We use a special sigmoid function, which is a differentiable, bounded, and real function that is defined for all real input values and has a non-negative derivative at each point. We can write this sigmoid function as

$$
\begin{equation*}
\delta(z)=\frac{1}{1+e^{-z}} \tag{13}
\end{equation*}
$$

The sigmoid function is salutary and has very important properties (see [21]) of which, a sigmoid function is monotonic and has a first derivative which is bell shaped. It outputs real numbers between zero and one and since it is one-one, then it never loses information .
Lemma 1.[22] . Let $k(z)$ be the Schwarz function given by

$$
\begin{equation*}
k(z)=k_{1} z+k_{2} z^{2}+\cdots \quad, \quad z \in \mathbb{D} \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|k_{1}\right| \leq 1,\left|k_{2}-\mu k_{1}^{2}\right| \leq 1+(|\mu|-1)\left|k_{1}\right|^{2} \leq \max \{1,|\mu|\}, \tag{15}
\end{equation*}
$$

where $\mu \in \mathbb{C}$.
Lemma 2.[23]. We symbolize \mathcal{S} to a sigmoid function and

$$
\begin{equation*}
H(z)=2 \mathcal{S}(z)=\frac{2}{1+e^{-z}}=1+\sum_{m=1}^{\infty} \frac{(-1)^{m}}{2^{m}}\left(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} z^{n}\right)^{m} \tag{16}
\end{equation*}
$$

then $H(z) \in \mathcal{P},|z|<1$, where $H(z)$ is a modified sigmoid function .
Lemma3.[23]. Let

$$
\begin{equation*}
H_{n, m}(z)=1+\sum_{n=1}^{\infty} \frac{(-1)^{m}}{2^{m}}\left(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}\right)^{m} \tag{17}
\end{equation*}
$$

.Then $\left|H_{n, m}\right|<2$.

3. Main Result

Definition1. A function $f \in \mathcal{A}$ given by (1) is said to be in class $\mathcal{G}_{q}^{\beta}(H, 2 u, v)$ if the next quasi-subordination holds :

$$
\begin{equation*}
\left[\left(G^{n} f(z)\right)^{\prime}\left(\frac{(2 u-v) z}{G^{n} f(2 u z)-G^{n} f(v z)}\right)^{\beta}\right]-1 \prec_{q} H(z)-1, z \in \mathbb{D} \tag{18}
\end{equation*}
$$

where $u, v \in \mathbb{C}$, with $u \neq v,|v| \leq 1$ and $\beta \geq 0$.
From the above Definition, we note that $f \in \mathcal{G}_{q}^{\beta}(H, 2 u, v)$ if and only if there exists $k(z)$ being an analytic function with $|\ell(z)| \leq 1$, such that

$$
\begin{equation*}
\frac{\left.\left[\left(G^{n} f(z)\right)^{\prime}\left((2 u-v) z / G^{n} f(2 u z)-G^{n} f(v z)\right)\right)^{\beta}\right]-1}{k(z)} \prec(H(z)-1) \tag{19}
\end{equation*}
$$

If, as in condition (19), $k(z)=1$, then the class $\mathcal{G}_{q}^{\beta}(H, 2 u, v)$ is symbolized as $\mathcal{G}^{\beta}(H, 2 u, v)$, satisfying the condition

$$
\begin{equation*}
\left(G^{n} f(z)\right)^{\prime}\left(\frac{(2 u-v) z}{G^{n} f(2 u z)-G^{n} f(v z)}\right)^{\beta} \prec H(z), \quad z \in \mathbb{D} . \tag{20}
\end{equation*}
$$

Note that

$$
\begin{align*}
& \left(\frac{(2 u-v) z}{G^{n} f(2 u z)-G^{n} f(v z)}\right)^{\beta}=\left[1-\beta(2 u+v) a_{2} z+\beta\left[\frac{\beta+1}{2}(2 u+v)^{2} a_{2}^{2}-\left(4 u^{2}+2 u v+\right.\right.\right. \\
& \left.\left.v^{2}\right) a_{3}\right] z^{2}+\ldots \tag{21}
\end{align*}
$$

Theorem1. Let $f \in \mathcal{A}$ of the form (1) be a function in the class $\mathcal{G}_{q}^{\beta}(H, 2 u, v)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{1}{2[1+\kappa]^{m}[2-\beta(2 u+v)} \tag{22}
\end{equation*}
$$

and for some $\gamma \in \mathbb{C}$,

$$
\begin{align*}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{2[1+2 \kappa]^{m}\left|3-\beta\left(4+2 v+v^{2}\right)\right|} \\
& \quad . \max \left\{1,\left|\frac{1}{4}\left(\frac{2 \gamma[1+2 \kappa]^{m}\left(3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right)}{[1+\kappa]^{2 m}(2-\beta(2 u+v))^{2}}-\frac{\beta(1+(2-(2 u+v)) /(2-\beta(2 u+v)))(2 u+v)}{2-\beta(2 u+v)}\right)\right|\right\} \tag{23}
\end{align*}
$$

Proof
Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be a function in class $\mathcal{G}_{q}^{\beta}(H, 2 u, v)$, then we get

$$
\begin{gathered}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \\
f(2 u z)=2 u z+4 a_{2} u^{2} z^{2}+8 a_{3} u^{3} z^{3}+\cdots \\
f(v z)=v z+a_{2} v^{2} z^{2}+a_{3} v^{3} z^{3}+\cdots
\end{gathered}
$$

Let $f \in \mathcal{G}_{q}^{\beta}(H, 2 u, v)$. From Definition1 we can write

$$
\begin{equation*}
\left[\left(G^{n} f(z)\right)^{\prime}\left(\frac{(2 u-v) z}{G^{n} f(2 u z)-G^{n} f(v z)}\right)^{\beta}\right]-1 \prec_{q}(w(z)(H(k(z)-1), \tag{24}
\end{equation*}
$$

A modified sigmoid function $\mathrm{H}(\mathrm{z})$ is given as below

$$
\begin{equation*}
H(z)=1+\frac{1}{2} z-\frac{1}{24} z^{3}+\frac{1}{240} z^{5}-\cdots \tag{25}
\end{equation*}
$$

By combining (3), (14), and (25), we obtain

$$
\begin{equation*}
\left(w(z)(H(k(z))-1)=\frac{1}{2}\left(w_{0} k z+\left(w_{0} k_{2}+w_{1} k_{1}\right) z^{2}\right)+\cdots\right. \tag{26}
\end{equation*}
$$

Now, using the series expansion $\left(G^{n} f(z)\right)^{\prime}$ from (1) and the expansion given by (21), we get $\left[\left(G^{n} f(z)\right)^{\prime}\left(\frac{(2 u-v) z}{G^{n} f(2 u z)-G^{n} f(v z)}\right)^{\beta}\right]-1=\left[[1+\kappa]^{m}[2-\beta(2 u+v)] a_{2} z+\left[[1+2 \kappa]^{m}[3-\right.\right.$ $\left.\left.\beta\left(4 u^{2}+2 u v+v^{2}\right)\right] a_{3}-\beta[1+\kappa]^{2 m}(2 u+v)\left(2-\frac{(\beta+1)(2 u+v)}{2}\right) a_{2}^{2}\right] z^{2}$

From the expansions (24) and (27), on equating the coefficients of z and z^{2} in (24), we get $[1+\kappa]^{m}[2-\beta(2 u+v)] a_{2}=\frac{1}{2} w_{0} k_{1}$,
$[1+2 \kappa]^{m}\left[3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right] a_{3}-\beta[1+\kappa]^{2 m}(2 u+v)\left(2-\frac{(\beta+1)(2 u+v)}{2}\right) a_{2}^{2}=$ $\frac{1}{2}\left(w_{0} k_{2}+w_{1} k_{1}\right)$
Now, from (28), we get

$$
\begin{equation*}
a_{2}=\frac{w_{0} k_{1}}{2[1+\kappa]^{m}[2-\beta(2 u+v)]} . \tag{29}
\end{equation*}
$$

From (29), it follows that
$[1+2 \kappa]^{m}\left[3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right] a_{3}=\frac{\beta[4-(1+\beta)(2 u+v)](2 u+v)}{8[2-\beta(2 u+v)]^{2}} w_{0}^{2} k_{1}^{2}+\frac{1}{2}\left(w_{0} k_{2}+w_{1} k_{1}\right)$
Therefore,
$a_{3}=$
$\frac{1}{2[1+2 \kappa]^{m}\left[3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right]}\left[w_{1} k_{1}+\right.$
$\left.w_{0}\left(k_{2} \frac{\beta(1+(2-(2 u+v)) /(2-\beta(2 u+v)))(2 u+v)}{4[2-\beta(2 u+v)]}\right) k_{1}^{2}\right]$.
For some $\gamma \in \mathbb{C}$, from (30) and (31), we obtain

$$
\begin{align*}
& a_{3}-\mu a_{2}^{2}=\frac{1}{2[1+2 \kappa]^{m}\left[3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right]}\left[w_{0} k_{2}+w_{1} k_{1}-\frac{1}{4}\left(\frac{2 \gamma[1+2 \kappa]^{m}\left(3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right.}{[1+\kappa]^{2 m}[2-\beta(2 u+v)]^{2}}\right)-\right. \\
& \left.\left(\frac{\beta(1+(2-(2 u+v)) /(2-\beta(2 u+v))(2 u+v)}{4[2-\beta(2 u+v)]}\right) w_{0}^{2} k_{2}^{2}\right] \tag{32}
\end{align*}
$$

We have that $w(z)$ given by (3) is bounded and analytic in unit disk \mathbb{D}, therefore, on using [15] (page 172), we have for some $\mathcal{Y}(|\mathcal{Y}| \leq 1)$:

$$
\begin{equation*}
\left|w_{0}\right| \leq 1 \quad \text { and } \quad w_{1}=\left(1-w_{0}^{2}\right) \mathcal{Y} \tag{33}
\end{equation*}
$$

By putting the value of w_{1} from (32) into (33), we get

$$
\begin{align*}
& a_{3}-\mu a_{2}^{2}=\frac{1}{2[1+2 \kappa]^{m}\left[3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right]}\left[w_{0} k_{2}+\mathcal{Y} k_{1}-\left[\frac{1}{4}\left(\frac{2 \gamma[1+2 \kappa]^{m}\left(3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right.}{[1+\kappa]^{2 m}(2-\beta(2 u+v))^{2}}\right)-\right.\right. \\
& \left.\left.\left(\frac{\beta(1+(2-(2 u+v)) /(2-\beta(2 u+v)))(2 u+v)}{4[2-\beta(2 u+v)]}\right) k_{1}^{2}+\mathcal{Y} k_{1}\right] w_{0}^{2}\right] \tag{34}
\end{align*}
$$

Now, if $w_{0}=0$ in (34), we get

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{2[1+2 \kappa]^{m}\left|3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right|} \tag{35}
\end{equation*}
$$

Otherwise, if $w_{0} \neq 0$ in (34), we define a function

$$
\begin{array}{r}
\Gamma\left(w_{0}\right)= \\
w_{0} k_{2}+\mathcal{Y} k_{1}-\left[\left[\frac{1}{4}\left(\frac{2 \gamma[1+2 \kappa]^{m}\left(3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right.}{[1+\kappa]^{2 m}(2-\beta(2 u+v))^{2}}\right)-\left(\frac{\beta(1+(2-(2 u+v)) /(2-\beta(2 u+v)))(2 u+v)}{[2-\beta(2 u+v)]}\right) k_{1}^{2}+\right.\right. \\
\left.\left.\mathcal{Y} k_{1}\right] w_{0}^{2}\right] \tag{36}
\end{array}
$$

The equation (36) is polynomial in w_{0} and hence analytic in $\left|w_{0}\right| \leq 1$. The maximum $\left|\Gamma\left(w_{0}\right)\right|$ occurs at $w_{0}=e^{i \theta},(0 \leq \theta \leq 2 \pi)$. Thus

$$
\max _{0 \leq \theta \leq 2 \pi}\left|\Gamma\left(e^{i \theta}\right)\right|=|\Gamma(1)|
$$

$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{2[1+2 \kappa]^{m}\left|3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right|} \left\lvert\, k_{2}-\frac{1}{4}\left(\frac{2 \gamma\left([1+2 \kappa]^{m}\right)\left(3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right.}{[1+\kappa]^{2 m}(2-\beta(2 u+v))^{2}}\right)-\right.$ $\left.\left(\frac{\beta(1+(2-(2 u+v)) /(2-\beta(2 u+v)))(2 u+v)}{2-\beta(2 u+v)}\right) k_{1}^{2} \right\rvert\,$
Therefore, by using Lemma1, we get

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{2[1+2 \kappa]^{m}\left|3-\beta\left(4+2 v+v^{2}\right)\right|} \\
& . \max \left\{1,\left|\frac{1}{4}\left(\frac{2 \gamma[1+2 \kappa]^{m}\left(3-\beta\left(4 u^{2}+2 u v+v^{2}\right)\right)}{[1+\kappa]^{2 m}(2-\beta(2 u+v))^{2}}-\frac{\beta(1+(2-(2 u+v)) /(2-\beta(2 u+v)))(2 u+v)}{2-\beta(2 u+v)}\right)\right|\right\} .
\end{aligned}
$$

In case $u=1$, we have the following:
Corollary1. Let $f \in \mathcal{A}$ of the form (1) be a function in the class $\mathcal{G}_{q}^{\beta}(H, 2, v)$. Then

$$
\left|a_{2}\right| \leq \frac{1}{2[1+\kappa]^{m}[2-\beta(2+v)}
$$

and for any complex number $\gamma \in \mathbb{C}$,
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{2[1+2 \kappa]^{m}\left|3-\beta\left(4+2 v+v^{2}\right)\right|}$
. $\max \left\{1,\left|\frac{1}{4}\left(\frac{2 \gamma[1+2 \kappa]^{m}\left(3-\beta\left(4+2 v+v^{2}\right)\right)}{[1+\kappa]^{2 m}(2-\beta(2+v))^{2}}-\frac{\beta(1+(2-(2+v)) /(2-\beta(2+v)))(2+v)}{2-\beta(2+v)}\right)\right|\right\}$.
The result is sharp .

In Corollary 1, in case $v=-2$, we obtain the next Corollary.
Corollary2. Let $f \in \mathcal{A}$ of the form (1) be a function in the class $\mathcal{G}_{q}^{\beta}(H, 2,-2)$. Then

$$
\left|a_{2}\right| \leq \frac{1}{4[1+\kappa]^{m}}
$$

and for any complex number $\gamma \in \mathbb{C}$,
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{[1+2 \kappa]^{m}|3-4 \beta|} \cdot \max \left\{1,\left|\frac{1}{4}\left(\frac{2 \gamma[1+2 \kappa]^{m}(3-4 \beta)}{4\left([1+\kappa]^{2 m}\right.}\right)\right|\right\}$.
The result is sharp .
In case $\beta=1$ in Corollary2, we get the following:
Corollary3. Let $f \in \mathcal{A}$ of the form (1) be a function in the class $\mathcal{G}_{q}(H, 2,-2)$. Then

$$
\left|a_{2}\right| \leq \frac{1}{4[1+\kappa]^{m}}
$$

and for any complex number $\gamma \in \mathbb{C}$,
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{[1+2 \kappa]^{m}} \cdot \max \left\{1,\left|\left(\frac{3 \gamma[1+2 \kappa]^{m}}{8[1+\kappa]^{m}}\right)\right|\right\}$.
The result is sharp .
In case $\beta=0$ in Corollary2, we deduce the following:
Corollary4: Let $f \in \mathcal{A}$ of the form (1) be a function in the class $\mathcal{G}_{q}(H, 2,-2)$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{1}{4[1+\kappa]^{m}} \\
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{3[1+2 \kappa]^{m}} \cdot \max \left\{1,\left|\left(\frac{3 \gamma[1+2 \kappa]^{m}}{8\left([1+\kappa]^{m}\right.}\right)\right|\right\}
\end{gathered}
$$

The result is sharp.

References

[1]Miller, S. S., \& Mocanu, P. T. Differential subordinations: theory and applications. CRC Press, 2000.
[2]Robertson, M. S. "Quasi-subordination and coefficient conjectures". Bulletin of the American Mathematical Society, vol. 76, no. 1, pp. 1-9, 1970.
[3]Juma, A. R. S., \& Saloomi, M. H. "Coefficient Estimates for Subclasses of Regular Functions". Iraqi Journal of Science, pp. 1710-1716, 2018.
[4]Juma, A. R. S., \& Saloomi, M. H. "Quasi-subordination conditions on bi-univalent functions involving Hurwitz-Lerch zeta functions". Science International, vol. 30, no.1, pp. 127-131, 2018.
[5]MacGregor, T. H. "Majorization by univalent functions". Duke Mathematical Journal, vol. 34, no. 1, pp. 95-102, 1967.
[6]Ren, F., Owa, S., \& Fukui, S. "Some inequalities on quasi-subordinate functions". Bulletin of the Australian Mathematical Society, vol. 43, no. 2, pp. 317-324, 1991.
[7]Nehari, Z. Conformal Mapping, McGraw-Hill, New York, NY,USA, Ist edition, 1952.
[8]Sakaguchi, K. "On a certain univalent mapping". Journal of the Mathematical Society of Japan, vol. 11, no. 1, pp. 72-75, 1959.
[9] Wang, C.Y. \&, Yuan, S.-M. "On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points," Journal of Mathematical Analysis and Applications, vol. 322, no. 1, pp. 97-106, 2006.
[10] Olatunji, S. O., Dansu, E. J., \& Abidemi, A. "On a sakaguchi type class of analytic functions associated with quasi-subordination in the space of modified sigmoid functions". Electronic Journal of Mathematical Analysis and Applications, vol. 5, no. 1, pp. 97-105, 2017.
[11] Fekete, M., \& Szegö, G. "Eine Bemerkung über ungerade schlichte Funktionen". Journal of the london mathematical society, vol. 1, no. 2, pp. 85-89, 1933.
[12] Bucur, R., Andrei, L., \& Breaz, D. "Coefficient bounds and Fekete-Szegö problem for a class of analytic functions defined by using a new differential operator". Appl. Math. Sci, vol. 9, pp. 13551368, 2015.
[13] Bulut, S. "Fekete-Szegö problem for subclasses of analytic functions defined by Komatu integral operator". Arabian Journal of Mathematics, vol. 2, no. 2, pp. 177-183, 2013.
[14] Goyal, S. P., \& Kumar, R. "Fekete-Szegö problem for a class of complex order related to Salagean operator". Bull. Math. Anal. Appl, vol. 3, no. 4, pp. 240-246, 2011.
[15] Goyal, S. P., Vijaywargiya, P., \& Goswami, P. "Sufficient Conditions for Sakaguchi Type Functions of Order \$lbeta\$". European Journal of Pure and Applied Mathematics, vol. 4, no. 3, pp. 230-236, 2011.
[16] Owa, S., Sekine, T., \& Yamakawa, R. "On Sakaguchi type functions". Applied mathematics and computation, vol. 187, no. 1, pp. 356-361, 2007.
[17] Panigrahi, T., \& Raina, R. K. "Fekete-Szegö problems for generalized Sakaguchi type functions associated with quasi-subordination". Studia Universitatis Babes-Bolyai, Mathematica, vol. 63, no. 3, 2018.
[18] SAKAR, F. M., AYTAŞ, S., \& GÜNEY, H. Ö. "On The Fekete-Szegö problem for generalized class M $\alpha, \gamma(\beta)$ defined by differential operator". Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 20, no. 3, pp. 456-459, 2016.
[19] Al-Oboudi, F. M. "On univalent functions defined by a generalized Sălăgean operator". International Journal of Mathematics and Mathematical Sciences, 2004.
[20] Goyal, S. P., \& Goswami, P. "Certain coefficient inequalities for Sakaguchi type functions and applications to fractional derivative operator". Acta Universitatis Apulensis. MathematicsInformatics, vol. 19, pp. 159-166, 2009.
[21] Han, J., \& Moraga, C. "The influence of the sigmoid function parameters on the speed of backpropagation learning". In International Workshop on Artificial Neural Networks, (pp. 195201). Springer, Berlin, Heidelberg, (1995, June)..
[22] Keogh, F. R., \& Merkes, E. P. "A coefficient inequality for certain classes of analytic functions". Proceedings of the American Mathematical Society, vol. 20, no. 1, pp. 8-12, 1996.
[23] Fadipe-Joseph, O. A., Oladipo, A. T., \& Ezeafulukwe, U. A. "Modified sigmoid function in univalent function theory". Int. J. Math. Sci. Eng. Appl, vol. 7, no. 7, pp. 313-317, 2013.

[^0]: *Email: nih19u2012@uoanbar.edu.iq

