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Abstract 
      In this work, the classical continuous mixed optimal control vector 

(CCMOPCV) problem of couple nonlinear partial differential equations of parabolic 

(CNLPPDEs) type with state constraints (STCO) is studied. The existence and 

uniqueness theorem (EXUNTh) of the state vector solution (SVES) of the 

CNLPPDEs for a given CCMCV is demonstrated via the method of Galerkin 

(MGA). The EXUNTh of the CCMOPCV ruled with the CNLPPDEs is proved. The 

Frechet derivative (FÉDE) is obtained. Finally, both the necessary and the sufficient 

theorem conditions for optimality (NOPC and SOPC) of the CCMOPCV with state 

constraints (STCOs) are proved through using the Kuhn-Tucker-Lagrange 

(KUTULA) multipliers theorem (KUTULATH). 

 

Keyword: Mixed Classical Optimal Control, Frechet Derivative, Necessary and 

Sufficient Conditions for Optimality 

 

الغير خطية مدألة مزيج الديطرة الامثلية التقليدية المدتمرة لزوج من المعادلات التفاضلية المكافئة 
قيهد الحالةمع   

 
2, جميل امير علي الههاسي*1, احمد عبد الحدن نايف1غفران مناتي كاظم   

العراق –ميديرية تربية بابل, بابل  1  
العراق -قدم الرياضيات , كمية العمهم , الجامعة السدتشررية, بغداد 2
 

 الخلاصة
في هذا العسل تم دراسة مدالة مزيج الديطرة الامثمية التقميدية السدتسرة لزوج من السعادلات التفاضمية      

خطية  مع قيهد الحالة , تم برهان مبرهشة وجهد ووحدانية الحل لستجه الحالة باتدتخدام طريقة الير غالسكافئة 
كاليركن عشدما يكهن متجه مزيج الديطرة معمهما",  تم برهان مبرهشة وجهد متجه مزيج سيطرة امثمية تقميدية 

تم برهان ، فريذيه جاد مذتقةتم اي، غير الخطيةمدتسرة مديطر بهاسطة زوج السعادلات التفاضمية السكافئة 
باستخدام ية التقميدية مع وجهد قيهد الحالة مبرهشتي الذروط الزرورية والكافية  لمديطرة لسزيج الديطرة الامثم

 تاكر لاكرانج.–مبرهشة كهان 
1. Introduction      
The optimal control problem (OPCPR) is one of the important topics in applied mathematics 

and in several areas related to it, such as biology, economics, ecology, engineering, finance, 

management, medicine and many others. The associated mathematical models are formulated 
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for example, as ordinary or partial systems [1]. The OPCPR of partial differential equations 

with state constraints have been intensively studied since the eighties starting with the work 

by Bonnans [2] and Abergel and Temam [3]. Later, from 2014 to 2016, the classical 

continuous optimal control problems (CCOPC) of coupled nonlinear partial equations 

(CNLPDEs) of hyperbolic, elliptic and parabolic types of equations were studied in [4], [5] 

and [6] respectively. While during 2017-2019, the classical continuous boundary optimal 

control problem of CNLPDEs of elliptic, hyperbolic, and parabolic type were studied in [7], 

[8] and [9] respectively.   

In this paper, the EXUNTH of the SVES for the CNLPDEs of parabolic type (CNLPPDEs) 

for a given CCMCV is demonstrated. The theorem of existence of a CCMOPCV ruled by a 

CNLPPDEs type is demonstrated. Also the derivation of the FÉDE is achieved and the 

EXUNTH of the vector adjoint solution of the adjoint equations ADVEQ related to the SVES 

is studied. The KUTULATH are developed and utilized to demonstrate both the NOPC and 

the SOPC theorems of the CCMOPCV with STCOs.   

2. Description of the problem 

Let    {       },    ,     be a bounded open region with      , then  the 

CNLPPDEs is:  

    ∑
 

   
         

   

   

 
                                     in                        

      (1) 

    ∑
 

   
         

   

   

 
                                        in           (2) 

 
   

  
 ∑         

   

   
    (     )   

 
                   on                    (3)  

           
    ,                         in                                                                    (4) 

          ,    on                                                                                                (5)  

           
          in                                                                                                          (6)    

where     is a normal vector on                  ,                            

(     )
 
 is the STVES, and μ  =(μ_1 (x,t),μ_2 (x,t)) 〖L^2 (Σ)×L^2 (Q)〗^  is the 

CCMCV, (F_1 (x,t,s_1 ),F_2 (x,t,s_2 〖,μ〗_2 )) (L^2 (Q))^2,          ,         ,      , 

        and                .  
The set of the CCMCV is  

     ⃗⃗  {                            ⃗  , a.e. in  }, with  ⃗  is convex.                  (7) 

Let  ⃗        { ⃗⃗   ⃗⃗  (           )          
     }. Let the set of admissible 

CCMCV be  

 ⃗⃗   {    ⃗⃗ |                 }, where the cost functions (CF) and the STCOS are 

given respectively by  

       ∫                 
 

 
∫                    ∫            

 

 

 

 
                      (8)  

       ∫                 ∫                    ∫            
 

 

 

 
    

 

 
              (9) 

       ∫                 ∫                    ∫            
 

 

 

 
    

 

 
            (10) 

Lemma 2.1[10]: Let      ́ be three Hilbert spaces. If a function   and its derivative 

 ́ belong to           and   (     ́), then   is a.e. equal to a continuous function from 

[   ] into   and satisfies:    
 

  
‖ ‖   〈 ́  〉 .  

Proposition 2.1[11]: Suppose that     . Let           be of a Carathéodory type, 

that satisfies ‖      ‖           ‖ ‖ ,             , where v L_d (W×R^n), 

ϱ(x) L_1 (W× R), ϑ L^□(d/(d-c)) (W× R) with c [0,d], c N if d [1,∞) , and  ϑ≡0 if d=∞. 

Then the functional K(v)=∫_W^ ▒k(u,v(u))du is continuous.  
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Theorem 2.1[12]: Alaoglu’s theorem (AlaTh): A bounded sequence {a_n} of a Hilbert space 

A has a subsequence which converges weakly to some a A. 

Theorem 2.2 [10]: Let         be Banach spaces, where the injections being 

continuous,    is reflexive for        and the injection of    into   is compact. Let     be 

a fixed finite number and let   ,   be two finite numbers such that      ,        We 

consider the Banach space    {                 ́               } with 

‖ ‖  √‖ ‖ 
  ‖ ́‖ 

   ,      . Then the injection is continuous and compact from   

into C. 

Definition 2.1 [11]: A sequence {  } of vectors in an inner product space   is called strongly  

convergent to a vector   in   if            as    . 

3. Weak Formulation of the SVES       

The weak form (WEKFM) of (1-6) when             is given by ( v_1,v_2 V  ): 
〈      〉                                                                         (11a)  

   
                                                                                                                      (11b)  

〈      〉                                                                     (12a) 

   
                                                                                                                     (12b)  

where              ∫ ∑    
   

   

 
     

   

   
        

 

 
              ∫ ∑    

   

   

 
     

   

   
   

 

 
  

The following assumptions are very important to prove the EXUN solution of the WEKFM. 

Assumptions (I): 

 (i)       are of a Carathéodory type (CATHT) on     and         respectively, that 

satisfies the following conditions for    and         , i.e. 

                                and  |   
           |                  ́        

      where         ,     ,     ́    and           ,         
(ii)    is Lipschitz with   ,         i.e.  

                          ̂           ̂   ,                        ̂       
       ̂    
      where         ,     ̂        and         ,       .  

(iii)         ⃗⃗                                                        , 
                ⃗⃗     ‖  ‖ ‖ ⃗⃗ ‖  and              ̅‖  ‖ 

 , where   &  ̅ are real positive 

constants. 

Main Results  

Theorem (3.1): (The EXUN of SVES) 

For each fixed CCMCV              , the WEKFM (11-12) has a unique solution 

   (       )
 
  and      (        )

 
. 

Proof  

Consider that   ⃗    ⃗   is the of functions continuous on   , which has the basis 

{ ⃗⃗    ⃗⃗      ⃗⃗  }, then the solution    of (10-11) is approximated by                  such that , 

for each      

    ∑    
 
                                                                                                                 (12a) 

    ∑             
 
                                                                                                        (12b)  

Using the MGA , the WEKFM of the (10) -(11) becomes 
〈       〉                                                                     (13a) 

    
          

      ,     for any                                                                               (13b) 

 〈       〉                                                                (14a)      

    
          

       ,  for any                                                                                 (14b) 

 with     
           belongs in    , which satisfies, for any       and          that  

    
          

         ‖   
    

 ‖
 
 ‖  

    ‖ 
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Then, there is a sequnece {w  _n^0} with w  _n^0 V  _n, for which w  _n^0⟶s  ^0  

strongly (ST) in 〖(L^2 (Ω))〗^2, therefore  and  from the above inequality norm, once get  s 

 _n^0⟶s  ^0 ST in 〖(L^2 (Ω))〗^2 with ‖s  _n^0 ‖_0≤ b_1. 

Now, using 12 (a & b) in 13-14 gives  

    
                           ̅ 

                                                                     (12ʹa) 

          
                                                                                                                       (12ʹb) 

    
                           ̅ 

                                                                     (13ʹa) 

         
                                                                                                                        (13ʹb) 

where    (   )   
 ,      (       ) ,    (   )   

 ,     [  (         )  

(            ) ],     (   )   
 ,     (           )   ,       (      )

   
 ,   

     

 (   
    )

   
 ,      (      )

   
,             ,          ̅ 

              

             (  ( ̅ 
      )        )  

,   ̅̅̅̅           ,   
  (   

 ) ,   
   (  

     ) , and    (   )   
 ,     (       )  , 

   (   )   
 ,     [  (         )                 ] ,    (   )   

 ,     

              ,      .   

From assumption (I), system (12ʹ-13ʹ) has a unique solution. 

                     ‖ ⃗     ‖  (       )
 & ‖ ⃗     ‖ : 

Putting        and        in 13a & 14a, integrating both sides (i.e. INBS) on  [   ], 
and collecting them, using  Assumption (I, iii), yield   

∫ 〈        〉  
 

 
 ∫ ‖      ‖ 

    
 

 
 ∫                 

 

 
 ∫                    

 

 
 

∫            
 

 
                                                                                                                        (15) 

Since s  _nt 〖(L〗^2 (I,V^* ) )^2=(L^2 (I,V) )^2 and s  _n (L^2 (I,V) )^2 in the  1^st term 

of the L.HN.S. of (15), then applying Lemma 2.1, but with the 2^nd  term is nonnegative, 

letting T=t [0,T] , finally from the 1^st two terms in the R.HN.S  of (15), and Assumption (I-

i), one has ∫  

  
‖      ‖ 

  

 
   ‖  ‖ 

  ‖  ‖  
  ‖  ‖ 

   ́ ‖  ‖ 
    ∫ ‖   ‖ 

  

 
   

  ‖      ‖ 
  ‖      ‖ 

       ∫ ‖   ‖ 
  

 
   ,                

  ‖      ‖ 
       ∫ ‖   ‖ 

  

 
  ,            .   

By using the classical Bellman-Gronwall inequality (B.G), one gets   

 ‖      ‖  (       )
    , hence  

 ‖      ‖ 
  ∫ ‖   ‖ 

    
 

 
      [   ]‖      ‖ 

         
       

 

The boundedness  of  ‖ ⃗     ‖        

Also, we apply Lemma 2.1 on the     term in the L.HN.S. of (15) . Then, by utilizing the 

same steps above on its R.HN.S., with setting    , and ‖      ‖ 
   , it becomes 

 ‖      ‖ 
    ̅ ∫ ‖   ‖ 

    ‖  ‖ 
  ‖  ‖ 

  ‖  ‖ 
   ́ ‖  ‖ 

    ‖   ‖ 
  

 
 ‖      ‖ 

  

  ‖   ‖             

The convergent solution  

Assume the sequence of subspaces  { ⃗  }   

 
 of   ⃗  , with the assumption that,  for any  ⃗⃗  

        in   ⃗ , there is  a sequence {v  _n } of  { ⃗  }   

 
, s.t.  ⃗⃗  ⟶  ⃗⃗  ST in  ⃗   ⃗⃗   ⟶  ⃗⃗  

ST in (     )
 
 .   
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Hence, corresponding to{ ⃗  }   

 
, for any             and                   a.e in    ( 

       ), the WEKF 

〈        〉                                                

                         ,                                                                                         (16a) 

    
           

                                                                                                           (16b)  

〈        〉                                               
 

                                                                                                                            (17a)  

    
           

                                                                                                           (17b)  

has a sequence of unique SVES {   }   
 . Then, from Theorem 2.1, {   }    has a subsequence 

claim again {   }    for which      ⟶     WK in (     )
 
 & (       )

 
 (from the 

boundedness of  ‖   ‖      and ‖   ‖       ). 

Then, by utilizing the theorem of compactness, Assumption (I-i), and the norms are bounded, 

one obtains    ⟶     ST in (     )
 
. 

By multiplying (16a) and (17a) by         [   ]  respectively, with         ,        , 

integrating w.r.t.   on [   ]  and then using the integrating by parts (IBPS) formula for the     

term in the L.HN.S., we get  

 ∫            
       

 

 

∫ [
 

 
                                            ]         

∫                      
 

 
 ∫          

 

 
            

                                      (18) 

 ∫            
       

 

 

∫ [  
 

 
                                          ]         

∫                         
 

 
     

                                                                        (19) 

But,    ⟶    WK in      ,      
 ⟶   

  ST in      , and  

   ⟶           
        }  {

     
 ⟶     

            

     ⟶             
      

 

Then, the following convergences are held   

∫            
       

 

 

∫ [  
 

 
                                          ]        ⟶ ∫          

       
 

 

∫ [                                      ]        
 

 
                                               (20) 

    
            ⟶    

                                                                                             (21) 

∫            
       

 

 

∫ [                                            ]        
 

 
⟶ ∫          

       
 

 

∫ [                                      ]        
 

 
                                              (22)  

    
            ⟶    

                                                                                            (23) 

Now, we set            and           hence    ⟶    ST in       and therefore     is 

measurable w.r.t.      . Utilizing Assumption (I-i), with employing Proposition 2.1 gives that 

∫                   
 

 
 is continuous w.r.t.          ,        ⟶    ST in      , then  

∫                      
 

 
⟶ ∫                    

 

 
  

Using the same way, we get   

∫                         
 

 
⟶ ∫                       

 

 
   

From this convergence and (20-23), (18-19) become  
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 ∫          
       ∫ [                                      ]         

 

 

 

 
                                                                                                   

∫                     ∫         
 

 
           

           
 

 
                                 (24) 

 ∫          
       ∫ [                                      ]         

 

 

 

 
                                   

∫                       
 

 
    

                                                                     (25)  

Therefore, we consider the following cases:  

Case1: Select     [   ], by setting              ,        in (24) - (25), and for  

the first  terms in the L.HN.S. of each one equation, the  integration by parts formula is used 

to get 

∫                 ∫ [                                           ]   
 

 
  

 

 
  

∫                    
 

 
 ∫         

 

 
                                                                        (26)                                                                  

and 

 ∫                 ∫ [                                           ]   
 

 
  

 

 
 

∫                       
 

 
                                                                                               (27)                        

i.e.     is a solution of the WEKFM (10a) - (11a). 

Case 2: Select             [   ] with          and         .  

Using IBPS in the L.HN.S. of (26) & (27) , then subtracting the obtained equations from (24)  

and (25) respectively, we get  

   
                                    

                  ,          
The strong convergence in         
By setting        and        in (10a) & (13a) and       ,        in (11a) & (14a), 

integrating the   resulting equations on [   ], collecting the equation resulting from (10a) 

with that resulting from (13a) together, and doing the same for (11a) & (14a), we get  

 ∫ 〈      〉
 

 
    ∫              ∫ [                            ]   ∫           

 

 

 

 

 

 
    (28a) 

∫ 〈        〉
 

 
    ∫                ∫ [                              ]   

 

 

 

 

∫            
 

 
                                                                     (28b) 

By employing Lemma 2.1  on the L.HN.S. of (28a&b), one obtains 

  
 
‖     ‖ 

   

 
‖     ‖ 

  ∫              
 

 
  

∫ [                            ]
 

 
    ∫           

 

 
                                         (29a) 

and 

  
 
‖      ‖ 

   

 
‖      ‖ 

  ∫                
 

 
 

∫ [                                ]
 

 
   ∫            

 

 
                   (29b)  

Now, consider the following equality: 
 

 
 ‖            ‖ 

  ‖            ‖ 
   ∫                   

 

 
                  (30)  

where  

      
 
 ‖      ‖ 

  ‖      ‖ 
   ∫  (               )  

 

 
  

    

 
(            )   

 
(            )  ∫  (              )

 

 
    

    

 
(                  )   

 
(                  )  ∫  (                    )  

 

 
  

But 

   
        ⟶           ST in (     )

 
                                                              (31a) 

       ⟶       ST in (     )
 
                                                                                  (31b)  

Which gives  

(                  ) ⟶    (                  ) ⟶                                          (31c) 
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‖            ‖ 
 ⟶    ‖            ‖ 

 ⟶                                                          (31d) 

 Since    ⟶    WK in (       )
 
, then  

∫  (                    )  
 

 
⟶                                                                                  (31e)         

Since    ⟶     ST in      ,       , then from Proposition 2.1, the integrals 

∫              
 

 
   ∫                 

 

 
   are continuous w.r.t.         respectively. 

Therefore  

∫ [                              ]
 

 
  ⟶ ∫ [                          ]  

 

 
      (31f) 

Now, when     in (30), the following results are obtained: 

1)  From (31d), we have    
 
‖            ‖ 

 ⟶              
 
‖            ‖ 

 ⟶    

2) From (29b) &       , we have  

 Eq.     

 ∫ [                              ]
 

 
   ∫ [           

 

 
⟶ ∫ [             

 

 

               ]    ∫           
 

 
  

3) From (29a) , we have  Eq.(  ) 

 ∫ [                            ]
 

 
   ∫ [         

 

 
    

4) Through (31c) and c(31e), all the terms are tending to zero in (  ).  

Now, the above steps, and (30), give   

 ∫                     ⟶  
 

 
    ̅ ∫ ‖      ‖ 

  

 
  ⟶      ⟶    ST in (       )

 
.  

Uniqueness of the solution  

Let            ,  ̂    ̂   ̂   be two SVES of (10)-(11), i.e.  from (10a) we have  

〈      〉                                                               
    

〈 ̂     〉        ̂             ̂             ̂            ̂                 
  

Subtracting the second equation from the first one , then setting        ̂ , yield  

〈     ̂        ̂ 〉           ̂      ̂             ̂       ̂             
 ̂       ̂                ̂       ̂    

                                                               (32)      

Also applying the same steps for (11a), yields  

〈     ̂        ̂ 〉           ̂      ̂             ̂       ̂             
 ̂       ̂    

                ̂          ̂   ,                                                       (33)   

By collecting (32) and (33), employing Lemma 2.1 for the L.HN.S of the resulting equality 

and applying assumption A-iii, we have    

 

 

 

  
‖    ̂ ‖

 

 
  ̅‖    ̂ ‖

 

 
              ̂       ̂                   ̂         

 ̂                                                                                                                                           (34) 

But the second term in the L.HN.S. of (34) is nonnegative. INBS of (34) on [   ], then 

employing  assumptions (A-ii) for the R.HN.S, using  the B.G , one obtains 

‖       ̂    ‖
 

 
  ,     ‖    ̂ ‖

       
         ̂  . 

4. Existence of the CCMOPCV 

In this part, the following theorem and lemma are useful in studding the EXUNTh for the 

CCMOPCV.  

Theorem (4.1):  

(a) If assumption (I) is held and if     and      ⃗⃗ ⃗⃗   are bounded CCMCVs in             and 

their corresponding SVES, then 

‖  ⃗⃗⃗⃗ ‖
  (       )

   ‖  ⃗⃗ ⃗⃗  ‖           
, ‖  ⃗⃗⃗⃗ ‖

     
   ‖  ⃗⃗ ⃗⃗  ‖           

and   

‖  ⃗⃗⃗⃗ ‖
       

   ‖  ⃗⃗ ⃗⃗  ‖            
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(b) If assumption (I) is held, then the operator       ⃗⃗  from             into 

   (       )   ,            and          is Lipschitz continuous (LC).  

Proof: 

(a) Take    ̂             . Hence, from theorem (3.1),    ⃗⃗  and   ̂ 
 ⃗⃗̂ 

 are their corresponding 

SVES, which satisfies the WEKFM (10) - (11),        , i.e. 
〈 ̂     〉        ̂             ̂             ̂            ̂          ̂                  (35a)        

  ̂             
                                                                                                         (35b)      

〈 ̂     〉        ̂             ̂             ̂            ̂            
         (36a)            

  ̂             
                                                                                       (36b)  

Subtract (10) from (35) and (11) from (36) and put      ̂     ,      ̂     ,        in 

the two obtained equations, to get   

〈       〉                                                             
  

                                                                                           (37a)     
                                                                            (37b)      

and 

〈       〉                                           
                      

 

                ,                                                              (38a)         
                                                                                                 (38b)   

Using       ,       in (37a) and (38a), then collecting them, employing Lemma 2.1 

for the    term in the L.HN.S. and utilizing Assumption (I-iii), one gets 

  

 

 

  
‖  ⃗⃗⃗⃗ ‖

 

 
  ̅‖  ⃗⃗⃗⃗ ‖

 

 
 

                         +                                    

                                                                                                            (39)   

The     term of L.HN.S. of the inequality is nonnegative. Hence, INBS w.r.t.    on [   ], 
then by employing Assumptions I-ii and the inequality of Cauchy-Schwarz  for the R.HN.S. 

and then employing the Trace theorem, we obtain   

‖  ⃗⃗⃗⃗    ‖
 

 
  ‖  ⃗⃗ ⃗⃗  ‖

           

 
   ∫ ‖  ⃗⃗⃗⃗  ‖ 

  

 
        , where    ∑          

Applying the B.G  gives 

‖  ⃗⃗⃗⃗    ‖
 
   ‖  ⃗⃗ ⃗⃗  ‖           

   ,    [   ] 

 ‖  ⃗⃗⃗⃗ ‖
  (       )

   ‖  ⃗⃗ ⃗⃗  ‖           
 ,    [   ]   

From this result, one easily obtains that 

‖  ⃗⃗⃗⃗ ‖
     

   ‖   ⃗⃗⃗⃗⃗⃗ ‖
           

 ,   and ‖  ⃗⃗⃗⃗ ‖
       

   ‖   ⃗⃗⃗⃗⃗⃗ ‖
           

 

(b) From part (a), one directly obtains that the operator       is LC from             into 

the spaces    (       )  ,            ,         .  

Assumption (II)  

Consider that (        )     ,     ,     are of a CATHT  on      ,       ,       

respectively, and satisfy: 

                                 
         

  
                              

  ,                              
   

where         with           ,                    ,        
Lemma (4.2) 

If assumption (II) is held, then          (            is continuous on            . 
Proof 

From the given assumptions, with utilizing Proposition 2.1, we have ∫            
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∫               
 

 
     are continuous on       and ∫            

 

 
   is on          

      . 

Then         is continuous on             ,         .  

Theorem (4.3)  

Consider that assumptions (I) and (II) are held and that  ⃗  is compact. Consider that  ⃗⃗    , 

if for fixed        ),        and        are convex w.r.t.    and that        ) is independent of 

  . Then there is a CCMOPCV.   

Proof:  

Since   ⃗  is compact and convex, then  ⃗⃗  is WK compact. Since  ⃗⃗    , then   ⃗̅   ⃗⃗   and 

there is a minimum sequence{   } ,      ⃗⃗   ,    that satisfies  

                  ⃗⃗̅   ⃗⃗⃗  
    ̅  . 

But  ⃗⃗  is WK compact, then {   }  has a subsequence claim again {   }  which converges WK 

to some element    in  ⃗⃗ , or    ⟶    WK in             , then {   } is bounded      .  

By theorem (3.2), the WEKFM has a unique SVES        ⃗⃗   for each CCMCV    , with 

‖   ‖           , ‖   ‖      , ‖   ‖        are bounded. Then, by employing the AlaTh,  {   } has 

subsequence claim again {   }   such that     ⟶    WK in the spaces               , 

         and           .   

Also, since ‖   ‖         is bounded, from theorem (3.2), and  

                                             

hence by utilizing theorem 2.2, {   } has a subsequence claim again {   } s.t.    ⟶     ST in 

        .  

Since   ,      is the corresponding SVES to the CCMCV    , then 

〈       〉                                               
                                                                                                           (40)                                                                                                                                                          

and 

〈       〉                                                                  
             (41)  

Let      [ ],          for which          . Multiplying (40) and (41) by       and  

       respectively, then INBS w.r.t.   from [   ], and using IBPS formula for the     terms 

in the L.HN.S., yield  

 ∫          ́ 
 

 
      ∫ [                                         ]        

 

 

∫                          ∫                                    
 

 

 

  
                (42) 

and 

 ∫          ́ 
 

 
      ∫ [                                         ]        

 

 
 

  ∫                             
 

 
                  ,                             (43) 

Since    ⟶    WK in the spaces           and              , then   

 ∫          ́ 
 

 
      ∫ [                                         ]        

 

 
⟶

 ∫         ́ 
 

 
      ∫ [                                      ]        

 

 
     (44a) 

and 

  ∫          ́ 
 

 
      ∫ [                                         ]        

 

 
  

 ∫         ́ 
 

 
      ∫ [                                      ]        

 

 
     (45a) 

Since               are bounded in       and by theorem 3.1, we get  

                 ⟶    
          .                                                     (45b)     

Let           , and it is fixed for any fixed        . Hence,                 . Let  

    [ ̅] then it is measurable w.r.t.        Hence set   ̅                 then 
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  ̅     ⟶   is continuous w.r.t.     for fixed        , then 

‖ ̅            ‖                       ̅ 
    ̅‖   ‖

 , where   
 ̅̅ ̅  

 

 
   

    ̅    
    

By employing proposition 2.1, we get ∫    
 

 
            is continuous w.r.t.     but 

   ⟶    ST in       , thus 

∫    
 

 
          ⟶ ∫    

 

 
              [ ̅]                                   (44c)  

We can use the same way to get that the integral  ∫    
 

 
                is continuous w.r.t. 

           but    ⟶    WK in       , then 

∫    
 

 
              ⟶ ∫    

 

 
                                            (44d) 

on the other hand, since    ⟶    WK in       ,   then 

∫              
 

 
    ⟶ ∫  

 

 
                                                         (44h)  

Eventually, utilizing (44) & (45b) in (42)-(43) gives  

 ∫         ́ 
 

 
      ∫ [                                      ]        

 

 
 

∫             
 

 
            ∫         

 

 
           

                                    (46) 

 ∫         ́ 
 

 
      ∫ [                                      ]        

 

 

∫                
 

 
               

                                                        (47)                                        

Of course (46) - (47) are also satisfied for any      ,          
Same steps can be used here, like those that were used in Cases 1 and 2 in the proof of 

theorem 3.1 to obtain that     is a SVES of the WEKFM.  

From the continuity of              ,                   (          w.r.t      ,    , and the 

proof of Lemma 4.2, we get that ∫             
 

 
    , ∫                 

 

 
     are 

continuous w.r.t      and     respectively. Then we have the following convergence:   

Since    is independent of  ⃗  and since    ⟶    ST in (     )
 
, then    

                       .  

And  

∫             
 

 
    ⟶ ∫            

 

 
     ∫                

 

 
    ⟶

∫               
 

 
                  (48) 

 From the hypotheses             is WK lower semi continuous w.r.t.    for each      , 

then from (48) one has    

∫             
 

 
     ∫                

 

 
     ∫            

 

 
     

          [∫            
 

 
   ] ∫            

 

 
     ∫               

 

 
      

           [∫            
 

 
  ]        ∫                               

 

 
 

 

   

      ∫             
 

 
           ∫                                     

 

 
 

 

   

      ∫                
 

 
       

           {[∫            
 

 
  ]  ∫              

 

 
                     ]   

Then   

          
   

          , (for each      ) . 

But                then            and one gets that     ⃗⃗   and that 

           
   

              
   

            ⃗⃗̅   ⃗⃗⃗    ( ̅  ) 

            ⃗⃗̅   ⃗⃗⃗  
  ( ̅  )     is a  CCMOPCV . 

5. The NOPC for Optimality 
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In this section, and under appropriate assumptions, the derivation of the FÉDE is obtained. 

The theorem of NOPC as well as the theorem of SOPC is demonstrated. Therefore it is 

necessary to start with the following assumptions, since they will be needed later. 

Assumptions (III): If     
      

 ,      
 (       ) are of a CATHT on    ,     ,      

respectively, then     
     

      
      

,            are of a CATHT  on     ,   

|    
        |   ́  |    

           |   ́  

|             |                   ,  |     
        |                   , 

|     
           |                            

|                |                           

where       ,            ,                 ,                                    
      
Theorem (5.1)     

By dropping the index  , the Hamiltonian   is defined by 

                 [                                   ]               
                
Also, the adjoint state equation       (where         satisfies  

     ∑
 

   
         

   

   

 
                                

             
          

on   

     ∑
 

   
         

   

   

 
                                

            

    
            on   

             , on   

          ,    on   
   

  
    ,           on    

   

  
   ,            on    

Then, the FÉDE  of   is given by    

 ́      ⃗⃗ ⃗⃗   ∫        
       

 

 
 ∫        

     
          

 

 
    ⃗⃗                  ⃗⃗ ⃗⃗         

where   ⃗⃗                        
         

     
  . 

Proof 

The  WEKFM  of the  ADVEQ  is  
 〈      〉                                                                 

     (49) 

 〈      〉                                                      

           
                                                                                                                            (50) 

Now, by setting       ,       in (37) and (38), INBSw.r.t.   on [   ], then collecting 

the obtained equalities, one obtains 

∫ 〈  ⃗⃗⃗⃗     〉   
 

 
∫ [                                                       

 

 

                            ]   ∫                    ∫                
 

 

 

 

∫             ∫                        ∫                  
 

 

 

 

 

 
            (51)                                    

The FÉDE  of       exist for each            (from Assumption (I)-ii and proposition 

(3.1) in [11]),   

 after utilizing  the outcome of Theorem (4.1), they are  

∫  
 

 
                                 ∫  

 

 
                   ⃗⃗ ⃗⃗   ‖  ⃗⃗ ⃗⃗  ‖   

,     (52)                     

∫  
 

 
                                       

∫  
 

 
              ∫  

 

 
    

               ⃗⃗ ⃗⃗   ‖  ⃗⃗ ⃗⃗  ‖   
                                           (52b) 
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 where   (  ⃗⃗ ⃗⃗  ) ⟶   as ‖  ⃗⃗ ⃗⃗  ‖
   

⟶                  

Using (52 a&b) in R.HN.S. of (51) yields    

∫ 〈  ⃗⃗⃗⃗     〉   
 

 
∫ [                                                       

 

 

                            ]   ∫                 ∫                
 

 

 

 
          

∫  
 

 
    

           ∫                  ⃗⃗ ⃗⃗   ‖  ⃗⃗ ⃗⃗  ‖   

 

 
                                                  (53)                                                                                                      

Now, substituting        and        in (49) and (50), respectively, INBSw.r.t    on 

[   ], using the integrating part formula for the first term of each obtained equality, and then 

collecting the outcomes, gives 

∫ 〈  ⃗⃗⃗⃗     〉   ∫ [                                          

 

 

 

 
                

                             ]   ∫                 ∫               
 

 

 

 

 ∫                 ∫              
 

 

 

 
                                                                              (54)                                                                                    

By subtracting (54) from (53), one gets  

∫ (        )   
 

 
 ∫ (        )   

 

 
 ∫  

 

 
    

          ∫            
 

 
 

     ⃗⃗ ⃗⃗   ‖  ⃗⃗ ⃗⃗  ‖   
                                                                                                                     (55)                                                                                                   

Now, let         ∫                ∫             
 

 

 

 
 

                      ∫                  
 

 
.  

From the  FÉDE  and the result of theorem (4.1), one has 

  (     ⃗⃗ ⃗⃗  )         ∫      

 

 
        ∫     

 

 
           ⃗⃗ ⃗⃗   ‖  ⃗⃗ ⃗⃗  ‖   

                (56)                                 

  (     ⃗⃗ ⃗⃗  )         ∫     

 

 
        ∫     

 

 
             ⃗⃗ ⃗⃗   ‖  ⃗⃗ ⃗⃗  ‖   

            (57)  

Collecting (56) and (57) leads to  

       ⃗⃗ ⃗⃗            ∫      

 

 
                  ∫     

 

 
        ∫     

 

 
      

     ⃗⃗ ⃗⃗   ‖  ⃗⃗ ⃗⃗  ‖   
                                                                                                  (58)  

Substituting (55) in (58) gives 

       ⃗⃗ ⃗⃗             ∫  
 

 
    

          ∫     

 

 
        ∫            

 

 
 

∫     

 

 
           ⃗⃗ ⃗⃗   ‖  ⃗⃗ ⃗⃗  ‖   

            

where      ⃗⃗ ⃗⃗      as ‖  ⃗⃗ ⃗⃗  ‖
   

    

Using Proposition (3.2) in [11], the  FÉDE  of    is 

( ́       ⃗⃗ ⃗⃗  )  ∫         
       

 

 
 ∫        

     
          

 

 
 

   ⃗⃗                  ⃗⃗ ⃗⃗        

where   ⃗⃗                         
         

     
  . 

Theorem (5.2): The NOPC for Optimality   

If     ⃗⃗   is a CCMOPCV, i.e. there exists multipliers       ,         with       

,    ,  ∑     
 
       such that    

∑   
 
    ́        ́    )   ,   ́   ⃗⃗                                                                               (59) 

 & 

                                                                                                             (60)  

Also, (59) is equivalent to the following minimum principle  

  ⃗⃗                     
 ⃗⃗́   

  ⃗⃗                ́      a.e on                                           (61)  

where   ⃗⃗                         
         

     
  . 

Proof 
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From assumptions (I), (II) and (III), the functions        and  ́      are continuous (for 

 =0,1,2) and are linear w.r.t.   ́    ). Therefore,         is   differentiable at every     ⃗⃗  , 
  . Hence,  by applying  the KUTULATH,   there exists  multipliers               , with 

     ,      , ∑        
      such that (60) -(61) are held, or  

(   ́         ́         ́     )  ( ́    )     ,   ́   ⃗⃗ .    

By utilizing Theorem (5.1), putting   ⃗⃗ ⃗⃗    ́      and employing the FÉDE of   ,           

in (58), we obtain 

∑     ∫         
      

 

 
 ∫        

     
          

 

 
 
            

Let    ∑   
 
      ,      

 ∑          

 
   ,    ∑   

 
           

   and     
 ∑         

 
      

  ∫   ⃗⃗               
 

   
   ⃗⃗ ⃗⃗                                                                    (62) 

Consider that ⃗⃗  ⃗⃗  { ́            | ́        ⃗           },  ⃗    , { ́ } is a "dense" 

sequence in  ⃗⃗  ⃗⃗   and   is Lebesgue measure on      Let       be a measurable set 

which has the property  

  ́       {
                   

                   
 

Therefore, (62) becomes 

 ∫   ⃗⃗               
 

 
             ,     

Using theorem (3.1), we get  

  ⃗⃗                           , a.e. in    .  

Therefore, the inequality holds everywhere on the boundary     of    except in a subset    

for which        ,   , or it hold everywhere on the boundary      except in ⋃     with 

  ⋃       . Since { ̅  } is dense in   ⃗⃗ , then there exists  ̅   ⃗⃗  such that  

  ⃗⃗                      ⃗⃗   ⃗⃗   ⃗⃗                ́    , a.e. in    ,   ̅   ⃗⃗  .  

The converse is clear.  

    

6. The SOPC for Optimality 

Theorem (6.1): The SOPC for Optimality 

Consider that the assumptions (I), (II), and (III) are held,  ⃗⃗   ⃗⃗  ⃗⃗  is convex,               
and     are affine w.r.t.     ,                          are convex w.r.t.        , and 

            are convex w.r.t.    ,       . Then, the NOPC in Theorem (5.2) are sufficient, if 

      
Proof 

Assume that     satisfies the KUTULA condition (59) with     ⃗⃗   , i.e. 

[∫         
 

 

 
   ∫        

     
 

 

 
    ]      ,   ́   ⃗⃗   

&            
Let       ∑         

 
   , then  

 ́       ⃗⃗ ⃗⃗   ∑    ́     
 
      ⃗⃗ ⃗⃗     [∫ (         

)
 

 
   ∫ (       

      
)

 

 
     

   [∫ (         
)

 

 
     

∫         
      

 
 

 
       [∫ (         

)
 

 
   ∫ (       

      
)

 

 
         

since   ,   in the R.HN.S. of (1)-(2) are affine w.r.t.                  respectively, i.e.   

                               &                                     
          

Let           & ̅    ̅   ̅   be two CCMCVs and (by Theorem (3.1))    (   
    

)  

        &  ̅  ( ̅ ̅ 
  ̅ ̅ 

)    ̅   ̅   are their SVES, i.e.  
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     ∑
 

   
         

   

   

 
                                               

∑    
   

  

 
              , 

          
     

and 

  ̅   ∑
 

   
         

  ̅ 

   

 
               ̅         ̅           ̅           

 ∑    
  ̅ 

  

 
       ̅        

  ̅         
      

Multiply the first above equality and its initial condition by    [   ] , and the second one and 

its initial condition by      , then collect the outcome equalities and their initial conditions, 

to get   

           ̅    ∑
 

   
         

            ̅  

   

 
                         ̅   

                 ̅                      ̅                         (63a)  

               ̅         
                                                                           (63b)  

 ∑    
            ̅  

  

 
                ̅   , on                                         (63c) 

           ̅    ∑
 

   
         

            ̅  

   

 
                          ̅   

                 ̅                    ̅                     ̅   
                                    (64a)  

               ̅         
                                                                                                          

(64b) 

∑    
            ̅  

  

 
         ,   on                                                                 (64c)  

Equations (63)-(64) explain that the CCMCV ̃    ̃   ̃  , with  ̃            ̅   has the 

corresponding SEVS,  ̃    ̃   ̃  , with   ̃             ̅ . Hence,       ⃗⃗  is convex – 

linear w.r.t.      ⃗   ,        .  
Now, since〖 g〗_11 (x,t,s_1), g_12 (x,t,s_2,μ_2 ) are affine w.r.t〖 s〗_1 〖(s〗_2,μ_2)  

and  h_11 (x,t,μ_1) is affine w.r.t. μ_i,  (x,t) Σ , respectively, i.e. 

                                ,                                  and 

                                             . 

Let    &  ̅  be two CCMCVs and       ⃗⃗  &  ̅   ̅  ⃗⃗̅  are their corresponding SEVS. Then,  

  (           ̅ )  

∫    (                 ̅ 
)     ∫    (                 ̅              ̅ )     

 

 

 

 

∫                    ̅  
 

 
  .   

Since the operator        ⃗⃗  is convex – linear, then  

  (           ̅ )                 ( ̅ )  

        is convex – linear w.r.t. (       ,          .  

 From the Assumptions, ∫    
 

 
     is convex w.r.t.     ,∫    

 

 
     is convex w.r.t.        ,  

and  ∫    
 

 
    is convex w.r.t.   . Then,       &       are convex w.r.t. (                

             , i.e.       is convex w.r.t. (                           . Also since 

 ⃗⃗   ⃗⃗  ⃗⃗  is convex and                   has a continuous   FÉDE  for each     ⃗⃗  (by 

Theorem (5.1) and Assumptions (I), (II) and (C)) , then it satisfies   ́      ⃗⃗ ⃗⃗    . Thus        
has a minimum at   , i.e. 

                                                                                 (65)    
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Let     ⃗⃗   , with     , then from (64) we have   

              ,      ⃗⃗ , since            
    is a  CCMOPCV  . 

7. Conclusions  

The EXUNTh of a CCMOPCV that is ruling by the considered CNLPPDEs with the STCOs 

is demonstrated using the MGA. The existence of a CCMOPCV is demonstrated under 

appropriate conditions, whilst the EXUNTh for the couple of ADVEQ related with the 

considered CNLPPDEs is considered and the derivation of the FÉDE  of the Hamiltonian is 

obtained. Lastly the theorems of the NOPC and the SOPC   of the CNLPPDEs with the 

STCOs are demonstrated.  

   

References 
[1] La Torre, D., Kunze, H., Ruiz-Galan, M., Malik, T. and Marsiglio, S. 2015. Optimal Control:                  

Theory and Application to Science Engineering, and Social Sciences, Copyright, University of 

Wollongong.  

[2] Bonnans J.F. 1984. Analysis and control of a nonlinear parabolic unstable system,  Large Scale   

System,6, pp:249-262,.  

[3] Abergel F. and Temam R.1989.Optimality conditions for some nonqualified problems of 

distributed   

[4] Control,  SIAM   J. Control Optim., 27(1), pp:1-12.  

[5] Al-Hawasy J . 2016. The Continuous Classical Optimal Control of a Coupled of nonlinear 

hyperbolic Equations, Iraqi Journal of science , 57(2C), pp:1528-1538.     

[6] Al-Hawasy J, and Al- Rawdhanee E. 2014.The Continuous Classical Optimal Control of a 

Coupled of Nonlinear Elliptic Equations,  Mathematical Theory and Modeling,4(14). 

[7] Al-Hawasy J and Kadhem Gh. 2016. The Continuous Classical Optimal Control of a Coupled of a   

Nonlinear parabolic Equations, AL Nahrain Journal of Science, 19(1),pp: 173 -186.  

[8] Al-Hawasy J  and Naeif A. 2018. The Continuous Classical Boundary Optimal Control of a 

Couple Non Linear Parabolic Partial Differential Equations, Special Issus: 1
st
 Scientific 

International Conference,  AL Nahrain Journal of Science,Part I.pp: 123-136. 

[9] Al-Hawasy J, and Al-Qaisi S. 2018.The Continuous Classical Optimal Bondary Control of a 

Couple               

[10] Linear Elliptic Partial Differential Equations Special Issus: 1
st
 Scientific International Conference,  

AL Nahrain Journal of Science,Part I, pp: 137-142. 

[11] Al-Hawasy J.  2019. The Continuous Classical Boundary Optimal Control of Couple Nonlinear  

Hyperbolic  Boundary Value Problem With Equality and Inequality Constraints, Baghdad Science 

Journal,16(4) supplement 2019. 

[12] Temam R. 1977. Navier –Stokes Equations, North-Holland Publishing Company, New York.  

[13] Chryssoverghi, I. and Bacopoulos, A. 1993. Approximation of Relaxed Nonlinear Parabolic                     

Optimal Control Problems, Journal of Optimization Theory and Applications, 77(1). 

[14] Bacopoulos, A. and Chryssoverghi, I., “Numerical Solutions of Partial Differential Equations by 

Finite Elements Methods”,  Symeom Publishing Co., Athens, 1986. 


