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Abstract

In this work, the classical continuous mixed optimal control vector
(CCMOPCV) problem of couple nonlinear partial differential equations of parabolic
(CNLPPDEs) type with state constraints (STCO) is studied. The existence and
uniqueness theorem (EXUNTh) of the state vector solution (SVES) of the
CNLPPDEs for a given CCMCV is demonstrated via the method of Galerkin
(MGA). The EXUNTh of the CCMOPCYV ruled with the CNLPPDEs is proved. The
Frechet derivative (FEDE) is obtained. Finally, both the necessary and the sufficient
theorem conditions for optimality (NOPC and SOPC) of the CCMOPCYV with state
constraints (STCOs) are proved through using the Kuhn-Tucker-Lagrange
(KUTULA) multipliers theorem (KUTULATH).

Keyword: Mixed Classical Optimal Control, Frechet Derivative, Necessary and
Sufficient Conditions for Optimality
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1. Introduction
The optimal control problem (OPCPR) is one of the important topics in applied mathematics

and in several areas related to it, such as biology, economics, ecology, engineering, finance,
management, medicine and many others. The associated mathematical models are formulated
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for example, as ordinary or partial systems [1]. The OPCPR of partial differential equations
with state constraints have been intensively studied since the eighties starting with the work
by Bonnans [2] and Abergel and Temam [3]. Later, from 2014 to 2016, the classical
continuous optimal control problems (CCOPC) of coupled nonlinear partial equations
(CNLPDEs) of hyperbolic, elliptic and parabolic types of equations were studied in [4], [5]
and [6] respectively. While during 2017-2019, the classical continuous boundary optimal
control problem of CNLPDEs of elliptic, hyperbolic, and parabolic type were studied in [7],
[8] and [9] respectively.

In this paper, the EXUNTH of the SVES for the CNLPDEs of parabolic type (CNLPPDES)
for a given CCMCYV is demonstrated. The theorem of existence of a CCMOPCYV ruled by a
CNLPPDEs type is demonstrated. Also the derivation of the FEDE is achieved and the
EXUNTH of the vector adjoint solution of the adjoint equations ADVEQ related to the SVES
is studied. The KUTULATH are developed and utilized to demonstrate both the NOPC and
the SOPC theorems of the CCMOPCV with STCOs.

2. Description of the problem

Let I ={t:0<t<T}, T<0cR? be abounded open region with ' = 9Q , then the
CN LPPDES is

St — U 16 (a;(x, t) )+ ki(x,t)s; —k(x,t)s, = Fi(x,t,51) in Q=QxI
, )

Sa¢ = Xij=1 Py (bu( ,t) 52) + kz(x t)Sz + k(x,t)s1 = Fo(x,t,55,42) INQ = QX1 (2)
%— 7 1au(x t) cos (ny,x) = w(x,t) onZ=TxI (3)

s1(x,0) = 547 (x), in Q 4)

Sy(x,t) =0, onXZ=TXxI (5)
Sy(x,0) = sp,(x) in Q (6)

where n; is a normal vector on X, x = (x;,x;) €Q, (51,52) = (5:(X%,1),5,(x,t)) €
(Hl(Q))Z is the STVES, and p “=(u_1 (Xt),u 2 (x,)€ (L2 (X)xL*2 (Q))] ~ s the
CCMCV, (F 1 (xts 1)F 2 (xts 2 [ul _2)elL™2 (Q)2 a;j(x,t) , bij(x,t),k(x,t),
ki(x,t) and k,(x,t) € C*(Q) .

The set of the CCMCV is

geN ={f=(u,u) € L2(E) x L2(Q)|i € U, ae. in Q}, with U is convex. (7
Let V=V, xV, = {#:7 = (v,(x),1,(x)) € H1(Q) x H}(Q) }. Let the set of admissible
CCMCV be

N4={ii € N|#,(i1) = 0,,(ii) < 0}, where the cost functions (CF) and the STCOS are
given respectively by

Ho (i) = fQ 9o1(x, t,s1)dxdt + fQ 902 (X, t, 55, ) dxdt + [ hoy (x, t,1y) do (8)
(@) = fQ g11(x, ¢, s1)dxdt + nglz(x, t, Sz, Up)dxdt + fz hy1(x,t, 1) do =0 ©)
H,({) = fQ g21(x, t, s7)dxdt + ngzz (x,t, 52, up)dxdt + [ hpy(x,t,14) do < 0 (10)

Lemma 2.1[10]: Let A4,B,A be three Hilbert spaces. If a function f and its derivative
f belong to L,(0,T; A) and L,(0,T; A), then f is a.e. equal to a continuous function from
[0, T] into B and satisfies: % WFIIZ = 2{f, f).

Proposition 2.1[11]: Suppose that W c R?. Let k: W x R™ - R™ be of a Carathéodory type,
that satisfies ||K(u,v)|| < o(w) + 9W)|[v||Y, V(u,v) € W X R™ , where veL_d (WxR"n),
o(X)eEL_1 (Wx R), 9€L"o(d/(d-c)) (Wx R) with c€[0,d], ceN if dg[1,0) , and 9=0 if d=co.
Then the functional K(V)ZJ_WA (u,v(u))du is continuous.
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Theorem 2.1[12]: Alaoglu’s theorem (AlaTh): A bounded sequence {a n} of a Hilbert space
A has a subsequence which converges weakly to some a€A.

Theorem 2.2 [10]: Let Ay c A c A; be Banach spaces, where the injections being
continuous, A; is reflexive for [ = 0,1, and the injection of A, into A is compact. Let S > 0 be
a fixed finite number and let y,, y,be two finite numbers such that y; > 1, [ = 0,1. We
consider the Banach space Y ={v € C =L"(0,S;A,),% €D =L"(0,S;A;)} with
lvllg = Ju«ug + ||¢||3 , Yo € B . Then the injection is continuous and compact from Y
into C.

Definition 2.1 [11]: A sequence {x,} of vectors in an inner product space V is called strongly
convergenttoavector x inV if || x,, —x l-> 0asn — oo,

3. Weak Formulation of the SVES

The weak form (WEKFM) of (1-6) when § € (H(Q))? is given by (vv_1,v_2€V ):

(516, 11) + a1 (t,s1,11) + (ke (O)sy,v1)q — (k(t)sz,v1)q = (F1(s1),v1)a + (U1, v)r (11a)
(53;”’1)9 = (51(0),v1)q (11b)
(S21,2) + ax(t, 52, 12) + (ko (t)s2,v2) + (k()s1,v2)a = (Fa(s2,12), 72)q (12a)
(53»’1’2)9 = (52(0),12)q se. 5 O (12b)
where al(t; S1 ’Ul) f Zl] 1 Qij ail a"’l dx , a (t, S2, ’U’z) f Zl] 1 Dij aiz 64):2 dx

The following assumptions are very important to prove the EXUN solution of the WEKFM.
Assumptions (1):
(i) F,, F, are of a Carathéodory type (CATHT) on Q X R and Q X Q X R?, respectively, that
satisfies the following conditions for s; and (s, u,), i.e.
|F1(x, t, s < m(x, t) + ¢qls4]| and |T2 (%t Sz'ﬂz)l < n2(x, t) + czls2| + & lpzl,
where (x,t) € Q ,s; ER, ¢;,é;, > 0andn; € L2(Q) , Vi = 1,2.
(i) F; is Lipschitz with s;, Vi = 1,2, i.e.
|F1(x, t,51) = Fi(x, 6, 8)| < Lqlsy — 341 : |F2(x, 8,52, p12) — Fo(x, 8,85, 142) | <
Ly|s; — 3],
where (x,t) €Q,s;,$; € R andL; >0 ,Vi=1.2.
(iii) D(¢, S, 7) = ay(t,s1,v1) + (ke (O)s1,v1)q + a2 (L, 52, v2) + (ka2 (t)sz, v1)q
ID(t, 5, 7)| < alls|l,I1Z#]l; and D(t,5,5) = @||s||3, where a« &a are real positive
constants.
Main Results
Theorem (3.1): (The EXUN of SVES)
For each fixed CCMCV/i € L*(Z) x L?(Q), the WEKFM (11-12) has a unique solution
se(2a,v)” and 3, € (12(1,v")".
Proof
Consider that V¥, cV is the of functions continuous on Q , which has the basis
{7, V5, ..., v}, then the solution s of (10-11) is approximated by S,, = (15, S25,) , SUch that ,
for each n
Sin = X €17 (D01 (%) (122)
Son = 2}1=1 2 ()17 (x) (12b)
Using the MGA , the WEKFM of the (10) -(11) becomes
(S1nts 1) + a1 (t, S1n, 1) + (kK1 (O)S1n, 1) — (k(E)S20, 1) 0 = (Fi(s1),v)a + (, v)r (13a)

(st v)a = (s7,01)q, foranyv, €V, (13b)
(Soney v2) + A28, Sop, v2) + (ko (£)S2p, v2) o + (k(D)S1n, v2) o = (Fa(S2, 42), v2)q  (140)
(Sgn:"fz)ﬂ = (s2,v2)q, forany v, €V, (14b)
with s = s;,,(x, 0) belongs in V, , which satisfies, for any v; € V, and Vi = 1,2, that
(Sm'/U/L)Q (Sl Uida © ”Sln - SLOHO = ||Sl ’lflllo
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Then, there is a sequnece {w ~_n"0} with w °_n?0€eV ~_n, for which w °_n?0—s ™0
strongly (ST) in  [((L"2 (Q))] "2, therefore and from the above inequality norm, once get s
> nM0—s M0 STin (L2 ()] ~2 withIs” n"01 0<b 1.

Now, using 12 (a & b) in 13-14 gives

A1 CL(t) + D1 C1(t) — E1Co(8) = by (V] (0)C1(D)) (127a)
A.C;(0) = b2 (12°b)
A3C, (1) + D,Co(8) + E2C1(8) = by (V] (x)C, (1)) (137a)
BC,(0) = b9 (13'b)

where A1 = (aij)nxn ) al’j = (’U’lj,’l)’li)ﬂ, Dl = (dij)nxn ) dU = [al(t,/lflj,/lfli) +

(k1(t)’lf1j;4f1i)g]' E, = (eij)nxn ) € = (b(t)’lfzp’l’u)n , Co(t) = (Cej(t)) = C,(t) =

nx

(Céj(t))nxl Ce(0) = (C{’j(o)) o be=wna o by = (FL(T] C1(6)), v1)q +

nx

(U1, v11)rbs; = (7:2("72716'2(15));#2)""21')9
, Wy = (ednxa + b = (b)) b = (8, ve)y, and Ay = (byy) - bij = (vajv2),
D, = (fij)nxn iy = aa(tvg,va) + (ka(Dva,v2)a) . Ex = (hij)nxn N OTES
(k(t)vli!UZi)Ql t = 1!2
From assumption (1), system (12°-13") has a unique solution.
The boundedness ”S"(t)”L‘”(I,LZ(Q)) & [|s,(®llg:
Putting v; = s1, and v, = s,, in 13a & 14a, integrating both sides (i.e. INBS) on [0, T],
and collecting them, using Assumption (I, iii), yield

T, - T > T T
Jo Gt Spddt + [ IS, NITdt = [ (F1(s1n), S10)adt + [ (F2(S2ns 12, San)adt +

T
fo (U1, S1p)rdt (15)
Since s”_nte [((L) ~2 (1,v~*))*2=(L"2 (1,V) )*2 and s ”_ne(L"2 (1,V) )2 in the 1”st term
of the L.HN.S. of (15), then applying Lemma 2.1, but with the 2*nd term is nonnegative,
letting T=t€[0,T] , finally from the 1”st two terms in the R.HN.S of (15), and Assumption (I-

i), one has [ 4|3, (D113 dt < [ 11 + 2113 + i1 + Eolluz iR +cs [115,113 dt
= 13, (O3 = 15,013 < m5 + c5 [ 15,113 dt , my = my +my + ¢, + ¢

= 13, (ON13 < my + cs [ IS, l13dt,  my = b +my.

By using the classical Bellman-Gronwall inequality (B.G), one gets

= ||§”(t)“L°°(I,L2(Q)) < hg , hence

- T\ > -
15.(O11G = J, 13alI3dt < T maxeeronlISn(ONI§ < The = hiy = hyo.

The boundedness of |5, (Ol 2y,

Also, we apply Lemma 2.1 on the 15¢ term in the L.HN.S. of (15) . Then, by utilizing the
same steps above on its R.HN.S., with setting ¢t = T, and ||$,,(T)||3 = 0, it becomes

- — T - 7 - -
IS, (TG + 2@ [, IS llFdt < Il + Im2llG + Nuall§ + Calluzll + csllSullg + 15,0115
0
= ||§n||L2(1,V) < hqy,
The convergent solution

Assume the sequence of subspaces {17,’1}::1 of V , with the assumption that, for any & =
(v, v,) in V, there is a sequence {v~_n } of {17,1}:;1 st. 7, > 7 STinV=7, »>7
ST in (12()”.
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Hence, corresponding to{l_/;}:ﬂ, for any vy, vy, €V, and sy, 5., € L2(1, V) ae inl (
n=1,2,..), the WEKF
(S1nt» U1n) + a1 (t, S1n, 1) + (k1 (O)S10, v10) 0 — (k(E)S2n, Y1)

= (F1(51n), v1n)a + (U, 1)1, (162)
(st 1n)a = (s2,71n)a (16b)
(Sones V2n) + a2(L, Son, v2n) + (k2 () S2n, v2n)q + (k(E)S10, U200

= (F2(S2n U2)V20) 0 (17q)
(Sgn; ”Zn)ﬂ = (53:0211)9 (17b)

has a sequence of unique SVES {s,,};—1. Then, from Theorem 2.1, {5,,},en has a subsequence
claim again {8,},cy for which §,— § WK in (LZ(Q))2 & (L2, V))2 (from the
boundedness of (IS, [l ,2) and [1S, 1l 21 v))-

Then, by utilizing the theorem of compactness, Assumption (I-i), and the norms are bounded,
one obtains §, — § STin (L2(Q))".

By multiplying (16a) and (17a) by vy, (t) € C[0, T], respectively, with y;(T) = 0,Vi = 1,2,
integrating w.r.t. t on [0, T], and then using the integrating by parts (IBPS) formula for the 15¢
term in the L.HN.S., we get

— Jy 1 1)1 ()t +
1@ (t, 51 010) + (ks (D510, 0100 — (€S2 v10)@Jih1 (D dt =
fOT(T1 (510), v1n) a1 (D)dt + fOT(IJ1"lY1n)F W1 (8)dt + (st v1n) a1 (0) (18)
— [ Son 2o (D)t +
[T (& San v2n) + (ko (O30, v2n)a + (D510, ¥2n)alih2 ()dt =
S (Fa(Sams 12), 20 a2 ()t + (5%, 20) 02 (0) (19)
But, s;, — s; WK in L2(Q), sP, — s ST in 12(Q), and

Vinp; — v ST in L2(Q)
Vi@ — v ST in L2(1, V)
Then, the following convergences are held
[ (1m0 01091 (Ot +
foT[al (&, s10, 1) + (k1 (O)S10, v10) o — (K(E)Son, vin) ]2 (O)dt — fOT(S1:4f1)§0i(t)dt +
[y Ta1(t,s1,00) + (ky (©)51,01)0 — (k(D)s5,v1) o]t (E)dt (20)
(an: v1n)aP1(0) — (58;"’1)91111(0) (21)
[} (Sam 2D (D) dt +
S [02(t, Sans v20) + (ka(0)S2n, van)a + (R(O)S1n, van)alth2 (Odt — [ (55,0015 (D)dt +
[ [az(t, 52,05) + (ko (D)55,v75)q + (k(E)s1,v2) ]2 ()t (22)

(Sgn: von)ap2(0) — (Sg» 2)a2(0) (23)
Now, we set p;,, = v, ¥; and p; = v;;, hence p;,, — p; ST in L2(Q) and therefore p,,, is
measurable w.r.t. (x, t). Utilizing Assumption (I-i), with employing Proposition 2.1 gives that
fQ F1(x,t, S17)P1ndxdt is continuous W.r.t. (s, P1n), but s, — s; ST in L2(Q), then

[} (F1 (51, 1) a1 (DAt — [) (Fy(s1), 1) (Ot
Using the same way, we get

T T
Jo F2(s2n, 12), v2n) a2 () dt — [ (F(s2, 12), v2) a2 (B)dt
From this convergence and (20-23), (18-19) become

iy — v; STIn [2(Q) &V} =
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— Jy G,y (Odt + [ [ay (¢, 51,07) + (e ()51, 01)0 — k(D551 o]th1 (D)t =

Jy (s, o) os (DAt + [ (i, v1)r 1 ()t + (59,071 (0) (24)
- fOT(SZ;VZ)IPé(t)dt + fOT[az (&, 52, v2) + (k2(8)s2,v2)q + (k(D)s1,v2) ]2 ()dt =
I, (Fo (52, 12), v2) b2 ()t + (59,72) a1, (0) (25)

Therefore, we consider the following cases:

Casel: Select y; € D[0,T], by setting y,;(0) = y,;(T) =0, Vi = 1,2 in (24) - (25), and for
the first terms in the L.HN.S. of each one equation, the integration by parts formula is used
to get

[} 101 (Odt + [ [a (¢, 51,00) + (e ()51, 01) — k(D550 qips (D]dt =

Jy Fr(s0), ) os (Ot + [ (i, v1)r 1 ()dle (26)
and

[ (26,02 )2 (Ot + [ [a5(t,55,15) + (ka(£)52, 05) 0 + (k(8)s1,v2) a2 (D]dt =

[ (Fo (52, 12), 02) 0o ()t 27)

i.e. § is asolution of the WEKFM (10a) - (11a).

Case 2: Select Vi = 1,2,v; € C*[0,T] with ¢;(T) = 0 and ;(0) # 0.

Using IBPS in the L.HN.S. of (26) & (27) , then subtracting the obtained equations from (24)
and (25) respectively, we get

(P, )i (0) = (5;(0), v)qp;(0) = (s),v1)q = (5:(0),1)q, Vi=1,2.

The strong convergence in L2(1,V)

By setting vy, = s, and ©; = s, in (10a) & (13a) and v, = s, , v, = S5, in (11a) & (14a),
integrating the  resulting equations on [0, T], collecting the equation resulting from (10a)
with that resulting from (13a) together, and doing the same for (11a) & (14a), we get

fOT(gt' S) dt + fOTC(t' 5,8)dt = fOT[(fpl(Sl):Sl)n + (F2(s2, 42), S2)ldt + foT(llllsﬂrdt (28a)
f(,T(gnt’ Sp) dt + fOTD(t» Sny Sp)dt = fOT[(T1(51n)'51n) + (F2(S2n H2), S2n)1dE +

J3 (. S10)rdt (28h)
By employing Lemma 2.1 on the L.HN.S. of (28a&b), one obtains

- - T > >
IS —FISOIIE + [, D¢, 3, Hdt =

[ IF (50,500 + (Fa (52, 12), )l dt + + [ (1, 51)rdt (292)
and
8 (TNZ = 213,113 + [ D¢, 5, St =
fOT[(T1(51n):51n)Q + (F2(S2n H2), S2n)al dt + foT(.ulrSln)th (29b)

Now, consider the following equality:
(113, (T) = S(DIIZ = 115,(0) — S(O)II3) + [, D(¢,3, — 5,8, —5)dt =B, — B, —B;  (30)
where
By = X(I3:(DIIZ = 13, (0)13) + f, D(t, 3,(T), 3,(T))dt
B, = 1(3,(T),3(T)) — 1(3,(0),3(0)) + [ D(t,3,(T), 3(T)) dt
Bs = X(3(T), 3,(T) — 3(T)) — %(5(0), $,(0) — 5(0)) + fOTD(t, $(T),3,(T) — $(T))dt
But

39 = 3,(0) — 3° = §(0) STiin (L2())" (31a)

3.(T) — 3(T) STin (12())" (31b)
Which gives

(5(0),8,(0) — $(0)) — 0 &(3(T), $,(T) = S(T)) — 0 (31c)
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118,(0) = S(0)1I§ — 0 &lIS,(T) = S(DIIF — 0 (31d)
Since 8, — § WK in (L2(1,))", then
[} c(t,3(T),3,(T) = 3(T))dt — 0 (31e)

Since s, —s; ST in L?(Q),Vi=1,2, then from Proposition 2.1, the integrals
fOT (F1(S10), 1) dt, fOT (Fy(Syn, 12), Son) dt are continuous W.r.t. s;,,S,, respectively.
Therefore
fOT[(:Fl(Sln)Jsln) + (F2(s2n 12), S2n)] dt — fOT[(:F1(S1)'51) + (Fa(s2,142), s2)1dt - (31f)
Now, when n — oo in (30), the following results are obtained:
1) From (31d), we have 3||5,(T) —S(T)|If — 0 and  1|5,,(0) — $(0)|I§ — 0
2) From (29b) & (31f) , we have
Eq.(441)
= fOT[(T1(51n)'51n) + (Fa(s2n, H2), S2n)] dt + foT[(llpSm)th - f(;r[(j:l(sl)'sl)ﬂ +
(F2 (2, 12),52)al dt + foT(li1;51)rdt
3) From (29a) , we have Eq.(A4,)
= fOT[(T1(S1);S1)Q + (Fa(s2, 12), S2)al dt + fOT[(.“bSm)F dt
4) Through (31c) and c(31e), all the terms are tending to zero in (4;).
Now, the above steps, and (30), give

T N N N _ T > N > - . 2
Jy D3, —58,8, —dt - 0=>a [ IS, —§lfdt —0=35, —>5STin (L2, vm)".
Uniqueness of the solution
Let § = (sq,52) §= (81,5;) be two SVES of (10)-(11), i.e. from (10a) we have
(s16,v1) + a1 (8,51, v1) + (k1 (®)s1,v1)q — (k(D)s2,v1)q = (F1(s1), v1)a + (41, v1)r
($16,v1) + a1 (8,81, v1) + (k1 (©)S1,v1)q — (k(D)$2,v1)q = (F1(81), v1)a + (U1, v1)r
Subtracting the second equation from the first one , then setting v, = s; — §;, yield
((s1 = 8)us1 — 81+ a(t, 51 — 81,51 — §1) + (ke (£)s; — 81),81 — 81)q — (k(t) (s —
$2),51 — S1)a = (Fi1(s1) = F1(81),81 —S1)q (32)
Also applying the same steps for (11a), yields
((s52 = 82)¢,52 — 82) + ay(t, 55 — 83,5, — 85) + (ko (t)s; — 83),52 — §2)o + (k(t)(s1 —
$1),52 = 82)a = (Fa(sz,12) — F2(82,12), 52 — $2)q, (33)
By collecting (32) and (33), employing Lemma 2.1 for the L.HN.S of the resulting equality
and applying assumption A-iii, we have
;T?t”g — 5”2 + 67”5) - 32”: < |(Fi(s1) = F1(81), 81 — 81)a + (Fa(sa, uz) — Fa(82, 12), 52 —

$2)al (34)
But the second term in the L.HN.S. of (34) is nonnegative. INBS of (34) on [0, t], then

employing assumptions (A-ii) for the R.HN.S, using the B.G, one obtains
- 2 S 5
I3 -3, =0,ve=[3-3,,, =0=35=3.

L2(1,V)
4. Existence of the CCMOPCV
In this part, the following theorem and lemma are useful in studding the EXUNTh for the
CCMOPCV.
Theorem (4.1):

(a) If assumption (1) is held and if # and i + Ax are bounded CCMCVs in L2(E) x L2(Q) and
their corresponding SVES, then

”E”Lw(LLZ(g)) S “Kl”M”LZ(Z)Xy(Q)’ ”E”LZ(Q) S KZ'lm”LZ(Z)xLZ(Q)and

”E”Lz(l,y) = ‘7(3”E1)||L2(Z)XL2(Q).
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(b) If assumption (1) is held, then the operator [+ s; from L*(X) x L?(Q)) into
(L=(1,L2(@))?, (LU, V))? and (L2(Q))? is Lipschitz continuous (LC).

Proof:

(a) Takeg, fi € L2(X) x L2(Q). Hence, from theorem (3.1), §; and §ﬁ are their corresponding

SVES, which satisfies the WEKFM (10) - (11),Vv,, v, €V, i.e.

($16v1) + a1 (L, 81, v1) + (k1 (£)31,v1)q — (k(®)S2,v1)q = (F1(81), v1)a + (A1, v)r (352)
(3:(0),v1)q = (s7,v1)q (35b)
(821, 12) + ap(t, 85, 12) + (ka ()85, v2) o + (k(£)81,v2)a = (F1(82, 42), v2)q (36a)
(3,(0),v2)q = (s3,72)q (36b)

Subtract (10) from (35) and (11) from (36) and put As; = §; —s; , Au; = f4; — p; , Vi =1,2in
the two obtained equations, to get
(Asyp, 1) + ag(t,Asy, v1) + (ky(£)Asy, v1)q — (k(D)Asy, v1)q = (Fi(s1 + Asy),v1)q —
(F1(s1),v1)a + (Bpy, v)r (37a)
(A51(0),v1)q =0 (37b)
and
(Asyp, v72) + az (L, Asy, v3) + (kz(D)As,, v3)q + (k(£)Asy, v2)q
= (Fa(s2 + Asy, Apy), v2)q
—(F2(s2, 12), v2) (38a)
(As,(0),v2)q =0 (38b)
Using v, = As;, v, = As,in (37a) and (38a), then collecting them, employing Lemma 2.1
for the 15¢term in the L.HN.S. and utilizing Assumption (l-iii), one gets
—s 2 —s 2
saillAsll, + allas]|; <
|(F1(s1 + Asy) — Fi(s1), Asy) [+|(Fa (52 + Asy, Apy) — Falsa, Auz), Asy)| +
|(Auq, Asy)] (39)
The 2™¢ term of L.HN.S. of the inequality is nonnegative. Hence, INBS w.r.t. t on [0, t],
then by employing Assumptions I-ii and the inequality of Cauchy-Schwarz for the R.HN.S.
and then employing the Trace theorem, we obtain

— 2 — 2 Ep— 112
||As(1:)||0 < ”Au”LZ(Z)xLZ(Q) + Ly fO”AS ||0 dt ,where L; = Y constant
Applying the B.G gives

||E(t)||0 = jq”E”LZ():)xLZ(Q) , tE [0' T]

= ||AS||L°°(I,L2(Q)) < K1||A#||L2(Z)><L2(Q) , t €[0,T]

From this result, one easily obtains that

”AS”LZ(Q) < :}CZHA# ||L2(Z)XL2(Q) | and ”AS”LZ(LV) = 7(3||AM ||L2(2)xL2(Q)

(b) From part (a), one directly obtains that the operator ji +— s is LC from L2(Z) x L?(Q) into
the spaces( L* (1, L2()))?, (L*(1,V))?, (L*(Q))>.

Assumption (1)

Consider that (VI = 0,1,2) g;1 , 912 » hy1 are of a CATHT on (Q X R), (Q X R?), (Z X R)
respectively, and satisfy:

|91 (6 t s, u)| < Vi () + €1 (51)% + i ()

1912, £, 5)] S v (6, 1) + €12(52)% i (2, 1) | < 812 (x,8) + djp (12)?

where s;, u; € Rwithy; € L1(Q) , 8,1 € L1(2), 6, € L1 (Q), i = 1,2.

Lemma (4.2)

If assumption (11) is held, then #;(i) ( VI = 0,1,2) is continuous on L2(X) x L2(Q).

Proof

From the given assumptions, with utilizing Proposition 2.1, we have fQ 9 (x, t,s1) dxdt and
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fQ 9i2(x, t, 55, 11z) dxdt are continuous on L?(Q) and [ hy(x,t, 1) do is on L*(Z) VI =

0,1,2.
Then ;(f) is continuous on L?(X) x L*(Q) , VI = 0,1,2.
Theorem (4.3)

Consider that assumptions (I) and (I1) are held and that U is compact. Consider that ]T/j:1 * 0,
if for fixed (x, t,s), #, (i) and H, (i) are convex w.r.t. ji and that 7¢; (i ) is independent of
i. Then there isa CCMOPCV.

Proof:

Since U is compact and convex, then ' is WK compact. Since IV, # @, then 3% € IV, and
there is a minimum sequence{fi,} , fx € Ny , Vk that satisfies
im0 Ho (i) = infregy, Ho( ).

But V' is WK compact, then {ji, } has a subsequence claim again {fi;}, which converges WK
to some element f in ', or fi, — f WK in L2(Z) x L2(Q) , then {fi,.} is bounded Vk .

By theorem (3.2), the WEKFM has a unique SVES s = sy, for each CCMCV (i, with
1Sicll oo 1 22 yys 1Skl 2oy » ISkl 21,y @re bounded. Then, by employing the AlaTh, {s,} has
subsequence claim again {5}, such that §, — § WK in the spaces (L°(I,L?(Q)))?,
(L?(@))* and (L*(1,V))?.
Also, since [|Si |l 2y~ is bounded, from theorem (3.2), and

(L2(1,V))? < (L2(Q))* = (L*(@)")? = (L2 (U, V™))?

heggg)t;)é utilizing theorem 2.2, {5} has a subsequence claim again {5} s.t. 5, — § ST in
L .

gince vk, Sy is the corresponding SVES to the CCMCYV (i, then

(S1ker 1) + a1 (8, S1x,v1) + (k1 (O)s11,v1) o — (k(E) Sz, v1) =

(Té(x' t,S1k), 1)+ (Ui v)r (40)
an

(Sakev2) + A (t, Sap,v2) + (ka(O) Sk, v2) 0 + (K(O)S1, v2) 0 = (F2 (%, £, Sap, Mak), 2)a (41)
Let y; € C*[I], Vi = 1,2, for which ;(T) = 0. Multiplying (40) and (41) by ¥,(t) and
P, (t), respectively, then INBS w.r.t. t from [0, T], and using IBPS formula for the 15¢ terms
in the L.HN.S., yield

- fOT(S1k:471)1[’1 (Odt + foT[a1(t; 11 01) + (k1 (O 511, v1) 0 — (k(8)s21, v1) ]2 (D)t =

Jy 1, 6510, 01)awps (e + [ Gai 01 (8) d + (51(0), 1)1 (0) (42)

and
- fOT(SZk”‘fz)l.[’z (t)dt + fOT[az(t; Sais U2) + (ko ()S2k, v2)a + (k(8)s1k,v2) ]2 (D)dE =
fOT(Tz(x' t, Sak, Bak), v2) a2 () dt + (s24(0), v2) ap(0), (43)

Since §, — 5§ WK in the spaces (L?(Q))%? and (L2(1,V))? , then

- fOT(Slk;"f1)1/;1 (Odt + fOT[a1(t: S1, 1) + (k1 ()11, v1) 0 — (KO Sk, 1) ]2 (O)dE —
- fOT(Sl:’l’l)l/;1 (O)dt + fOT[al(t, s1,v1) + (ke (O)s1,v1) o — (k(O)s2, v1) ]2 (O)dt  (44a)
and

- f()T(SZk:”z)lpz (O)dt + fOT[az(t» ok U2) + (k2 ()S2k, v2) 0 + (K(DS18, v2) ]2 (O)dE -

- fOT(Sz:’le)l/;z (O)dt + fOT[az(t» S2,02) + (k2 (£)s2,12) 0 + (k(t)sy, v2) ]2 (t)dt  (45a)
Since s1x(0), s, (0) are bounded in L2(Q) and by theorem 3.1, we get

(5 (0), v) a1 (0) — (57, v)qp(0). i = 1,2 (45D)
Let p; = v131(¢), and it is fixed for any fixed (x,t) € Q. Hence, p; € L”(I,V) < L*(Q). Let
v, € C[Q] then it is measurable w.r.t. (x,t). Hence set F;(s1x) = F1(s1,)p1 then
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F1:Q x R — R is continuous w.r.t. s, for fixed (x,t) € Q, then
1P, (e, &, 51 GO < malpa | + €1l syellps] = 72 + S llsyell?, where n? = %(77% + ¢yl 2.
By employing proposition 2.1, we get fQ Fi(s1x)p1dxdt is continuous w.r.t. sy, but
Sik — $1 STin L2(Q) , thus

fQ Fi(s1)prdxdt — fQ F1(s1)p,dxdtvp, € C[Q] (44c)
We can use the same way to get that the integral fQ Fo(Sak, Ui )P2dxdt is continuous w.r.t.
(S2k Mok, DUt 1o — 1 WK in L2(Q) , then

fQ Fa( Sz Har)p2dxdt — fQ Fa(Szk Har)P2dxdt (44d)
on the other hand, since p, — u; WK in L2(Z), then
fr(.u1k»’lf1)¢1(t) ardt — fr(ﬂl»’lﬁ)lpl(t)drdt (44h)

Eventually, utilizing (44) & (45b) in (42)-(43) gives
- fOT(51»’V1)1/31 (Odt + fOT[a1 (&, 51, v1) + (ke (O)s1,v1)q — (k(O)s2, v1) o)1 (Ddt =

[ (1 (e, 50), 01) o1 (O + [y, v)r 11 ()t + (59, 071) 11 (0) (46)
- fOT(Sz;/‘fz)li’z (O)dt + foT[az (€, 52,12) + (ko (t)s2,12) 0 + (k(O)s1, v2) ]2 (O)dt =
[y (B2 (0,55, 12), )0, (D) dE + (3, 07) 12 (0) (47)

Of course (46) - (47) are also satisfied forany v; € V , Vi = 1,2.

Same steps can be used here, like those that were used in Cases 1 and 2 in the proof of
theorem 3.1 to obtain that § is a SVES of the WEKFM.

From the continuity of g;;(x, t,s1x) » Gi2(%, t, So, tar) (VI =0,1,2) W.r.t sy , Sak, and the
proof of Lemma 4.2, we get that fQ g (x,t, 515 dxdt, fQ 912(%, t, Sop, Uoy) dxdt are
continuous w.r.t s;; and s, respectively. Then we have the following convergence:

Since #, is independent of # and since §, — § ST in (L? (Q))Z, then

Hy(f) = limy L0 Hy (Hy) = 0.
And

fQ gun(x, t,s1p) dxdt — fQ g (x,t,s1) dxdt, fQ 912 (%, t, Szp, Uz ) dxdt —
fQ gi2(x, t, 55, 4y) dxdt (48)

From the hypotheses h;; (x,t, 1y) is WK lower semi continuous w.r.t. u, for each [ = 0,2,
then from (48) one has

fQ 91 (x, £, 515) dxdt + fQ 912(%, &, Sape, 1) dxdt + [y (x, 8, py) do <
limy e inf[ [ hyy (%, t, 1) do ] + fQ g (x,t,s1) dxdt + fQ g2 (x,t, 55, 15) dxdt
= limy e, inf [[; hyy (%, 8, f1g) do] + limy fQ(gu Cx, t,51) — gin (%, €, 515))dxdt +

limy o fQ g1 (%, t, 515) dxdt + limy o fQ(glz (x, t, 82, 12) — G12(%, £, Sax, p2))dxdt +

limy fQ 9i2(X, t, Sap, tp) dxdt

= limy o inf{[ [ hy1 (x, t, 1) do] + fQ(gll(x' t,s1x) + 912(X, t, S, h2)) dxdt]
Then

H, (@) < I}im inf H, (ii,,), (foreach I = 0,2) .

But H, (jix) < 0, Vk, then #,( i) <0 and one gets that ji € IV, and that

Ho (D) < lim inf Ho (i) = lim o (i) = infgegy, Ho(fe)

= Ho (i) = minz_y7, Ho(fL,) = i isa CCMOPCV .

UEW 4

5. The NOPC for Optimality
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In this section, and under appropriate assumptions, the derivation of the FEDE is obtained.
The theorem of NOPC as well as the theorem of SOPC is demonstrated. Therefore it is
necessary to start with the following assumptions, since they will be needed later.
Assumptions (I11): If F1y, 91,5, » hiju, (1 =0,1,2) are of aCATHT on Q X R, @ X R, X X R,
respectively, then F,y,., Faus Gi,y,0 Ji,u, (L = 0,1,2) are of a CATHT on Q x R?,

|le1 (x ¢, )’1)| <L, |:F2y2 (x ¢, YZ»Hz)l <L,

|gllsl(x' L, 51)| < {ulx,t) +eplsql, |hl1u1(x: ¢, ll1)| <na(xt) + fulml,

|912u2(x» ¢, 52;H2)| < {p(x, 1) + epplsa| + firlpal

|glzsz(xr t, 52;H2)| < (3(x,t) + eplsa| + firlpal

Where(x: t) € Q! Siy Uy, Up eR ) (li(xl t) € LZ(Q) !nll(x' t) € LZ(Z) 'ell(xl t), fll(xf t) €
L2(Q)

Theorem (5.1)

By dropping the index [, the Hamiltonian H is defined by

H(x» t: §r 73! ﬁ) = [gl (xr t, Sl) + hl (x' t, :ul) + g2 (X', t: S2, MZ)] + Zlfpl (X', t: Sl) +
2, F, (%, t, 53, 1i2)
Also, the adjoint state equation z; = z;,(where s; = s,;) satisfies

) a
—Z1t — Z?,j:l 9% (a;j(x,t) aixt) + ki (x,0)31 + k(x,0) 3, = 31 F15, (%, £, 51) + gus, (%, £, 51)
on ()

d d
—Z2t — Lg,j=1a_xi (bij(x, 1) aixZi) + ko (x,0)3; — k(x,1)21 = 3,F2,, (X, t, 52, 142) +
gZSZ (x! t, S2, HZ) on Q
z:(x,T) =0 ,onQ
z,(x,T) =0, onQ

2
Zrio9 on X
on

o = 0, on X
Then, the FEDE of H is given by
}t(ﬁ)AM = fz(zl+h[,l.1)' A,LlldO' + fQ(ZZTZ;LZ +gu2 ) A.uZdth = (Hl_i(xr ¢, g! 27 ﬁ); AM)ZXQ
where Hy(x,t,5,Z, i) = ((z1+hy,), (22F 2, + Gou,))-
Proof
The WEKFM of the ADVEQ is
—(z16v1) + a1 (L, 31, v1) + (k1 (D31, v1)a + (k(D)z2, 1) = (21F1s,,v1)a + (15, v1)a (49)
—(Z21,v2) + Ay (t, 32, v2) + (k2 (D) 32, v2) 0 — (k(0)31,v2) o = (22F 25, v2)a +
(9252”"2)9 (50)
Now, by setting v, = 3, , v, = 3, in (37) and (38), INBSw.r.t. t on [0, T], then collecting
the obtained equalities, one obtains
[ (85, 2yt + [ [a,(t, 851, 20) + (ks ()B4, 5000 — (K(DAS3, 21)q + az(t, 855, 25) +

T T
(k2(0)Asz, 32)q + (k(t)Asy, 32)gldt = [ (Fi(sy + Asy), 31)qdt — [ (F1(s1), z1)adt +

fOT(A.UpZﬂrdt + fOT(Tz (52 + As3), 13), 32)dt — fOT(Tz(Sz,uz)'Zz)ndt (51)

The FEDE of F,,F, exist for each Vs; € L2(Q) (from Assumption (1)-ii and proposition
(3.12) in [11]),

after utilizing the outcome of Theorem (4.1), they are

T T —_— —
fo (Filx, t,81 + Asy) — Fi(x,t,81),31)odt = fo (T151A51'51)dt + Sl(AH)”A#”ZXQ: (52)

T
Jo (Fo(x,t,55 + Asy, 1) — Fo (%, 1,55, 11), 32) odt =
T T e e
fo (Fas,A5,,32)dt + fo (Fapu,Duz, z2)dt + &, (AH)”AIJHZXQ (52b)
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where £,(Au) — 0 as ||Ei||z><Q —0 ,i=12

Using (52 a&b) in R.HN.S. of (51) yields

f;(Et;E)dt + fOT[a1(t; Asy,31) + (ki (t)As1,21) 0 — (k(t)Asy, 21)q + ax(t,Asy, 7,) +

(k2 (£)Asz,22)q + (k(t)Asy, 25)q]dt = fOT(:FlslAsl'Zl)ﬂdt + fOT(:FZSZASZ'Zz)th +

Jy (FopyBatz, z2)dt + [ (Bas, )rdlt + &5 B)|[BA], (53)
Now, substituting vy = As; and v, = As, in (49) and (50), respectively, INBSw.r.t t on

[0, T], using the integrating part formula for the first term of each obtained equality, and then
collecting the outcomes, gives

fOT(Et. Z)dt + fOT[al(t; 31,A51) + (k1 ()71, A51)q + (k(t)z2,A81)q + ay(t, 32, 4s;,) +
(k2(t)z2,A55)q — (k(t)z1,As3)q]dt = fOT(Z1T1sll Asy)qdt + fOT(!hsl: Asy)qdt +

T T
Jy 22F2s,,A53)qdt + [ (gas,) As2)adt (54)
By subtracting (54) from (53), one gets

T T T T
fo (9151;A51)th + fo (QZSz'ASZ)th = fo (Fau, AUz, 22)dt + fo (Apy, 31)qdt +
gs(Aw)|dull, (55)
Now, let #, (i) = fQ 91(x, t,s)dxdt + [ hy(x, t, uy)do

Hp (i) = fQ 92(x, t, 53, iz )dxdt.
From the FEDE and the result of theorem (4.1), one has

H,(d + E) —H (i) = fQ(9151 Asidxdt + fg hiy, Apgdo + 84(@)”5”2& (56)
-7'[3 (l_j + E) - }[B (ﬁ) = fQ 9252 ASZdth + fQ gZuz AHZdth + SS(M)”EHZXQ (57)

Collecting (56) and (57) leads to
HE+ M) —HGD) = fQ(9151 Asy + ga5,As,) dxdt + fQ Ga2p, Duzdxdt + fz hyy, Auido +
g6 (A [dull, (58)
Substituting (55) in (58) gives
> - - T T
HE+Dp) = H @) = [y (Fou,butz, 22)dt + [, g2y, Atizdxdt + [ (Apy, 31)dt +
J5 P, Aufa + & (AuﬂAuIIEXQ
where &5(Au) — 0 as [[Ap[; =0
Using Proposition (3.2) in [11], the FEDE of  is
(H (@), Ap) = fz(z1+h1u1)-AM1dU + fQ(szj2y2+gzu2)-Alldedt =
(Hﬁ(x! t, g! 2! ﬁ)! AH)ZXQ
where H;(x,t,8, 3, i) = ((31+h1y,), (32F 24, + G2p1,))-
Theorem (5.2): The NOPC for Optimality

If ii € N, is a CCMOPCV, i.e. there exists multipliers & € R , [ =0,1,2 with & =0
162 =0, lezolfll = 1, such that

Sho& @) (E— @20, VieN (59)
&
&M, () =0 (60)
Also, (59) is equivalent to the following minimum principle
Hz(x,t,3,Z, il = ming_, Hz(x,t,5,2,iDfi  aeon TxQ (61)
where H;(x,t,8, 3, i) = ((31thay,) (32F2u, + G2u,))-
Proof
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From assumptions (1), (1) and (I11), the functions (i) and ,(ji) are continuous (for

[=0,1,2) and are linear w.r.t. (ﬁ — [i). Therefore, 7;(ii) is p —differentiable at every ji € N,

Vp. Hence, by applying the KUTULATH, there exists multipliers §; € R,l = 0,1,2 , with

§=0,& =0,Y%,1&| =1, such that (60) -(61) are held, or

(foﬁo(ﬁ) + & () + Ezj:[z(ﬁ)) . (IZ - ﬁ) =0, Vﬁ eEN.

By utilizing Theorem (5.1), putting EI = ﬁ — fi, and employing the FEDE of H;, VI =0,1,2

in (58), we obtain

221=0 &1 (fZ(Z1 + hqy, ) A do + fQ(ZZ:FZuZ +92u,) A dxdt) = 0.

Let 2, = Xi-0 & 201, hiy, = Yoo &l hl1ﬂ1 L2y = Y=o &l (212F2y,) and gy, = Yo $1912u,
= [ooHa t,3,2, @) - budo 2 0 (62)

Consider thatV'y = {4 € (L*(Z, R))?|4(x,t) € Ua.e.inZ x Q}, U c R?, {a} is a "dense”

sequence in ]VU’ and @ is Lebesgue measure on £ x Q. Let S © X x Q be a measurable set

which has the property

> e (x, t),if (x,t) €S

M””‘{mmoijwe&

Therefore, (62) becomes

J Ha(x, t,8, 2, 1) - (fiy — {)dS = 0, VS

Using theorem (3.1), we get

Hy(x,t,5,2,[). (fiy — i) 2 0, ae.in X x Q.

Therefore, the inequality holds everywhere on the boundary X x Q of @, except in a subset Z

for which (Z,) = 0, Vk, or it hold everywhere on the boundary X x Q, except in Uy Z, with

w(UrZE) = 0. Since {f,} is dense in XV, then there exists 7€ N such that

Hy(x,t,8, 2, D) = ming; Hy (o, t,3,Z, [ ,ae.inExQ VieN .

The converse is clear.

6. The SOPC for Optimality
Theorem (6.1): The SOPC for Optimality

Consider that the assumptions (1), (I1), and (I11) are held, N= JVﬁ is convex, Fi, 911,921,
and g, are affine w.rt. s; , V(x,t), Fi 922,912, 9o are convex w.rt. (s, u,), and
ho1, hi1, hyq are convex w.r.t. pq, V(x,t). Then, the NOPC in Theorem (5.2) are sufficient, if

& > 0.
Proof

Assume that i satisfies the KUTULA condition (59) with i € NV, , i.e.

[f):(Z1+h1u1) do + fQ(ZZ:FZHZ-l-gZ#Z) dth] >0 , V/l eEN

&527{2(!1) =0.

Let H (i) = Xi-o L3, (i), then

(@) - Ap = Yio LH () - Ap = & [fZ(Zm"‘homl) do + fQ(ZmTzM +gozu2) dxdt +

&1 [f):(zn"‘hnyl) do +

fQ(Z12T2u2 +9124,) dxdt + &, [fz(Z21+h21u1) do + fQ(ZZZTZMZ +922u2) dxdt = 0,

since F;,F, in the R.HN.S. of (1)-(2) are affine w.r.t. s;, s, V(x,t) € Q, respectively, i.e.
Tl(x' t, Sl) = Tll(xJ t)sl + TlZ(x' t) & TZ(x' t' S2, .MZ) = T21(X, t)SZ + TZZ(x' t).“Z +
Fosz(x, t). i

Let g = (uy, )& = (fIy, f1;) be two CCMCVs and (by Theorem (3.1)) § = (s,,,,s,,) =
(Slf Sz) &}2/ = (.STﬁl,STﬁZ) = (§1, §2) are thelr SVES, |e
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S1t — 12] 16 (a;;(x, t) )+ ki(x, £)s1 — k(x,t)s; = Fr1(x, t)s1 + Frp(x, £)

2 0s1 _
ij=1ij 5~ =u(xt),

s1(x,0) = sP(x)
and
1t — Xij= 16 (ai;(x, t) ) + k1 (x, 0)51 — k(x, 0)S; = Fi1(x, )51 + Fra(x, t)

a5
l] 1 l]a_l—ﬁﬁ (x, t)

51(x,0) = s7(x).

Multiply the first above equality and its initial condition by 6 € [0,1] , and the second one and
its initial condition by (1 — 8), then collect the outcome equalities and their initial conditions,
to get

_ 0(0s1+(1-0)51)
(Os1 + (1 —6)51); — l] 16 (al]( t)u

) + ki (x,t)(0s; + (1= 6)5,) -

k(x,t)(@s, + (1 — 0)52) =F;1(x,t)(Os; + (1-6)5,) + Fi,(x, t) (63a)
0s,(x,0) + (1 —0)5,(x,0) = s9(x) (63b)
a0y w = (O + (1 - 0fi) ,on = (63¢)

— a(e (7]
(852 + (1= 0)5,); = Tjm 5 (b (e, £) T2 4y (3,6 (850 + (1= 0),) +

k(x,£)(@sy + (1 —6)51) = T21(t)(952 (1-0)5;) + Fau(x, ) (Ou, + (1 — 0i1y) +
Foz(x, t) (64a)

0s,(x,0) + (1 — 8)5,(x,0) = s2(x)

(64b)

9(65,+(1-6)3,)
fj=1byj=——F—==0, on Q (64c)

Equations (63)-(64) explain that the CCMCVﬁ = (fiy, fi;), with ﬁ = 0ji + (1 — 0)[i, has the
corresponding SEVS, § = (31, 5,), with § = 85 + (1 — ) 5. Hence, ji — §; is convex —
linear w.r.t. (s,1) , V(x,t) .

Now, since [ g] 11 (x,t,s 1), g 12 (x,t,s 2,u 2 ) are affine w.rt [ s)] 1 [(s] 2,u 2)
and h_11 (x,t,n_1) is affine w.r.t. p_i, V(X,t)EX , respectively, i.e.

911(x, t,51) = 11 (%, 0)s1 + 1 (x,8) , hyq (%, 8, 51) = L1 (x, Dpg + I31(x, ) and

g12(x, ¢, fz»#z) = I12(x, t)s; + I (x, t).“z;" 1{2 (x,1).

Let /i & fu be two CCMCVs and § = s; & y = S5 are their corresponding SEVS. Then,
Hi(0a+(1-6) ) =

fQ 911(90 ¢, 51(9u1+(1—9)ﬁ1)dth + ng12 (x, t, S2(0uy+(1-0)m,) (Otz + (1 — H)ﬁz)dth +

fE hi1(x,t, (O + (1 — 0)iy) do.

Since the operator ji — 5 is convex — linear, then

Hi (0 + (1 - 0) i) = 0, (i) + (1 — O)H ({)

= H, (i) is convex — linear w.r.t. (s, 1) , V(x,t) € Q .

From the Assumptions, fQ Jo1 dxdt is convex w.r.t. y; ,fQ Joz dxdt is convex W.r.t. (s, Uz),
and f ho, do is convex w.r.t. u,. Then, (i) &, (i) are convex wW.r.t. (5,i) (V(x,t) €
Q V(x t) €X) , i.e. (i) is convex w.rt. (5, i) (V(x,t) € Q,V(x,t) € Z) . Also since
N= ]\f~ is convex and #,(ji) (vl = 0,1,2) has a continuous FEDE for each ji € N (by

Theorem (5.1) and Assumptions (1), (I1) and (C)) , then it satisfies 7 (@)Au = 0. Thus # (i)
has a minimum at i, i.e.

SoHo (i) + &3, () + &3, ([) < §oHo(€) + & H1(6) + E,H,(6) (65)
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Let 8 €V, , with &, > 0, then from (64) we have

= H, (1) < H,(8), Vé € N, since (&, > 0).

~ [iisa CCMOPCV .

7. Conclusions

The EXUNTh of a CCMOPCYV that is ruling by the considered CNLPPDEs with the STCOs
is demonstrated using the MGA. The existence of a CCMOPCV is demonstrated under
appropriate conditions, whilst the EXUNTh for the couple of ADVEQ related with the
considered CNLPPDEs is considered and the derivation of the FEDE of the Hamiltonian is
obtained. Lastly the theorems of the NOPC and the SOPC of the CNLPPDEs with the
STCOs are demonstrated.
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