Alzaiadi and Shaheen

Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1146-1157 DOI: 10.24996/ijs.2022.63.3.21

ISSN: 0067-2904

Involutive Gamma Derivations on n-Gamma Lie Algebra and 3- Pre Gamma -Lie Algebra

Ali Abd H Alzaiadi , Rajaa C. Shaheen

Mathematics Department, College of Education, Al-Qadisiya University, Iraq.

Received: 22/11/2021

Accepted: 30/1/2021

Abstract

paper, In this the structure of $n - \Gamma$ – Lie Algebra and $3 - \Gamma - Pre Lie Algebra$ have been introduced and studied. We also obtain that a Γ – Lie algebra V is one λ – dimentional extension of a Γ – Lie algebra if and only if there exists an *involutive* λ – *derivation* D_{λ} on V such that $dimV_1$ = 1 or $dimV_{-1} = 1$. In addition, we obtain that $two - \lambda - dimensional extension$ of Γ – Lie algebras if and only if there is an involutive – λ – derivation D_{λ} on $U = U_1$, $U = U_{-1}$ such that $U_1 = 2 \text{ or } \dim U_{-1} = 2$, where $U_1 \text{ and } U_{-1}$ are subspaces of U with eigenvalues 1 and -1, respectively. We also find t that the existence of *involutive* $-\lambda$ - derivation D_{λ} on $3 - \Gamma$ - Lie algebra implies that there exists a compatible $3 - \Gamma - Pre Lie algebra$ under appropriate condition.

Keywords: Algebra, Lie Algebra , Derivation , Gamma Lie algebra.

اشتقاقات كاما اللاارادية علىn -كاما جبر لي و3-كاما جبر لي العكسي

علي عبد حمادي الزيادي ، رجاء جفات شاهين قسم الرياضيات، كلية التربية، جامعة القادسية ،العراق

الخلاصة

في هذا البحث ،قدمت ودرست بنية n –كاما- جبر لي و و3-كاما- جبر لي العكسي واستنتج ان كاما -جبر لي V هو توسيع اول ذو بعد χ ل كاما- جبر لي اذا وفقط اذا وجد χ –اشتقاق لا ارادي D_{λ} على V حيث بعد $V_{1}=1$ او بعد $1=V_{1}$. وكذلك استنتج توسيع ثاني ذو بعد χ ل كاما- جبور لي اذا وفقط اذا وجد χ –اشتقاق لا ارادي D_{λ} على $D_{1}=U_{1}$, $U=U_{1}$, $U=U_{1}$, $U=U_{1}$, $U=U_{1}$, $D_{2}=U_{1}$ بحيث بعد 2= U_{1} وجود U_{1} المتقاق لا ارادي U_{1} مع قيم ذاتية 1 و -1 ،على التوالي .واستنتج ان وجود χ –اشتقاق لا ارادي D_{1} عندما $U_{1}=U_{1}$ فضاءات جزئية من U مع قيم ذاتية 1 و -1 ،على التوالي .واستنتج ان وجود χ –اشتقاق لا ارادي D_{2} على 3-كاما- جبر لي يؤدي الى وجود 3-كاما جبر لي العكسي تحت شروط مناسبة .

^{*}Email: math.post10@qu.edu.iq

Introduction

The notion of $n - Lie \ algebra$ was introduced by Filippov [1]. Derivation have also a relation with the extensions of $n - Lie \ algebra$. The concept of $3 - Lie \ classical \ Yang$ Baxter equations was introduce in [2], as well as Involutive Derivation is an important concept in $3 - Lie \ algebra$. In[3] authors investigated the existence of involutive derivations and studied its properties on $n - Lie \ algebra$. They also investigated a class of $3 - Lie \ algebra$ with involutive derivations which are two - dimensional extension of Lie \ algebra and Γ - lie \ admissible \ algebras. The concept of compatible with 3 - pre Lie \ algebra (A, {,,,}_D) such that A is adjacent $3 - Lie \ algebra$ in particular is introduced in [5]. For more results on Gamma - derivations can be found in [6,7].

We study the structure of n-Gamma Lie Algebra and 3-Gamma Pre-Algebra, and the algebra $D_{\lambda}(V)$ is a Lie λ – subalgebra of $gl_{\lambda}(V)$ has been obtained. We also show that if n = 2r $r \ge 1$ then there is an *involutive* λ – *derivation* D on V if and only if V is abelian. Furthermore, if $n = 2r + 1, r \ge 1$ then there is an *involutive* λ – *derivation* on V if and only if V has the *decomposition* V = A + B, so that $A = V_1$ and $= V_{-1}$ as well as if $V \ 3 - \lambda - Lie$ Algebras then V is one dimensional extension of a λ – Lie Algebras $(V, [,]_{\lambda})$ if and only if the exists an *involutive* λ – *derivation* D_{λ} on V such that $dimV_1 = 1$, or $dimV_{-1} = 1$. Moreover if (U, [, ,]) is a $3 - \lambda$ – Lie Algebras then U has a two dimensional extension

 $3 - \lambda - Lie \ Algebras \ of \lambda - Lie \ Algebras \ if and only eif there is an involutive <math>-\lambda - derivation \ D$ on U such that $dimU_1 = 2 \ or \ dimU_{-1} = 2$, where U_1 and U_{-1} are subspaces of U with eigenvalues 1 and -1, respectively. The existence of involutive $\lambda - derivation \ D_{\lambda}$ on $3 - \Gamma - Lie \ algebra$ is obtained, it implies that there exists a compatible $3 - Pre - \Gamma - Lie \ algebra \ (V, \{, , \}_{\lambda D})$ where $\{u_1, u_2, u_3\}_{\lambda D} = [Du_1, Du_2, u_3]_{\lambda}, \forall u_1 , u_2, u_3 \in V$. This is done under appropriate condition.

1-Prelimainaries

In this section, we introduce the basic definitions and examples which are used throughout this paper.

Definition 1.1:- [4] Let Γ be a groupoid and V be a *vector space* over a field F. Then V is called a Γ – *algebra* over the field F if there exists a mapping $V \times \Gamma \times V \rightarrow V$ (the image is denoted by $u_1 \lambda u_2$, for $u_1, u_2, u_3 \in V$ and $\lambda \in \Gamma$) such that the following conditions hold:

 $\begin{array}{rcl} (1)(u_1+u_2)\lambda u_3 &= u_1\lambda u_3 + u_2\lambda u_3 &, \ u_1\lambda (u_2+u_3) &= u_1\lambda u_2 + u_1\lambda u_3 \\ (2)\,u_1(\lambda+\beta)u_2 &= u_1\lambda u_2 + u_1\beta u_2 \end{array}$

(3) $(cu_1)\lambda u_2 = c(u_1\lambda u_2) = u_1\lambda(cu_2)$, for all $u_1, u_2, u_3 \in V$, $c \in F$ and $\lambda, \beta \in \Gamma$. Moreover, $\Gamma - algebr$ is called associative if

 $(4) (u_1 \lambda u_2) \beta u_3 = u_1 \lambda (u_2 \beta u_3)$

Example 1.2 :- Let *V* be the set of 2×3 matrices over the field of real numbers *R* and $\begin{cases} \Gamma = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} & \alpha, \beta \in R \end{cases}$. Then *V* is an associative $\Gamma - algebra$.

 $\begin{cases} \Gamma = \begin{bmatrix} 0 & \beta \\ 0 & 0 \end{bmatrix} & \alpha, \beta \in R \\ \end{cases}. \text{ Then } V \text{ is an associative } \Gamma - algebra. \\ \textbf{Definition 1.3:-} [4] \text{ Let } V \text{ be an associative } \Gamma - algebra \text{ over a field} \end{cases}$

Definition 1.3:- [4] Let *V* be an *associative* Γ – *algebra* over a field *F*. Then, for every $\lambda \in \Gamma$ one can construct an λ – *Lie algebra* $L_{\lambda}(V)$ as a vector space, $L_{\lambda}(V)$, which is the same as *V*. The Lie bracket of two elements of $L_{\lambda}(V)$ is defined to be their commutator in *V*, $[u, v]_{\lambda} = u\lambda v - v\lambda u$. Note that $[u, v]_{\lambda} = -[v, u]_{\lambda}$ for every $u, v \in V$ and $\lambda \in \Gamma$. Also, $L_{\lambda}(V)$ is abelian if either char (F) = 2 or char $(F) \neq 2$ then $[u, v]_{\lambda} = 0$ for every $v \in V$.

Example 1.4: Let *V* be the set of all real 3×5 matrices of the form

$$\begin{pmatrix} 0 & a & 0 & 0 & 0 \\ 0 & b & 0 & 0 & 0 \\ 0 & c & 0 & 0 & 0 \end{pmatrix}$$

and Γ b is the set of all real 5× 3 matrices. Then, $\forall \lambda \in \Gamma$ of the shape
$$\begin{pmatrix} \alpha & \beta & \delta \\ 0 & 0 & 0 \\ \mu & \rho & \sigma \\ \theta & \vartheta & \tau \\ 0 & 0 & 0 \end{pmatrix}$$

Thus for every $A, B \in V$, we have $[A, B]_{\lambda} = 0$, so that $L_{\lambda}(V)$ is abelian and the λ – dimension of V is zero.

Definition 1.5:- [4] Let V and U be two associative Γ – algebras over a field F and $\lambda \in \Gamma$. A linear transformation $\varphi^{\lambda} : V \to U$ is called an λ -homomorphism if $\varphi^{\lambda}([v,u]_{\lambda}) = [\varphi^{\lambda}(v), \varphi^{\lambda}(u)]_{\lambda}$ for all $v, u \in V$, and if $Ker(\varphi^{\lambda}) = 0$, then φ^{λ} is called an λ – monomorphism, while it is called λ – epimorphism if $Im(\varphi^{\lambda}) = U$. φ^{λ} is called an λ – isomorphism if both λ – monomorphism and λ – epimorphism are satisfied. If $\varphi^{\lambda}(v) = 0$, then $Ker(\varphi^{\lambda})$ is an λ – ideal of $L_{\lambda}(V)$ certainly, and if $u \in V$ is arbitrary, then $\varphi^{\lambda}([v u]_{\lambda}) = [\varphi^{\lambda}(v), \varphi^{\lambda}(u)]_{\lambda} = 0$. It is also apparent that $Im(\varphi^{\lambda})$ is an λ – Lie subalgebra of $L_{\lambda}(U)$.

Definition 1.6:- [1] An n - Lie algebra is a vector space V over a field F endowed with a linear multiplication $[, \ldots,]: \wedge^n V \to V$ satisfying for all $v_1, \ldots, v_n, u_2, \ldots, u_n \in V$ $[[v_1, \ldots, v_n], u_2, \ldots, u_n] = \sum_{i=1}^n [v_1, \ldots, [v_i, u_2, \ldots, u_n], \ldots, v_n]$. This equation is usually called the generalized Jacobi identity, or Filippov identity. The Lie sub algebra generated by the vectors $[v_1, \ldots, v_n]$ for any $v_1, \ldots, v_n \in V$ is called the derived algebra of V, which is denoted by V^1 . If $V^1 = 0$, V is called an abelian algebra.

Definition 1.7:- [1] The derived algebra of an n - Lie algebra V is a subalgebra of V generated by $[v_1, \dots, v_n]$ for all $v_1, \dots, v_n \in V$ and is a linear transformation

 $D: V \to V$. Satisfying, $D([v_1, ..., v_n]) = \sum_{i=1}^n [v_1 ..., D(v_i), ..., v_n]$ for all $v_1, ..., v_n \in V$ and the set of all *derivation* is denoted by Der(V) for all $v_1, ..., v_n \in V$. The map $ad(v_1, ..., v_{n-1}): V \to V$ is given by $ad(v_1, ..., v_{n-1})(u) = [v_1, ..., v_{n-1}, u]$ for all $u \in V$.

2-Involutive Gamma Derivation on n – Gamma Lie algebra

In this section, we study *involutive* λ – *derivations* on $n - \lambda$ – *Lie algebras*

Definition 2.1:- Let *V* be an *associative* Γ – *algebra* over a field *F*, then for all $\lambda \in \Gamma, n - \lambda - Lie \ algebra \ L_{\lambda}(V)$ can be defined with a linear multiplication $[, \dots,]_{\lambda}: \wedge^{n} V \to V$ satisfies for all $v_{1}, \dots, v_{n}, u_{2}, \dots, u_{n} \in V$. $[[v_{1}, \dots, v_{n}]_{\lambda}, u_{2}, \dots, u_{n}]_{\lambda} = \sum_{i=1}^{n} [v_{1} \dots, [v_{i}, u_{2}, \dots, u_{n}]_{\lambda}, \dots, v_{n}]_{\lambda}$, then *A* is an $n - \lambda - Lie \ subalgebra$ of $(V, [, \dots,]_{\lambda})$ if it is closed under the bracket, that means if $[A, A, \dots, A, A,]_{\lambda} \subseteq A$, and subspace \mathcal{I} of *V* is called an *ideal* if $[\mathcal{I}, V, V, \dots, V, V]_{\lambda}) \subseteq \mathcal{I}$, and the center of $(V, [, \dots,]_{\lambda})$ is denoted by $Z(V) = \{v \in V: [v, v_{1}, \dots, v_{n}]_{\lambda} = 0$ for all $v_{1}, \dots, v_{n} \in V\}$, Z(V) is an *abelian ideal* of *V*.

Definition 2.2: Let V be an $n - \lambda - Lie$ algabra over F, a transformation linear $D: V \rightarrow V$ satisfies $D([v_1, ..., v_n]_{\lambda}) = \sum_{i=1}^n [v_1, ..., D(v_i), ..., v_n]_{\lambda}$ is $\lambda - derivation$ of V for all $v_1, ..., v_n \in V$. The set of all $\lambda - derivation D$ is defined by $Der_{\lambda}(V)$, and if a $\lambda - derivation$ D satisfies $D^2 = I_d$, then D is called an involutive $\lambda - derivation$ on V, and if V is a finite dimensional vector space over F, and D is an λ -endomorphism of V with $D^2 = I_d$, then V can be decomposed into the direct sum of

subspaces $V = V_1 + V_{-1}$ (1) where $V_1 = \{v \in V | Dv = v\}$, and $V_{-1} = \{v \in V | Dv = -v\}$. And if *D* is an *involutive* λ - *derivation* on *V*.

Then $D([v_1, ..., v_n]_{\lambda}) = \sum_{i=1}^{n} [v_1 ..., D(v_i), ..., v_n]_{\lambda} = n[v_1, ..., v_n]_{\lambda}, \forall v_1, ..., v_n \in V.$ **Example 2.3 :-** Let *V* be a 3 – *dimensional* 3 – λ – *Lie algebra* with the multiplication of *V* in the basis $\{e_1, e_2, e_3\}$ be as follows, $[e_1, e_2, e_3]_{\lambda} = e_1$. A linear mapping $D : V \to V$ defined by $D(e_i) = e_i$ for $1 \le i \le 2$, and $D(e_3) = -e_3$ is an *involutive* λ – *derivation* on *V*, and it satisfies $e_1, e_2 \in V_1$ and $e_3 \in V_{-1}$.

Theorem 2.4:- For any $n - \lambda - Lie \ algabra V$ the algebra $D_{\lambda}(V)$ is a λ -Lie subalgebra of $gl_{\lambda}(V)$.

Proof : Since $D([v_1, ..., v_n]_{\lambda}) = \sum_{i=1}^n [v_1, ..., D(v_i), ..., v_n]_{\lambda}$, then for all $D_1, D_2 \in D_{\lambda}(V)$ and $v_1, ..., v_n \in V$ we have $D_1 D_2([v_1, ..., v_n]_{\lambda}) = D_1(\sum_{i=1}^n [v_1, ..., D_2(v_i), ..., v_n]_{\lambda}) = \sum_{i=1}^n [v_1, ..., D_1 D_2(v_i), ..., v_n]_{\lambda} + \sum_{1 \le s \ne i \le n}^n [v_1, ..., D_1(v_s), ..., D_2(v_i), ..., v_n]_{\lambda}$ Similarly, we get $D_2 D_1([v_1, ..., v_n]_{\lambda}) = D_2(\sum_{i=1}^n [v_1, ..., D_1(v_i), ..., v_n]_{\lambda}) = \sum_{i=1}^n [v_1, ..., D_2 D_1(v_i), ..., v_n]_{\lambda} + \sum_{1 \le s \ne i \le n}^n [v_1, ..., D_2(v_s), ..., D_1(v_i), ..., v_n]_{\lambda}$ Hence, it implies

$$\begin{array}{l} (D_1 D_2 - D_2 D_1)([v_1, \dots, v_n]_{\lambda}) = \sum_{i=1}^n [v_1, \dots, (D_1 D_2 - D_2 D_1)(v_i), \dots, v_n]_{\lambda} \\ = \sum_{i=1}^n [v_1, \dots, [D_1 D_2]_{\lambda}(v_i), \dots, v_n]_{\lambda} = [D_1 D_2]_{\lambda}([v_1, \dots, v_n]_{\lambda}). \\ \text{Therefore} \qquad \text{the} \qquad \text{result} \qquad \text{is} \qquad \text{obtained} \end{array}$$

Lemma 2.5 :- Let V be an $n - \lambda$ – Lie algebra over F. If $D \in D_{\lambda}(V)$ is an *involutive* λ – derivation then for all $v_1, \ldots, v_n \in V$

$$[v_1, \dots, v_n]_{\lambda} = \frac{-2}{n-1} \sum_{i=1}^n [v_1, \dots, v_{i-1}, D(v_i), v_{i+1}, \dots, D(v_j), v_{j+1}, \dots, v_n]_{\lambda}$$

And

$$\begin{bmatrix} D(v_1), \dots, D(v_n) \end{bmatrix}_{\lambda} = \frac{-2}{n-1} \sum_{i=1}^{n} \left[D(v_1), \dots, D(v_{i-1}), v_i, D(v_{i+1}), \dots, D(v_{j-1}), v_j, D(v_{j+1}), \dots, D(v_n) \right]_{\lambda}$$

Proof:-If *D* is an *involutive* λ – *derivation* on V then for all $v_1, \dots, v_n \in V$ we have $[v_1, \dots, v_n]_{\lambda} = D^2([v_1, \dots, v_n]_{\lambda}) = D(D([v_1, \dots, v_n]_{\lambda}))$ $= D(\sum_{i=1}^n [v_1, \dots, D(v_i), \dots, v_n]_{\lambda}) = \sum_{i=1}^n [v_1, \dots, D(D(v_i)), \dots, v_n]_{\lambda}$ $+ \sum_{i < j}^n [v_1, \dots, D(v_i), \dots, D(v_j), \dots, v_n]_{\lambda} + \sum_{j < n} [v_1, \dots, D(v_i), \dots, D(v_j), \dots, v_n]_{\lambda}$ $= \sum_{i=1}^n [v_1, \dots, v_i, \dots, v_n]_{\lambda} + 2n \sum_{1 \le i < j}^n [v_1, \dots, D(v_i), \dots, D(v_j), \dots, v_n]_{\lambda}$ Then $(n-1)[v_1, \dots, v_n]_{\lambda} = -2n \sum_{1 \le i < j}^n [v_1, \dots, D(v_i), \dots, D(v_j), \dots, v_n]_{\lambda}$ $[v_1, \dots, v_n]_{\lambda} = \frac{-2}{n-1} \sum_{i=1}^n [v_1, \dots, v_{i-1}, D(v_i), \dots, v_{j-1}, D(v_j), \dots, v_n]_{\lambda}$ And $[D(v_1), \dots, D(v_n)]_{\lambda} = \frac{-2}{n-1} \sum_{i=1}^n [D(v_1), \dots, D(v_{i-1}), v_i, D(v_{j-1}), v_j, D(v_{j+1}), \dots, D(v_n)]_{\lambda}$

Theorem 2.6 :- Let V be a finite dimensional $n - \lambda - Lie \ algebra$ with $n = 2r, r \ge 1$. Then there is an *involutive* $\lambda - derivation D \ on V$ if and only if V is *abelian*. **Proof:-** If *V* is abelian then $[u_1, \ldots, u_i, v_1, \ldots, v_{n-i}]_{\lambda} = 0$, hence *D* is an *involutive* λ – *derivation D* on *V*. Conversely, let *D* be an *involutive* λ – *derivation* on *V*, then *V* can be *decomposed* into the *direct sum* of *subspaces* $V = V_1 + V_{-1}$. Hence, for any $i \in \mathbb{Z}$, $1 \le i \le n$, $u_1, \ldots, u_n \in V_1$, and $v_1, \ldots, v_n \in V_{-1}$ $D([u_1, \ldots, u_i, v_1, \ldots, v_{n-i}]_{\lambda}) = i[u_1, \ldots, u_i, v_1, \ldots, v_{n-i}]_{\lambda} - (n-i)[u_1, \ldots, u_i, v_1, \ldots, v_{n-i}]_{\lambda}$ $= (2i - 2r)[u_1, \ldots, u_i, v_1, \ldots, v_{n-i}]_{\lambda} \in V_{2i-2r}$. Then $D([u_1, \ldots, u_n]_{\lambda}) = 2r[u_1, \ldots, u_n]_{\lambda}$, and $D([v_1, \ldots, v_n]_{\lambda}) = -2r[v_1, \ldots, v_n]_{\lambda}$. Then $\pm 2r \ne 1$ and $2i - 2r \ne \pm 1$, V_{2i-2r} , $V_{\pm 2r} = 0$. Therefore *V* is .

Theorem 2.7 :- Let V be a finite dimensional $n - \lambda - Lie \ algebra$ with n=2r+1, $r \ge 1$, and D be an *involutive* $-\lambda - derivation$ on V, then V_1 and V_{-1} are *abelian subalgebras*, and

$$\begin{bmatrix} \underbrace{V_1, \dots, V_1}_j, \underbrace{V_{-1}, \dots, V_{-1}}_{2r+1-j} \end{bmatrix}_{\lambda} = 0 \quad \forall 1 \le j \le 2r, j \ne r, r+1 \\ \begin{bmatrix} \underbrace{V_1, \dots, V_1}_{r+1}, \underbrace{V_{-1}, \dots, V_{-1}}_r \end{bmatrix}_{\lambda} \subseteq V_1, \qquad \begin{bmatrix} \underbrace{V_1, \dots, V_1}_r, \underbrace{V_{-1}, \dots, V_{-1}}_{r+1} \end{bmatrix}_{\lambda} \subseteq V_{-1} \end{bmatrix}$$

proof. Since $D \in D_{\lambda}(V)$

$$\begin{bmatrix} V_{1}, \dots, V_{1}, V_{-1}, \dots, V_{-1} \\ j \end{bmatrix} \subseteq V_{2j-2r-1}, 0 \le j \le 2r+1$$

If $\begin{bmatrix} V_{1}, \dots, V_{1}, V_{-1}, \dots, V_{-1} \\ j \end{bmatrix}_{\lambda} \ne 0$ then $2r+1-j = \mp 1$ that is $r+1 = j$. Therefore $\begin{bmatrix} V_{1}, \dots, V_{1} \\ j \end{bmatrix}_{\lambda} = \begin{bmatrix} V_{-1}, \dots, V_{-1} \\ 2r+1-j \end{bmatrix}_{\lambda} = 0$

Theorem 2.8 :- Let *V* be an m – dimensional $n - \lambda$ – Lie algebra with $n = 2r + 1, r \ge 1$. Then there is an involutive λ – derivation on *V* if and only if *V* has the decomposition V = A + B such that

$$\begin{bmatrix} \underline{A}, \dots, \underline{A}, \underline{B}, \dots, \underline{B} \end{bmatrix}_{\lambda} = 0 \ \forall 1 \le i \le 2r, i \ne r, r+1$$

$$\begin{bmatrix} \underline{A}, \dots, \underline{A}, \underline{B}, \dots, \underline{B} \end{bmatrix}_{\lambda} \subseteq B \quad , \quad \begin{bmatrix} \underline{A}, \dots, \underline{A}, \underline{B}, \dots, \underline{B} \end{bmatrix}_{\lambda} \subseteq A$$

$$(3)$$

Proof: If D is an *involutive* λ – *derivation* on V, then by Theorem 2.7 we have $A = V_1$, and $B = V_{-1}$ satisfy

$$\begin{bmatrix} \underline{A}, \dots, \underline{A}, \underline{B}, \dots, \underline{B} \\ 2r+1-i \end{bmatrix}_{\lambda} = 0 \ \forall 1 \le i \le 2r, i \ne r, r+1$$
$$\begin{bmatrix} \underline{A}, \dots, \underline{A}, \underline{B}, \dots, \underline{B} \\ r+1 \end{bmatrix}_{\lambda} \subseteq B \quad , \quad \begin{bmatrix} \underline{A}, \dots, \underline{A}, \underline{B}, \dots, \underline{B} \\ r+1 \end{bmatrix}_{\lambda} \subseteq A$$
Now let D be some network here of V defined here. $D(x) = x \cdot D(x)$

Now, let D be an endomorphism of V defined by D(u) = u, D(v) = -v, for all $u \in A, v \in B$. Then $D^2 = Id$, $A = V_1$, and $B = V_{-1}$ satisfy (2) and (3). Therefore D is an *involutive* λ – derivation on V.

Corollary 2.9 : Let A be a (2r + 1)-dimensional , $(2r + 1) - \lambda - Lie \ algebra$

with the multiplication $[e_1, \dots, e_{2r+1}]_{\lambda} = e_1$, where $\{e_1, \dots, e_{2r+1}\}$ is a basis of V. Then the *linear mapping* $D: V \to V$. Now by $D(e_i) = e_i$, $1 \le i \le r+1$ $D(e_j) = -e_j$, $(r+1) \le j \le (2r+1)$ is an *involutive* λ – *derivation* on V.

Proof. Since an *endomorphism* D of V defined by $D(e_i) = e_i$, $1 \le i \le r+1$, $D(e_j) = -e_j$, (r+1) $j \le (2r+1)$, however by Theorem 2.7 we get $D^2 = Id$, so that there is an *involutive* λ – *derivation* on V.

3- Involutive Gamma Derivations with $3 - \lambda - Lie Algebras$

In this section, we study *involutive* λ – *derivations* on 3 – λ – *Lie Algebras*

Definition 3.1:- Let $(V, [,]_{\lambda})$ be an *associative* $\lambda - Lie$ algebra over F, such that $\lambda \in \Gamma$ and k is an element which is not contained in V then $U = V + F_k$ is a $3 - \lambda - Lie$ Algebras in the multiplication.

$$[u, r, h]_{\lambda} = 0$$

(4)

 $[k, u, r]_{\lambda} = [u, r]_{\lambda}$, for all $u, r, h \in V$. And the $3 - \lambda$ – Lie Algebras

 $(U, [,,]_{\lambda})$ is called one-dimensional extension of V. For example let V be an abelian λ – Lie algebra with the basis $\{e_1, e_2, e_3\}$, and let $U = V + F_k$, $F_k \subseteq Z(U)$, then $[e_1, e_2, e_3]_{\lambda} = 0$, and for all $k \in F_k$, $[k, e_i, e_j]_{\lambda} = [e_i, e_j]_{\lambda}$, $1 \le i, j \le 3$, $i \le j$. Therefore $(U, [,,]_{\lambda})$ is one-dimensional extension of V.

Theorem 3.2 :- Let V be $3 - \lambda - Lie$ Algebras then U is one dimensional extension of a $\lambda - Lie$ Algebras $(V, [,]_{\lambda})$ if and only if the exists an *involutive* $\lambda - derivation D_{\lambda}$ on V such that either $dimV_1 = 1$, or $dimV_{-1} = 1$.

Proof:- If *U* is one-dimensional extension of a λ -Lie algebra V then $U_{\lambda} = V_{\lambda} + F_k$. Since $D_{\lambda}: U \to U$ is endomorphism which is defined by $D_{\lambda}(k) = k$, (or(-k)) with $D_{\lambda}(r) = r(or(-r) r \in V)$. $D_{\lambda}^2(k) = D_{\lambda}(D_{\lambda}(k)) = D_{\lambda}(k) = k$, and $D_{\lambda}^2(-k) = -k$ then $D_{\lambda}^2 = Id$

 $D_{\lambda} ([u, r, h]_{\lambda}) = [D_{\lambda}(u), r, h]_{\lambda} + [u, D_{\lambda}(r), h]_{\lambda} + [u, r, D_{\lambda}(h)]_{\lambda} = 0$

 $\begin{array}{l} D_{\lambda} \ ([k,u,r]_{\lambda}) = [D_{\lambda}(k),u,r]_{\lambda} + [k,D_{\lambda}(u),r]_{\lambda} + \ [k,u,D_{\lambda}(r)]_{\lambda} = \ [k,u,r]_{\lambda} = \ [u,r]_{\lambda}, \ \text{for all} \\ u,r \in V \text{.Therefore} \ D_{\lambda} \ \text{is an involutive} \ \lambda - derivation \ \text{on} \ V \ \text{such that} \ dim V_1 = 1 \ \text{, or} \\ dim V_{-1} = 1 \ \text{. Conversely, let} \ D_{\lambda} \ \text{be an involutive} - \lambda - derivation \ \text{on} \ V \ \text{such that} \\ dim V_1 = 1 \ \text{, or} \ dim V_{-1} = 1 \ \text{. Let} \ U_{-1} = F_K \ \text{, and} \ U_1 = V \ (\text{or} \ U_{-1} = V, \ \text{and} \ U_1 = F_K) \\ \text{,where} \ k \in U - V \ \text{. Then by Theorem 2.6} \ \text{,} \ V \ \text{is an} \ \lambda - Lie \ algebra \ \text{with} \ \text{the} \\ \text{multiplication} \ [u,r]_{\lambda} = [k,u,r]_{\lambda} \ \text{for all} \ u,r \in V, \ \text{and} \ U \ \text{is one} \ - \ dimensional \ extension} \\ \text{of} \ V \ \text{.} \end{array}$

Let $(V, [,]_{1\lambda})$ and $(V, [,]_{2\lambda})$ be λ – *Lie algebras*, and $\{v_1, \ldots, v_n\}$ is a basis of V. It is easy to define λ – *Lie algebras* $(V, [,]_{\lambda})$ be V_m , m = 1,2, and let k_1, k_2 are two distinct elements which are not contained in V, and $3 - \lambda$ – *Lie Algebras* $(U_1, [,]_{1\lambda})$ and $(U_2, [,]_{2\lambda})$ are one – dimentional extension of λ – *Lie algebras* V_1 , and V_2 , respectively such that $U_1 = V_1 + F_{K1}$, $U_2 = V_2 + F_{K2}$, then $D_{\lambda}(V_1)$ and $D_{\lambda}(V_2)$ are sub algebras of $gl_{\lambda}(V)$.

Definition 3.3 : Let $U_1 = (V, [,]_{1\lambda})$, and $U_2 = (V, [,]_{2\lambda})$ be two λ – *Lie algebras*, and k_1, k_2 are two special elements that are not present in V such that $U = V + F_{K1} + F_{K2}$. Then $3 - \lambda$ – *Lie Algebras* $(U, [, ,]_{\lambda})$ is called a *two* – *dimensional extension* of λ – *Lie Algebras* $V_m, m = 1, 2$ such that $[, ,]_{\lambda} : U \wedge U \wedge U \rightarrow U$ defined by $[u, r, k_1]_{\lambda} = [u, r]_{1\lambda}$, $[u, r, k_2]_{\lambda} = [u, r]_{2\lambda}$, $[u, r, h]_{\lambda} = 0$ (5)

 $[k_1, k_2, u]_{\lambda} = \alpha_u k_1 + \beta_u k_2 \quad \forall u, r, h \in V, and \alpha_u, \beta_u \in F$ If U is an $3 - \lambda$ – Lie Algebras then U is called a two-dimensional extension $3 - \lambda$ – Lie Algebras of λ – Lie Algebras V_m , m = 1,2Let $U = V_m + R$ be a two – dimensional extension of λ – Lie Algebras V_m , m = 1,2And $R = F_{K1} + F_{K2}$. Define linear mappings $3 - \lambda$ – Lie Algebras as follows $D_{1\lambda}(u)=ad(k_1,u)$, $D_{2\lambda}(u)=ad(k_2,u)$, (6) $D_{\lambda}(u) = ad(k_1, k_2)(u) \forall u \in V$ that is, for all $\forall r \in V$ $D_{1\lambda}(u)(r) = [u, r, k_1]_{\lambda} = [u, r]_{1\lambda}$, (7) $D_{2\lambda}(u)(r) = [u, r, k_2]_{\lambda} = [u, r]_{2\lambda}$, and, $D_{\lambda}(u) = [k_1, k_2, u]_{\lambda}$ **Theorem 3.4 :-** Let $3 - \lambda - Algebras U$ be a two-dimensional extension of $\lambda - Lie$ Algebras V_m , m = 1,2 then U is a $3 - \lambda$ – Lie Algebras if and only if linear mappings $D_{1\lambda}, D_{2\lambda}, \text{ and } D_{\lambda} \text{ where } D_{1\lambda}: V_1 \to Der_{\lambda}(V_1), D_{2\lambda}: V_2 \to Der_{\lambda}(V_2) \text{ are } \lambda - Lie$ homomorphisms, and $D_{1\lambda}(u_3)[u_1, u_2]_{2\lambda} = [D_{1\lambda}(u_3)(u_1), u_2]_{2\lambda} + [(u_1), D_{1\lambda}(u_3)u_2]_{2\lambda}$ (8) $-\alpha_{u_3}[u_1, u_2]_{1\lambda} - \beta_{u_3}[u_1, u_2]_{2\lambda}$ $D_{2\lambda}(u_3)[u_1, u_2]_{1\lambda} = [D_{2\lambda}(u_3)(u_1), u_2]_{1\lambda} + [(u_1), D_{2\lambda}(u_3)u_2]_{1\lambda}$ (9) $+\alpha_{u_3}[u_1, u_2]_{1\lambda} + \beta_{u_3}[u_1, u_2]_{2\lambda}$ $D_{\lambda}([u_1, u_2]_{1\lambda}) = (\beta_{u_1} \alpha_{u_2} - \alpha_{u_1} \beta_{u_2})k_1$ (10) $D_{\lambda}([u_1, u_2]_{2\lambda}) = (\beta_{u_1} \alpha_{u_2} - \alpha_{u_1} \beta_{u_2}) k_2$ (11) $D_{i\lambda}(u_1), (u_2) = -D_{i\lambda}(u_2), (u_1)$ (12)for all $u_1, u_2 \in V$, i = 1, 2Where $u_1, u_2, u_3 \in V$, $D_{\lambda}(u_i) = \alpha_{ui}k_1 + \beta_{ui}k_2$ i = 1, 2, 3**Proof** : If U is two – dimensional extension $3 - \lambda$ – Lie Algebras then, by definition 3.3 linear mappings $D_{i\lambda}$ satisfy $D_{i\lambda}(V_i) \subseteq Der_{\lambda}(V_i)$, and $D_{i\lambda}$ are λ – Lie homomorphisms i = 1,2 by (5) we have $D_{1\lambda}(u_3)[u_1, u_2]_{2\lambda} = [k_1, u_3, [u_1, u_2]_{2\lambda}]_{\lambda} = [k_1, u_3[k_2, u_1, u_2]_{2\lambda}]_{\lambda}$ $= [k_2, [k_1, u_3, u_1]_{\lambda}, u_2]_{\lambda} + [k_2, u_1, [k_1, u_3, u_2]_{\lambda}]_{\lambda} + [[k_1, u_3, k_2]_{\lambda}, u_1, u_2]_{\lambda}$ $= [k_2, D_{1\lambda}(u_3)(u_1), u_2]_{\lambda} + [k_2, u_1, D_{1\lambda}(u_3)(u_2)]_{\lambda} - [[k_1, k_2, u_3]_{\lambda}, u_1, u_2]_{\lambda}$ $= [D_{1\lambda}(u_3)(u_1), u_2]_{2\lambda} + [u_1, D_{1\lambda}(u_3)(u_2)]_{2\lambda} - \alpha_{u_3}[u_1, u_2]_{1\lambda} - \beta_{u_3}[u_1, u_2]_{2\lambda}$ Then for all $u_1, u_2, u_3 \in V$ the equation (8) holds, The same way can be found (9) Now if $D_{\lambda}([u_1, u_2]_{1\lambda}) = ad(k_1, k_2)[u_1, u_2]_{1\lambda} = [k_1, k_2, [u_1, u_2]_{1\lambda}]_{\lambda}$ $= [k_1, k_2, [k_1, u_1, u_2]_{\lambda}]_{\lambda} =$ $[k_1, [k_1, k_2, u_1]_{\lambda}, u_2]_{\lambda} + [k_1, u_1, [k_1, k_2, u_2]_{\lambda}]_{\lambda} + [[k_1, k_2, k_1]_{\lambda}, u_1, u_2]_{\lambda}$ $= -[[k_1, k_2, u_1]_{\lambda}, k_1, u_2]_{\lambda} + [[k_1, k_2, u_2]_{\lambda}, k_1, u_1]_{\lambda}$ $= (-\alpha_{u_1}[k_1, u_2]_{\lambda} k_1 - \beta_{u_1}[k_1, u_2]_{\lambda} k_2) + (\alpha_{u_2}[k_1, u_1]_{\lambda} k_1 - \beta_{u_2}[k_1, u_1]_{\lambda} k_2)$ $= -\alpha_{u_1} D_{\lambda 1}(u_2)(k_1) - \beta_{u_1} D_{\lambda 1}(u_2)(k_2) + \alpha_{u_2} D_{\lambda 1}(u_1) k_1 \beta_{u_2} D_{\lambda 1}(u_1) (k_2)$ $= -\alpha_{u_1}[k_1, u_2, k_1]_{\lambda} - \beta_{u_1}[k_1, u_2, k_2]_{\lambda} + \alpha_{u_2}[k_1, u_1, k_1]_{\lambda} + \beta_{u_2}[k_1, u_1, k_2]_{\lambda}$ $= \beta_{u_1}[k_1, k_2, u_2]_{\lambda} - \beta_{u_2}[k_1, k_2, u_1]_{\lambda} = \beta_{u_1}(\alpha_{u_1}k_1 + \beta_{u_2}k_2) - \beta_{u_2}(\alpha_{u_1}k_1 + \beta_{u_1}k_2)$ $=\beta_{u_1}\alpha_{u_1}k_1 + \beta_{u_1}\beta_{u_2}k_2 - \beta_{u_2}\alpha_{u_1}k_1 - \beta_{u_2}\beta_{u_1}k_2 = \beta_{u_2}\alpha_{u_1}k_1 - \beta_{u_2}\alpha_{u_1}k_1$ $D_{\lambda}([u_1, u_2]_{1\lambda}) = (\beta_{u_1}\alpha_{u_2} - \beta_{u_2}\alpha_{u_1})k_1$

Then for all $u_1, u_2 \in V$, and $\alpha_{ui}, \beta_{ui} \in F$, i = 1,2 equation (10) holds. The same way can be found (11) $D_{i\lambda}(u_1)(u_2) = ab(k_i, (u_1)(u_2)) = [k_i, u_1, u_2]_{i\lambda} = -[k_i, u_2, u_1]_{i\lambda}$ $D_{i\lambda}(u_1)(u_2) = -D_{i\lambda}(u_2), (u_1), \forall u_1, u_2 \in V, i = 1, 2$. Then for all $u_1, u_2 \in V, i = 1, 2$ equation (12) hold Conversely, by equation (5), for all $u_1, u_2, u_3, u \in V$ $[u_1,u_2,u_3]_{\lambda}=0$, $[k_1$, $u_1,u_2]_{\lambda}=D_{1\lambda}\left(u_1\right)(u_2)=[u_1,u_2]_{1\lambda}$ $[k_2, u_1, u_2]_{\lambda} = D_{2\lambda}(u_1)(u_2) = [u_1, u_2]_{2\lambda} \quad , \quad [k_1, k_2, u]_{\lambda} = D_{\lambda}(u) = \alpha_u k_1 + \beta_u k_2$ (13)Since $D_{i\lambda}(V_i) \subseteq D_{\lambda}(V_i)$, and $D_{i\lambda}$ are λ – Lie homomorphisms, $i = 1, 2, U_1 = V_1 + F_{K1}$, $U_2 = V_2 + F_{K2}$ are $3 - \lambda$ – Lie Algebras which are one – dimensional extension 3 – λ – Lie Algebras of λ – Lie Algebras V_i , i = 1,2, respectively. Next it suffices to prove that the multiplication on U defined by equation (5) satisfies fulfills of the definition 1.6 for all $u_i \in V$ such that $1 \le i \le 5$, and the products $[u_1, u_2, [u_3, u_4, u_5]_{\lambda}]_{\lambda} = [[u_1, u_2, u_3]_{\lambda}, u_4, u_5]_{\lambda} + [u_3, [u_1, u_2, u_4]_{\lambda}, u_5]_{\lambda}$ + $[u_3, u_4[u_1, u_2, u_5]_{\lambda}]_{\lambda}$ (14) $\left[\left[k_{j}, u_{2}, u_{3}\right]_{\lambda}, u_{4}, u_{5}\right]_{\lambda}, \left[\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}, u_{4}, k_{j}\right]_{\lambda} \text{ and } \left[\left[u_{1}, u_{2}, k_{j}\right]_{\lambda}, u_{4}, k_{j}\right]_{\lambda}\right]_{\lambda}$ and the products with definition 1.6, j = 1,2. Therefore $U_1 = V_1 + F_{K1}$, and $U_2 = V_2 + F_{K2}$ are one – dimensional extension $3 - \lambda$ – Lie Algebras of V_i , i = 1,2 and equation (5) is directly obtained from equation (8), and equation (9). It follows that the products $[[k_i, u_1, u_2]_{\lambda}, k_j, u_3]_{\lambda}$ $1 \le i \ne j \le 2$ fulfill definition 1.6. It follows from equation (10) – (12) that the products $[k_1, k_2, [k_i, u_1, u_2]_{\lambda}]_{\lambda}$, $[u_1, u_2[k_i, k_2, u_3]_{\lambda}]_{\lambda}$, and $[k_i u_1, [k_1, k_2, u_2]_{\lambda}]_{\lambda}$, i = 1,2 fulfill the conditions of definition 1.6. **Theorem3.5:-** Let (U, [,,]) be a $3 - \lambda$ – Lie Algebras. Then U is a two dimensional extension $3 - \lambda$ – Lie Algebras of λ – Lie Algebras if and only if there is an *involutive* $-\lambda$ *derivation* D on U such that $dimU_1 = 2$ or $dimU_{-1} = 2$. **Proof**. If U is a two-dimensional extension $3 - \lambda$ - Lie Algebras of λ -*Lie Algebras* then by Theorem 3.2 there are λ – *Lie Algebras* $V_1 = (V, [,]_{1\lambda}) \text{ and } V_2 = (V, [,]_{2\lambda})$ such that U = V + R, and the multiplication of U is defined by equation (5) where $R = F_{K1} + F_{K1}$

*F*_{K2}. Now define the endomorphism D of U by D(u) = u, $D(K_1) = -K_1$, $D(K_2) = -K_2$, or D(u) = -u, $D(K_1) = K_1$, $D(K_2) = K_2$, $\forall u \in V$ then $D^2 = Id$, and $U_1 = V$, $U_{-1} = R$, or $U_{-1} = V$, $U_1 = R$. Thus by equation (4), and equations (8) - (12), involutive $-\lambda$ − derivation D of U.

Conversely, if there is an *involutive* $-\lambda - derivation D$ on the $3 - \lambda - Lie Algebras U$ such that $dimU_{-1} = 2$ (or $dimU_1 = 2$) then by Theorem 2.8 we have $[U_1, U_1, U_1] = 0$, $[U_1, U_1, U_{-1}] \subseteq U_1$, $[U_1, U_{-1}, U_{-1}] \subseteq U_{-1}$. Let $V = U_1$ and $U_1 = F_{K1} + F_{K2}$.

Therefore $[V, V, K \ 1] \subseteq V$, $[V, V, K_2] \subseteq V$ and $(V, [,]_{1\lambda})$, and $(V, [,]_{2\lambda})$ are $\lambda - Lie \ Algebras$, where $[u, r]_{1\lambda} = [u, r, k_1]_{\lambda}$, $[u, r]_{2\lambda} = [u, r, k_2]_{\lambda}$, $\forall u, r \in V$. Hence by Theorem 3.4

the $3 - \lambda$ – Lie Algebras U is a two – dimensional extension $3 - \lambda$ – Lie Algebras of λ – Lie Algebras V_1, V_2 .

4 - *Involutive* λ – *derivations* and compatible 3 – λ – *pre Lie algebras*

In this section, we study *involutive* λ – *derivations* on compatible $3 - \lambda - pre$ Lie algebras

Definition 4. 1:- A λ -representation of V (or an $V - \lambda - module$) is a pair (U, ρ) , where V is a vector space, $\rho^{\lambda} : V \wedge V \rightarrow End(U)$ is a linear map such that

$$\begin{split} \left[\rho^{\lambda}(v_{1},v_{2})_{\lambda},\rho^{\lambda}(v_{3},v_{4})_{\lambda} \right]_{\lambda} &= \rho^{\lambda}(v_{1},v_{2})_{\lambda}\,\rho^{\lambda}(v_{3},v_{4})_{\lambda} - \rho^{\lambda}(v_{3},v_{4})_{\lambda}\,\rho^{\lambda}(v_{1},v_{2})_{\lambda} \\ &= \rho^{\lambda}([v_{1},v_{2},v_{3}]_{\lambda},v_{4})_{\lambda} - \rho^{\lambda}([v_{1},v_{2},v_{4}]_{\lambda},v_{3})_{\lambda} \\ \rho^{\lambda}([v_{1},v_{2},v_{3}]_{\lambda},v_{4})_{\lambda} &= \rho^{\lambda}(v_{1},v_{2})_{\lambda}\rho(v_{3},v_{4})_{\lambda} + \rho^{\lambda}(v_{2},v_{3})_{\lambda}\rho^{\lambda}(v_{1},v_{4})_{\lambda} \\ &+ \rho^{\lambda}(v_{1},v_{3})_{\lambda}\rho^{\lambda}(v_{2},v_{4})_{\lambda} \end{split}$$

for all $v_i \in V$, $1 \leq i \leq 4$.

A linear mapping $T^{\lambda}: U \to V$ is called an $\lambda - \wp - operator$ which is associated to an $V - \lambda - module (U, \rho)$ if T satisfies

$$\begin{bmatrix} T^{\lambda}u, T^{\lambda}v, T^{\lambda}w \end{bmatrix}_{\lambda} = T^{\lambda} \left(\rho^{\lambda} (T^{\lambda}u, T^{\lambda}v)w + \rho^{\lambda} (T^{\lambda}v, T^{\lambda}w)u + \rho^{\lambda} (T^{\lambda}w, T^{\lambda}u)v \right)_{\lambda}$$
(15)

for all $u, v, w \in U$, and (V, ad) is called the *adjoint* $-\lambda$ – representation of V. **Theorem 4.2** : Let $(V, [\cdot, \cdot, \cdot]_{\lambda})$ be a $3 - \lambda$ – Lie algebr a with an involutive $-\lambda$ –

derivation

 D_{λ} . Then D_{λ} is an $\lambda - \mathcal{D}$ -operator of V associated to the *adjoint* $-\lambda$ -representation (V, ad), and D satisfies, $\forall u_1, u_2, u_3 \in V$

$$[Du_{1}, Du_{2}, Du_{3}]_{\lambda} = D([Du_{1}, Du_{2}, u_{3}]_{\lambda} + [Du_{2}, Du_{3}, u_{1}]_{\lambda} + [Du_{3}, Du_{1}, u_{2}]_{\lambda}$$

Proof. By defined the a λ – derivation D_{λ} , and for all $u_{1}, u_{2}, u_{3} \in V$,
 $D(ad(Du_{1}, Du_{2})_{\lambda}u_{3} + ad(Du_{2}, Du_{3})_{\lambda}u_{1} + ad(Du_{3}, Du_{1})_{\lambda}u_{2})_{\lambda}$
 $= D([Du_{1}, Du_{2}, u_{3}]_{\lambda} + [Du_{2}, Du_{3}, u_{1}]_{\lambda} + [Du_{3}, Du_{1}, u_{2}]_{\lambda})$
 $= D([Du_{1}, Du_{2}, D^{2}u_{3}]_{\lambda} + [D^{2}u_{1}, Du_{2}, Du_{3}]_{\lambda} + [Du_{1}, D^{2}u_{2}, Du_{3}]_{\lambda})$
 $= [Du_{1}, Du_{2}, Du_{3}]_{\lambda}$. The proof is completed

Definition 4.3 : Let *V* be an associative Γ - algebra over a field with a λ -linear multiplication $[, ,]_{\lambda}: V^{\Lambda 3} \to V, \forall u_1, u_2, u_3, u_4, u_5 \in V$. The pair $(V, \{,,\}_{\lambda})$ is called a $3 - \lambda$ - preLie algebra if the next identities are correct

$$\{u_{1}, u_{2}, u_{3}\}_{\lambda} = -\{u_{2}, u_{1}, u_{3}\}_{\lambda}$$
(16)

$$\{u_{1}, u_{2}, \{u_{3}, u_{4}, u_{5}\}_{\lambda}\}_{\lambda} = \{[u_{1}, u_{2}, u_{3}]_{\lambda c}, u_{4}, u_{5}\}_{\lambda} + \{u_{3}, [u_{1}, u_{2}, u_{4}]_{\lambda c}, u_{5}\}_{\lambda}$$
(17)

$$\{[u_{1}, u_{2}, u_{3}]_{\lambda c}, u_{4}, u_{5}\}_{\lambda} = \{u_{1}, u_{2}, \{u_{3}, u_{4}, u_{5}\}_{\lambda}\}_{\lambda} + \{u_{2}, u_{3}, \{u_{1}, u_{4}, u_{5}\}_{\lambda}\}_{\lambda}$$

$$+ \{u_{3}, u_{1}, \{u_{2}, u_{4}, u_{5}\}_{\lambda}\}_{\lambda}$$

(18)

and [, ,]_{λ C} is defined by $[u_1, u_2, u_3]_{\lambda C} = \{u_1, u_2, u_3\}_{\lambda} + \{u_2, u_3, u_1\}_{\lambda} + \{u_3, u_1, u_2\}_{\lambda}$ (19)

 $\begin{array}{l} \textbf{Proposition 4.4: Let } (V, \{, , \}_{\lambda}) \text{ be a } 3 - \lambda - pre \ Lie \ algebra \ .\text{Then the} \\ \{u_1, u_2, u_3\}_{\lambda c} \ defines \ a \ 3 - \lambda - Lie \ algebra \ \end{array}$ $\begin{array}{l} \textbf{Proof . By previous \ definition \ \{u_1, u_2, u_3\}_{\lambda c} \ is \ skew-symmetric \ for \ all \ u_i \in V \ , 1 \leq i \leq 5 \ \\ [u_1, u_2, [u_3, u_4, u_5]_{\lambda c}]_{\lambda c} \ -[[u_1, u_2, u_3]_{\lambda c}, u_4, u_5]_{\lambda c} -[u_3, [u_1, u_2, u_4]_{\lambda c}, u_5]_{\lambda c} \ \\ -[u_3, u_4, [\{u_1, u_2, u_5\}]_{\lambda c}]_{\lambda c} \ \\ -[u_3, u_4, [\{u_1, u_2, u_5\}]_{\lambda c}]_{\lambda c} \ \\ = \{u_1, u_2, \{u_3, u_4, u_5\}_{\lambda}\}_{\lambda} + \{u_1, u_2, \{u_4, u_5, u_3\}_{\lambda}\}_{\lambda} + \{u_1, u_2, \{u_5, u_3, u_4\}_{\lambda}\}_{\lambda} \ \\ + \{u_2, [u_3, u_4, u_5]_{\lambda c}, u_1\}_{\lambda} + \{[u_3, u_4, u_5]_{\lambda c}, u_1, u_2\}_{\lambda} \ \\ -\{u_4, u_5, \{u_1, u_2, u_3\}_{\lambda}\}_{\lambda} - \{u_4, u_5, \{u_2, u_3, u_1\}_{\lambda}\}_{\lambda} - \{u_4, u_5, \{u_3, u_1, u_2\}_{\lambda}\}_{\lambda} \ \\ -\{u_3, u_5, \{u_1, u_2, u_4\}_{\lambda}\}_{\lambda} - \{u_3, u_4, \{u_1, u_2, u_4\}_{\lambda}\}_{\lambda} - \{[u_1, u_2, u_3]_{\lambda c}, u_4, u_5, u_3, u_4\}_{\lambda} \ \\ -\{u_3, u_4, \{u_1, u_2, u_5\}_{\lambda}\}_{\lambda} - \{u_3, u_4, \{u_2, u_5, u_1\}_{\lambda}\}_{\lambda} - \{u_3, u_4, \{u_5, u_1, u_2\}_{\lambda}\}_{\lambda} \ \\ -\{u_4, [u_1, u_2, u_5]_{\lambda c}, u_3\}_{\lambda} - \{[u_1, u_2, u_5]_{\lambda c}, u_3, u_4\}_{\lambda} = 0 \end{array}$

(17). By applying the same previous discussion we get equation (18).

Therefore, *V* is a $3 - \lambda - pre Lie algebra in the multiplication (20). The equation (21) follows from equation (1), and equation (23) a direct computation.$

Theorem 4.6: Let $(V, [, ,]_{\lambda})$ be a $3 - \lambda$ – Lie algebra, D_{λ} be an involutive – λ – derivation on V. Then D_{λ} is an λ – algebra isomorphism from the sub – adjacent 3 – λ – Lie algebra, $(V, \{, ,\}_{\lambda Dc})$ of the $3 - \lambda$ – pre Lie algebra $(V, \{, ,\}_{\lambda D})$ to the $3 - \lambda$ – Lie algebra $(V, \{, ,\}_{\lambda D})$ to the $3 - \lambda$ – Lie algebra $(V, [, ,]_{\lambda})$, and

$$\{u_1, u_2, u_3\}_{\lambda Dc} = \{u_1, u_2, u_3\}_{\lambda D} + \{u_2, u_3, u_1\}_{\lambda D} + \{u_3, u_1, u_2\}_{\lambda D}$$

$$= D[Du_1, Du_2, Du_3]_{\lambda}, u_1, u_2, u_3 \in V$$

$$(22)$$

Furthermore
$$\{u_1, u_2, u_3\}_{\lambda Dc} = \begin{cases} 0, u_1, u_2, u_3 \in v_1 \text{ or } u_1, u_2, u_3 \in v_{-1} \\ -[u_1, u_2, u_3]_{\lambda} & u_1, u_2 \in v_1, u_3 \in v_{-1} \\ -[u_1, u_2, u_3]_{\lambda} & u_1, u_2 \in v_{-1}, u_3 \in v_1 \end{cases}$$
 (23)

Proof. By equation (20), the sub – adjacent $3 - \lambda$ – Lie algebra, $(V, \{, , \}_{\lambda Dc})$ with the multiplication

$$\{u_1, u_2, u_3\}_{\lambda Dc} = \{u_1, u_2, u_3\}_{\lambda D} + \{u_2, u_3, u_1\}_{\lambda D} + \{u_3, u_1, u_2\}_{\lambda D}$$

= $[Du_1, Du_2, u_3]_{\lambda}$ + $[Du_2, Du_3, u_1]_{\lambda}$ + $[Du_3, Du_1, u_2]_{\lambda}$ = $D[Du_1, Du_2, Du_3]_{\lambda}$ It follows Equation (22). Since

 $D(\{u_1, u_2, u_3\}_{\lambda Dc}) = D(D[Du_1, Du_2, Du_3]_{\lambda}) = D^2[Du_1, Du_2, Du_3]_{\lambda} = [Du_1, Du_2, Du_3]_{\lambda}$ for all $u_1, u_2, u_3 \in V$, the D_{λ} is an λ – algebra isomorphism . Hence equations(22), and equation (23) hold.

Theorem 4.7: Let $(V, [, ,]_{\lambda})$ be a $3 - \lambda$ – Lie algebra, and D_{λ} is an involutive – λ – derivation on V. Then there exists a compatible $3 - \lambda$ – pre Lie algebra $(V, \{, ,\}_{\lambda V})$ where $\{u_1, u_2, u_3\}_{\lambda V} = D [u_1, u_2, Du_3]_{\lambda}$ (24)

Proof. By equation (24), we have $\{u_1, u_2, u_3\}_{\lambda V} = D[u_1, u_2, Du_3]_{\lambda} = -D[u_2, u_1, Du_3]_{\lambda} = -\{u_2, u_1, u_3\}_{\lambda V}$ for all $v_i \in V, 1 \le i \le 5$, and $\{u_1, u_2, \{u_5, u_3, u_4\}_{\lambda}\}_{\lambda} = D[u_1, u_2, D^2[u_3, u_4, Du_5]_{\lambda}]_{\lambda} = D[u_1, u_2, [u_3, u_4, Du_5]_{\lambda}]_{\lambda}$

we get equation (16) ,and $D[u_3, u_4[u_1, u_2, Du_5]_{\lambda}]_{\lambda} = D([u_1, u_2, [u_3, u_4, Du_5]_{\lambda}]_{\lambda} - [[u_1, u_2, u_3]_{\lambda}, u_4, Du_5]_{\lambda} - [u_3, [u_1, u_2, u_4]_{\lambda}, Du_5]_{\lambda})$

Therefore

 $\{\{u_1, u_2, u_3\}_{\lambda V c}, u_4, u_5\}_{V\lambda} + \{u_3, \{u_1, u_2, u_4\}_{\lambda V c}, u_5\}_{V\lambda} + \{u_3, u_4, \{u_1, u_2, u_5\}_{\lambda V}\}_{V\lambda}$ $= D[\{u_1, u_2, u_3\}_{\lambda V c}, u_4, Du_5]_{\lambda} + D[u_3, \{u_1, u_2, u_4\}_{\lambda V c}, Du_5]_{\lambda} + D[u_3, u_4\{u_1, u_2, Du_5\}_{\lambda}]_{\lambda}$ $= D[D([u_1, u_2, Du_3]_{\lambda} + [u_2, u_3, Du_1]_{\lambda} + [u_3, u_1, Du_2]_{\lambda}), u_4, Du_5]_{\lambda}$ $+ D[u_3, D([u_1, u_2, Du_4]_{\lambda} + [u_2, u_4, Du_1]_{\lambda} + [u_4, u_1, Du_2]_{\lambda}), Du_5]_{\lambda}$ $+ D[u_3, u_4, [u_1, u_2, Du_5]_{\lambda}]_{\lambda}$

=

$$\begin{split} D([D(D[u_1, u_2, u_3]_{\lambda}), u_4, Du_5]_{\lambda} + \\ & [u_3, D(D[u_1, u_2, u_4]_{\lambda}), Du_5]_{\lambda} + [u_3, u_4, [u_1, u_2, Du_5]_{\lambda}]_{\lambda}) \\ & = D([D^2[u_1, u_2, u_3]_{\lambda}), u_4, Du_5]_{\lambda} + [u_3, D^2[u_1, u_2, u_4]_{\lambda}), Du_5]_{\lambda} + [u_3, u_4, [u_1, u_2, Du_5]_{\lambda}]_{\lambda}) \\ & = D([[u_1, u_2, u_3]_{\lambda}), u_4, Du_5]_{\lambda} + [u_3, [u_1, u_2, u_4]_{\lambda}), Du_5]_{\lambda} + [u_3, u_4[u_1, u_2, Du_5]_{\lambda}]_{\lambda}) \\ & = D([[u_1, u_2, u_3]_{\lambda}, u_4, Du_5]_{\lambda} + [u_3, [u_1, u_2, u_4]_{\lambda}, Du_5]_{\lambda} + [u_1, u_2, [u_3, u_4, Du_5]_{\lambda}]_{\lambda} \\ & \quad -[[u_1, u_2, u_3]_{\lambda}, u_4, Du_5]_{\lambda} - [u_3, [u_1, u_2, u_4]_{\lambda}, Du_5]_{\lambda}) \\ & = D[u_1, u_2, [u_3, u_4, Du_5]_{\lambda}]_{\lambda} = \{u_1, u_2, \{u_3, u_4, u_5\}_{\lambda V}\}_{V\lambda} \\ \\ \text{we get equation (17). By the same previous discussion we get equation (18). Hence} \\ & \{u_1, u_2, u_3\}_{\lambda V_C} = D([u_1, u_2, Du_3]_{\lambda} + [u_2, u_3, Du_1]_{\lambda} + [u_3, u_1, Du_2]_{\lambda}). \text{Hence } (V, \{ , , \}_{\lambda V}) \end{split}$$

is the compatible a $3 - \lambda - pre$ Lie algebra of $(V, [,,]_{\lambda})$.

References

- [1] V.Filippov. "n-Lie algebras". Siberian Mathematical Journal . vol. 26, no. 6, pp. 126–140, 1985.
- [2] C. Bai, L. Guo, and Y. Sheng. "Bialgebras, the classical Yang Baxter equation and main triples for 3-Lie algebras". Advances in Theoretical and Mathematical Physics, vol. 23, pp. 27-74, 2019. https://dx.doi.org/10.4310/ATMP.2019.v23.n1.a2.
- [3] Ruipu Bai, Shuai Hou, and Yansha Gao ."Structure of n-Lie Algebras with Involutive Derivations", Hindawi *International Journal of Mathematics and Mathematical Sciences*, Article ID 7202141, 9 pages, 2018. <u>https://doi.org/10.1155/2018/7202141</u>.
- [4] A. H. Rezaei and B. Davvaz. "Construction of Γ-algebra and Γ-Lie admissible algebras". Korean Journal of Mathematics, vol. 26, pp. 175–189, 2018. https://doi.org/10.11568/ kjm .2018.26.2.175.
- [5] Ruipu Bai, Shuai Hou, and Chuangchuang Kang . "3- Lie bialgebras and 3-Pre- Algebras induced by Involutive Derivations", to appear, 2019.
- [6] Ahmed H. A. and Majeed A. H. "Γ-(λ,δ)-Derivation on Semi-Group Ideals in Prime Γ-Near-Ring". Iraqi Journal of Science, vol. 61, no. 3, pp. 600-607, 2020. <u>https://doi.org/10.24996</u> /ijs.2020.61.3.16
- [7] MahmoodA. H., NayefM. S. and SalihS. M. "Generalized Higher Derivations on ΓM-Modules". *Iraqi Journal of Science*, (Special Issue)The First Conference of Mathematics-2020 pp.35-44, 2020. https://doi.org/10.24996/ijs.2020.SI.1.6.