

ISSN: 0067-2904

Involutive Gamma Derivations on n-Gamma Lie Algebra and 3- Pre Gamma -Lie Algebra

Ali Abd H Alzaiadi, Rajaa C. Shaheen
Mathematics Department, College of Education, Al-Qadisiya University, Iraq .

Received: 22/11/2021
Accepted: 30/1/2021

Abstract

In this paper, the structure of $n-\Gamma$-Lie Algebra and $3-\Gamma-$ Pre Lie Algebra have been introduced and studied. We also obtain that a Γ - Lie algebra V is one λ - dimentional extension of a Γ-Lie algebra if and only if there exists an involutive λ - derivation D_{λ} on V such that $\operatorname{dim} V_{1}=$ 1 or $\operatorname{dim}_{-1}=1$. In addition, we obtain that two $-\lambda$ - dimensional extension of Γ-Lie algebras if and only if there is an involutive $-\lambda-$ derivation D_{λ} on $U=U_{1}, U=U_{-1}$ such that $U_{1}=2$ or $\operatorname{dim} U_{-1}=2$, where U_{1} and U_{-1} are subspaces of U with eigenvalues 1 and -1 , respectively. We also find t that the existence of involutive $-\lambda$ - derivation D_{λ} on $3-\Gamma$ - Lie algebra implies that there exists a compatible $3-\Gamma$-Pre Lie algebra under appropriate condition.

Keywords: Algebra, Lie Algebra , Derivation, Gamma Lie algebra.
اشتقاقات كامـا اللاار ادية علىn -كاما جبر لي و3-كامـا جبر لي العكسي

في هذا البحث ،قدمت ودرست بنية n -كاما- جبر لي و و3-كاما- جبر لي العكسي واستتتج ان كاما -جبر لي V لو توسيع اول ذو

 2= $=U_{1}$生

[^0]
Introduction

The notion of n-Lie algebra was introduced by Filippov [1]. Derivation have also a relation with the extensions of n-Lie algebra.The concept of 3-Lieclassical Yang Baxter equations was introduce in [2], as well as Involutive Derivation is an important concept in 3-Lie algebra.In[3] authors investigated the existence of involutive derivations and studied its properties on n-Lie algebra.They also investigated a class of 3 - Lie algebras with involutive derivations which are two - dimensional extension of Lie algebra .A. H. Rezaei and B. Davvaz. in [4] introduced the notion of Construction of Γ-algebra and Γ - lie admissible algebras. The concept of compatible with3 - pre Liealgebra $\left(A,\{,,,\}_{D}\right)$ such that A isadjacent 3 - Lie algebra in particular is introduced in [5]. For more results on Gamma - derivations can be found in [6,7] .

We study the structure of n-Gamma Lie Algebra and 3-Gamma Pre-Algebra, and the algebra $D_{\lambda}(V)$ is a Lie λ - subalgebra of $g l_{\lambda}(V)$ has been obtained. We also show that if $n=2 r r \geq 1$ then there is an involutive λ-derivation D on V if and only if V is abelian. Furthermore, if $n=2 r+1, r \geq 1$ then there is an involutive λ-derivation on V if and only if V has the decomposition $V=A+B$, so that $A=V_{1}$ and $=V_{-1}$ as well as if V $3-\lambda$-Lie Algebras then V is one dimensional extension of a λ-Lie Algebras ($V,[,]_{\lambda}$) if and only if the exists an involutive λ-derivation D_{λ} on V such that $\operatorname{dim} V_{1}=1$,or $\operatorname{dim} V_{-1}=1$. Moreover if $(\mathrm{U},[,]$,$) is a 3-\lambda-$ Lie Algebras then U has a two dimensional extension
$3-\lambda$-Lie Algebras of λ - Lie Algebras if and onlyeif there is an involutive $-\lambda-$ derivation D on U such that $\operatorname{dim} U_{1}=2$ or $\operatorname{dim} U_{-1}=2$, where U_{1} and U_{-1} are subspaces of U with eigenvalues 1 and -1 , respectively. The existence of involutive λ-derivation D_{λ} on $3-\Gamma$ - Lie algebra is obtained, it implies that there exists a compatible $3-\operatorname{Pre}-$ Γ-Lie algebra ($V,\{,,\}_{\lambda D}$) where $\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda D}=\left[D u_{1}, D u_{2}, u_{3}\right]_{\lambda}, \forall u_{1} \quad, u_{2}, u_{3} \in V$. This is done under appropriate condition .

1-Prelimainaries

In this section, we introduce the basic definitions and examples which are used throughout this paper.
Definition 1.1 :- [4] Let Γ be a groupoid and V be a vector space over a field F. Then,V is called a Γ-algebra over the field F if there exists a mapping $V \times \Gamma \times V \rightarrow V$ (the image is denoted by $u_{1} \lambda u_{2}$, for $u_{1}, u_{2}, u_{3} \in V$ and $\lambda \in \Gamma$) such that the following conditions hold:
(1) $\left(u_{1}+u_{2}\right) \lambda u_{3}=u_{1} \lambda u_{3}+u_{2} \lambda u_{3} \quad, \quad u_{1} \lambda\left(u_{2}+u_{3}\right)=u_{1} \lambda u_{2}+u_{1} \lambda u_{3}$
(2) $u_{1}(\lambda+\beta) u_{2}=u_{1} \lambda u_{2}+u_{1} \beta u_{2}$
(3) $\left(c u_{1}\right) \lambda u_{2}=c\left(u_{1} \lambda u_{2}\right)=u_{1} \lambda\left(c u_{2}\right)$, for all $u_{1}, u_{2}, u_{3} \in V, c \in F$ and $\lambda, \beta \in \Gamma$.

Moreover, Γ-algebr is called associative if
(4) $\left(u_{1} \lambda u_{2}\right) \beta u_{3}=u_{1} \lambda\left(u_{2} \beta u_{3}\right)$

Example 1.2 :- Let V be the set of 2×3 matrices over the field of real numbers R and $\left\{\Gamma=\left[\begin{array}{ll}\alpha & 0 \\ 0 & \beta \\ 0 & 0\end{array}\right] \quad \alpha, \beta \in R\right\}$.Then V is an associative $\Gamma-$ algebra.
Definition 1.3:- [4] Let V be an associative Γ - algebra over a field F.Then, for every $\lambda \in \Gamma$ one can construct an λ-Lie algebra $L_{\lambda}(V)$ as a vector space, $L_{\lambda}(V)$, which is the same as V. The Lie bracket of two elements of $L_{\lambda}(V)$ is defined to be their commutator in $V,[u, v]_{\lambda}=u \lambda v-v \lambda u$. Note that $[u, v]_{\lambda}=-[v, u]_{\lambda}$ for every $u, v \in V$ and $\lambda \in \Gamma$. Also, $L_{\lambda}(V)$ is abelian if either char $(F)=2$ or $\operatorname{char}(F) \neq 2$ then $[u, v]_{\lambda}=0$ for every , $v \in V$.

Example 1.4:- Let V be the set of all real 3×5 matrices of the form

$$
\left(\begin{array}{lllll}
0 & a & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 \\
0 & c & 0 & 0 & 0
\end{array}\right)
$$

and $\Gamma \mathrm{b}$ is the set of all real 5×3 matrices. Then, $\forall \lambda \in \Gamma$ of the shape

$$
\left(\begin{array}{lll}
\alpha & \beta & \delta \\
0 & 0 & 0 \\
\mu & \rho & \sigma \\
\theta & \vartheta & \tau \\
0 & 0 & 0
\end{array}\right)
$$

Thus for every $A, B \in V$, we have $[A, B]_{\lambda}=0$, so that $L_{\lambda}(V)$ is abelian , and the λ dimension of V is zero.
Definition 1.5:- [4] Let V and U be two associative Γ-algebras over a field F and $\lambda \in \Gamma$. A linear transformation $\varphi^{\lambda}: V \rightarrow U$ is called an λ-homomorphism if $\varphi^{\lambda}\left([v, u]_{\lambda}\right)=\left[\varphi^{\lambda}(v), \varphi^{\lambda}(u)\right]_{\lambda}$ for all $v, u \in V$, and if $\operatorname{Ker}\left(\varphi^{\lambda}\right)=0$, then φ^{λ} is called an λ-monomorphism, while it is called λ-epimorphism if $\operatorname{Im}\left(\varphi^{\lambda}\right)=U . \varphi^{\lambda}$ is called an λ-isomorphism if both λ-monomorphism and λ-epimorphism are satisfied. If $\varphi^{\lambda}(v)=0$, then $\operatorname{Ker}\left(\varphi^{\lambda}\right)$ is an λ-ideal of $L_{\lambda}(V)$ certainly, and if $u \in V$ is arbitrary, then $\varphi^{\lambda}\left([v u]_{\lambda}\right)=\left[\varphi^{\lambda}(v), \varphi^{\lambda}(u)\right]_{\lambda}=0$. It is also apparent that $\operatorname{Im}\left(\varphi^{\lambda}\right)$ is an λ - Lie subalgebra of $L_{\lambda}(U)$.
Definition 1.6:- [1] An n-Lie algebra is a vector space V over a field F endowed with a linear multiplication $[, \ldots .]:, \wedge^{n} V \rightarrow V$ satisfying for all $v_{1}, \ldots, v_{n}, u_{2}, \ldots, u_{n} \in V$ $\left[\left[v_{1}, \ldots . v_{n}\right], u_{2}, \ldots . u_{n}\right]=\sum_{i=1}^{n}\left[v_{1}, \ldots . .,\left[v_{i}, u_{2}, \ldots \ldots ., u_{n}\right], \ldots \ldots, v_{n}\right]$.This equation is usually called the generalized Jacobi identity, or Filippov identity. The Lie sub algebra generated by the vectors $\left[v_{1}, \ldots, v_{n}\right]$ for any $v_{1}, \ldots, v_{n} \in V$ is called the derived algebra of V, which is denoted by V^{1}. If $V^{1}=0, V$ is called an abelian algebra.
Definition 1.7:- [1] The derived algebra of an n - Lie algabra V is a subalgabra of V generated by $\left[v_{1}, \ldots, v_{n}\right]$ for all $v_{1}, \ldots . v_{n} \in V$ and is a linear transformation
$D: V \rightarrow V$. Satisfying,$D\left(\left[v_{1}, \ldots, v_{n}\right]\right)=\sum_{i=1}^{n}\left[v_{1} \ldots, D\left(v_{i}\right), \ldots v_{n}\right]$ for all $v_{1}, \ldots, v_{n} \in V$ and the set of all derivation is denoted by $\operatorname{Der}(V)$ for all $v_{1}, \ldots, v_{n} \in V$. The $\operatorname{map} \operatorname{ad}\left(v_{1}, \ldots, v_{n-1}\right): V \rightarrow V$ is given by $\operatorname{ad}\left(v_{1}, \ldots . v_{n-1}\right)(u)=\left[v_{1}, \ldots v_{n-1}, u\right]$ for all $u \in$ V.

2-Involutive Gamma Derivation on n-Gamma Lie algebra

In this section, we study involutive λ - derivations on $n-\lambda$ - Lie algebras
Definition 2.1:- Let V be an associative Γ - algebra over a field F, then for all $\lambda \in \Gamma, n-$ λ-Lie algebra $L_{\lambda}(V)$ can be defined with a linear multiplication $[, \ldots . .,]_{\lambda}: \wedge^{n} V \rightarrow V$ satisfies for all $v_{1}, \ldots . v_{n}, u_{2}, \ldots, u_{n} \in V$. $\left[\left[v_{1}, \ldots v_{n}\right]_{\lambda}, u_{2}, \ldots, u_{n}\right]_{\lambda}=\sum_{i=1}^{n}\left[v_{1} \ldots,\left[v_{i}, u_{2}, \ldots, u_{n}\right]_{\lambda}, \ldots, v_{n}\right]_{\lambda}$, then A is an $n-\lambda-$ Lie subalgebra of $\left(V,[, \ldots,]_{\lambda}\right)$ if it is closed under the bracket, that means if $[A, A, \ldots \ldots, A, A,]_{\lambda} \subseteq A$, and subspace \mathcal{J} of V is called an ideal if $\left.[\mathcal{J}, \mathrm{V}, \mathrm{V}, \ldots \ldots, \mathrm{V}, \mathrm{V}]_{\lambda}\right) \subseteq \mathcal{J}$, and the center of $\left(V,[, \ldots, .]_{\lambda}\right)$ is denoted by $Z(V)=\left\{v \in V:\left[v, v_{1}, \ldots, v_{n}\right]_{\lambda}=0\right.$ for all $\left.v_{1}, \ldots, v_{n} \in V\right\}, Z(V)$ is an abelian ideal of V.
Definition 2.2:- Let V be an $n-\lambda$-Lie algabra over F, a transformation linear $D: V \rightarrow$ V satisfies $\mathrm{D}\left(\left[v_{1}, \ldots, v_{n}\right]_{\lambda}\right)=\sum_{i=1}^{n}\left[v_{1} \ldots, D\left(v_{i}\right), \ldots, v_{n}\right]_{\lambda}$ is λ-derivation of V for all $v_{1}, \ldots, v_{n} \in V$. The set of all λ-derivation D is defined by $\operatorname{Der}_{\lambda}(V)$, and if a λ-derivation $\quad D$ satisfies $\quad D^{2}=I_{\mathrm{d}}$, then D is called aninvolutive λ derivation on V, and if V is a finite dimensional vector space over F, and D is an λ endomorphism of V with $D^{2}=I_{d}$, then V can be decomposed into the direct sum of
subspaces $V=V_{1}+V_{-1}$
where $V_{1}=\{v \in V \mid D v=v\}$, and $V_{-1}=\{v \in V \mid D v=-v\}$. And if D is an involutive $\lambda-$ derivation on V.
Then $\mathrm{D}\left(\left[v_{1}, \ldots, v_{n}\right]_{\lambda}\right)=\sum_{i=1}^{n}\left[v_{1} \ldots, D\left(v_{i}\right), \ldots, v_{n}\right]_{\lambda}=n\left[v_{1}, \ldots, v_{n}\right]_{\lambda}, \forall v_{1}, \ldots, v_{n} \in V$.
Example 2.3 :- Let V be a 3 -dimensional $3-\lambda$ - Lie algebra with the multiplication of V in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ be as follows, $\left[e_{1}, e_{2}, e_{3}\right]_{\lambda}=e_{1}$. A linear mapping $\mathrm{D}: \mathrm{V} \rightarrow \mathrm{V}$ defined by $\mathrm{D}\left(e_{i}\right)=e_{i}$ for $1 \leq i \leq 2$, and $\mathrm{D}\left(e_{3}\right)=-e_{3}$ is an involutive λ - derivation on V, and it satisfies $e_{1}, e_{2} \in V_{1}$ and $e_{3} \in V_{-1}$.
Theorem 2.4:- For any $n-\lambda$-Lie algabra V the algebra $D_{\lambda}(V)$ is a λ-Lie subalgebra of $g l_{\lambda}(V)$.
Proof : Since $D\left(\left[v_{1}, \ldots \ldots, v_{n}\right]_{\lambda}\right)=\sum_{i=1}^{n}\left[v_{1} \ldots . . D\left(v_{i}\right), \ldots . ., v_{n}\right]_{\lambda}$,
then for all $D_{1}, D_{2} \in D_{\lambda}(V)$ and $v_{1}, \ldots, v_{n} \in V$ we have
$D_{1} D_{2}\left(\left[v_{1}, \ldots, v_{n}\right]_{\lambda}\right)=D_{1}\left(\sum_{i=1}^{n}\left[v_{1} \ldots, D_{2}\left(v_{i}\right), \ldots, v_{n}\right]_{\lambda}\right.$
$=\sum_{i=1}^{n}\left[v_{1} \ldots, D_{1} D_{2}\left(v_{i}\right), \ldots v_{n}\right]_{\lambda}+\sum_{1 \leq s \neq i \leq n}^{n}\left[v_{1} \ldots D_{1}\left(v_{s}\right) \ldots, D_{2}\left(v_{i}\right), \ldots v_{n}\right]_{\lambda}$
Similarly, we get $D_{2} D_{1}\left(\left[v_{1}, \ldots \ldots, v_{n}\right]_{\lambda}\right)=D_{2}\left(\sum_{i=1}^{n}\left[v_{1} \ldots ., D_{1}\left(v_{i}\right), \ldots . ., v_{n}\right]_{\lambda}\right.$
$=\sum_{i=1}^{n}\left[v_{1} \ldots, D_{2} D_{1}\left(v_{i}\right), \ldots, v_{n}\right]_{\lambda}+\sum_{1 \leq s \neq i \leq n}^{n}\left[v_{1}, \ldots, D_{2}\left(v_{s}\right) \ldots, D_{1}\left(v_{i}\right), \ldots, v_{n}\right]_{\lambda}$
Hence, it implies

$$
\begin{aligned}
& \quad\left(D_{1} D_{2}-D_{2} D_{1}\right)\left(\left[v_{1}, \ldots, v_{n}\right]_{\lambda}\right)=\sum_{i=1}^{n}\left[v_{1} \ldots,\left(D_{1} D_{2}-D_{2} D_{1}\right)\left(v_{i}\right), \ldots, v_{n}\right]_{\lambda} \\
& =\sum_{i=1}^{n}\left[v_{1}, \ldots,\left[D_{1} D_{2}\right]_{\lambda}\left(v_{i}\right), \ldots, v_{n}\right]_{\lambda}=\left[D_{1} D_{2}\right]_{\lambda}\left(\left[v_{1}, \ldots, v_{n}\right]_{\lambda}\right) . \\
& \text { the result } \\
& \text { Therefore }
\end{aligned}
$$

Lemma 2.5 :- Let V be an $n-\lambda$ - Lie algabra over F. If $D \in D_{\lambda}(V)$ is an involutive λ-derivation then for all $v_{1}, \ldots, v_{n} \in V$

$$
\left[v_{1}, \ldots, v_{n}\right]_{\lambda}=\frac{-2}{n-1} \sum_{i=1}^{n}\left[v_{1}, \ldots, v_{i-1}, D\left(v_{i}\right), v_{i+1}, \ldots, D\left(v_{j}\right), v_{j+1}, \ldots, v_{n}\right]_{\lambda}
$$

And

$$
\begin{aligned}
& {\left[D\left(v_{1}\right), \ldots, D\left(v_{n}\right)\right]_{\lambda}} \\
& =\frac{-2}{n-1} \sum_{i=1}^{n}\left[D\left(v_{1}\right), \ldots, D\left(v_{i-1}\right), v_{i}, D\left(v_{i+1}\right), \ldots, D\left(v_{j-1}\right), v_{j}, D\left(v_{j+1}\right), \ldots, D\left(v_{n}\right)\right]_{\lambda}
\end{aligned}
$$

Proof:-If D is an involutive λ - derivation on V then for all $v_{1}, \ldots . v_{n} \in V$ we have

$$
\left[v_{1}, \ldots, v_{n}\right]_{\lambda}=\mathrm{D}^{2}\left(\left[v_{1}, \ldots, v_{n}\right]_{\lambda}\right)=D\left(D\left(\left[v_{1}, \ldots, v_{n}\right]_{\lambda}\right)\right)
$$

$$
=D\left(\sum_{i=1}^{n}\left[v_{1}, \ldots ., D\left(v_{i}\right), \ldots, v_{n}\right]_{\lambda}\right)=\sum_{i=1}^{n}\left[v_{1}, \ldots, D\left(D\left(v_{i}\right)\right), \ldots, v_{n}\right]_{\lambda}
$$

$$
+\sum_{i<j}^{n}\left[v_{1}, \ldots, D\left(v_{i}\right), \ldots, D\left(v_{j}\right), \ldots, v_{n}\right]_{\lambda}+\sum_{j<n}\left[v_{1}, \ldots, D\left(v_{i}\right), \ldots, D\left(v_{j}\right), \ldots, v_{n}\right]_{\lambda}
$$

$$
=\sum_{i=1}^{n}\left[v_{1}, \ldots, v_{i}, \ldots, v_{n}\right]_{\lambda}+2 n \sum_{1 \leq i<j}^{n}\left[v_{1}, \ldots, D\left(v_{i}\right), \ldots, D\left(v_{j}\right), \ldots, v_{n}\right]_{\lambda}
$$

Then $(n-1)\left[v_{1}, \ldots ., v_{n}\right]_{\lambda}=-2 n \sum_{1 \leq i<j}^{n}\left[v_{1}, \ldots, D\left(v_{i}\right), \ldots, D\left(v_{j}\right), \ldots, v_{n}\right]_{\lambda}^{\lambda}$ $\left[v_{1}, \ldots, v_{n}\right]_{\lambda}=\frac{-2}{n-1} \sum_{i=1}^{n}\left[v_{1}, \ldots, v_{i-1}, D\left(v_{i}\right), \ldots, v_{j-1}, D\left(v_{j}\right), \ldots, v_{n}\right]_{\lambda}$
And
$\left[D\left(v_{1}\right), \ldots ., D\left(v_{n}\right)\right]_{\lambda}=$
$\frac{-2}{n-1} \sum_{i=1}^{n}\left[D\left(v_{1}\right), \ldots, D\left(v_{i-1}\right), v_{i}, D\left(v_{i+1}\right), \ldots, D\left(v_{j-1}\right), v_{j}, D\left(v_{j+1}\right), \ldots, D\left(v_{n}\right)\right]_{\lambda}$
Because ${ }^{2}=I d$.
Theorem 2.6 :- Let V be a finite dimensional $n-\lambda$-Lie algebra with $n=2 r, r \geq 1$.
Then there is an involutive λ - derivation D on V if and only if V is abelian.

Proof:- If V is abelian then $\left[u_{1}, \ldots \ldots, u_{i}, v_{1}, \ldots \ldots, v_{n-i}\right]_{\lambda}=0$, hence D is an involutive λ-derivation D on V. Conversely, let D be an involutive λ-derivation on V, then V can be decomposed into the direct sum of subspaces $V=V_{1}+V_{-1}$.
Hence, for any $i \in \mathbb{Z}, 1 \leq i \leq n, u_{1}, \ldots \ldots, u_{n} \in V_{1}$, and $v_{1}, \ldots \ldots, v_{n} \in V_{-1}$
$D\left(\left[u_{1}, \ldots u_{i}, v_{1}, \ldots, v_{n-i}\right]_{\lambda}\right)=i\left[u_{1}, \ldots u_{i}, v_{1}, \ldots, v_{n-i}\right]_{\lambda-}(n-i)\left[u_{1}, \ldots u_{i}, v_{1}, \ldots, v_{n-i}\right]_{\lambda}$
$=(2 i-2 r)\left[u_{1}, \ldots \ldots u_{i}, v_{1}, \ldots \ldots, v_{n-i}\right]_{\lambda} \in V_{2 \mathrm{i}-2 \mathrm{r}}$. Then
$D\left(\left[u_{1}, \ldots \ldots, u_{n}\right]_{\lambda}\right)=2 r\left[u_{1}, \ldots, . . u_{n}\right]_{\lambda}$, and $D\left(\left[v_{1}, \ldots \ldots, v_{n}\right]_{\lambda}\right)=-2 r\left[v_{1}, \ldots \ldots, v_{n}\right]_{\lambda}$.
Then $\pm 2 r \neq 1$ and $2 i-2 r \neq \pm 1, V_{2 \mathrm{i}-2 \mathrm{r}}, V_{ \pm 2 \mathrm{r}}=0$. Therefore V is .
Theorem 2.7 :- Let V be a finite dimensional $n-\lambda-$ Lie algebra with $n=2 \mathrm{r}+1, \mathrm{r} \geq 1$, and D be an involutive $-\lambda$-derivation on V, then V_{1} and V_{-1} are abelian subalgebras, and

$$
\begin{gathered}
{[\underbrace{V_{1}, \ldots \ldots, V_{1}}_{j}, \underbrace{V_{-1}, \ldots \ldots, V_{-1}}_{2 r+1-j}]_{\lambda}=0, \forall 1 \leq j \leq 2 r, j \neq r, r+1} \\
{[\underbrace{V_{1}, \ldots \ldots, V_{1}}_{r+1}, \underbrace{V_{-1}, \ldots \ldots, V_{-1}}_{r}]_{\lambda} \subseteq V_{1}, \quad[\underbrace{V_{1}, \ldots \ldots, V_{1}}_{r}, \underbrace{V_{-1}, \ldots \ldots, V_{-1}}_{r+1}]_{\lambda} \subseteq V_{-1}}
\end{gathered}
$$

proof. Since $\mathrm{D} \in \mathrm{D}_{\lambda}(V)$
$[\underbrace{V_{1}, \ldots \ldots, V_{1}}_{j}, \underbrace{V_{-1}, \ldots \ldots, V_{-1}}_{2 r+1-j}] \subseteq \mathrm{V}_{2 \mathrm{j}-2 \mathrm{r}-1}, 0 \leq j \leq 2 r+1$
If $[\underbrace{V_{1}, \ldots \ldots, V_{1}}_{j}, \underbrace{V_{-1}, \ldots \ldots \ldots, V_{-1}}_{2 r+1-j}]_{\lambda} \neq 0$ then $2 r+1-j=\mp 1$ that is $r+1=j$. Therefore $\left[V_{1}, \ldots \ldots, V_{1}\right]_{\lambda}=\left[V_{-1}, \ldots \ldots, V_{-1}\right]_{\lambda}=0$
Theorem 2.8 :- Let V be an m-dimensional $n-\lambda-$ Lie algebra with $n=2 r+1, r \geq 1$. Then there is an involutive λ-derivation on V if and only if V has the decomposition $V=A+B$ such that
$[\underbrace{A, \ldots \ldots, A}_{i}, \underbrace{B, \ldots \ldots, B}_{2 r+1-i}]_{\lambda}=0 \forall 1 \leq i \leq 2 r, i \neq r, r+1$
(2)

(3)

Proof: If D is an involutive λ-derivation on V, then by Theorem 2.7 we have $A=V_{1}, \quad$ and $\quad B=V_{-1}$ satisfy $[\underbrace{A, \ldots \ldots, A}_{i}, \underbrace{B, \ldots \ldots \ldots, B}_{2 r+1-i}]_{\lambda}=0 \forall 1 \leq i \leq 2 r, i \neq r, r+1$ $[\underbrace{A, \ldots \ldots, A}_{r}, \underbrace{B, \ldots \ldots, B}_{r+1}]_{\lambda} \subseteq B, \quad[\underbrace{A, \ldots \ldots, A}_{r+1}, \underbrace{B, \ldots \ldots, B}_{r}]_{\lambda} \subseteq A$
Now, let D be an endomorphism of V defined by $D(u)=u, D(v)=-v$, for all $u \in A, v \in$ B. Then $D^{2}=I d, A=V_{1}$, and $B=V_{-1}$ satisfy (2) and (3). Therefore D is an involutive λ-derivation on V.

Corollary 2.9: Let A be a $(2 r+1)$-dimensional , $(2 r+1)-\lambda-$ Lie algebra
with the multiplication $\left[e_{1}, \ldots \ldots e_{2 r+1}\right]_{\lambda}=e_{1}$, where $\left\{e_{1}, \ldots \ldots e_{2 r+1}\right\}$ is a basis of V. Then the linear mapping $D: V \rightarrow V$. Now by $D\left(e_{i}\right)=e_{i}, 1 \leq i \leq r+1 \quad D\left(e_{j}\right)=-e_{j}$, $(r+1) \leq j \leq(2 r+1)$ is an involutive λ-derivation on V.
Proof. Since an endomorphism D of V defined by $D\left(e_{i}\right)=e_{i}, 1 \leq i \leq r+1, D\left(e_{j}\right)=$ $-e_{j},(r+1) j \leq(2 r+1)$, however by Theorem 2.7 we get $D^{2}=I d$, so that there is an involutive λ - derivation on V.

3- Involutive Gamma Derivations with 3 - λ-Lie Algebras

In this section, we study involutive λ - derivations on $3-\lambda$ - Lie Algebras
Definition 3.1:- Let $\left(V,[,]_{\lambda}\right)$ be an associative λ - Lie algebra over F, such that $\lambda \in \Gamma$ and k is an element which is not contained in V then $U=V+F_{k}$ is a $3-\lambda-$ Lie Algebras in the multiplication.
$[u, \mathrm{r}, \mathrm{h}]_{\lambda}=0$
$[k, u, r]_{\lambda}=[u, r]_{\lambda}$, for all $u, r, h \in V$. And the $3-\lambda-$ Lie Algebras
$\left(U,[,,]_{\lambda}\right)$ is called one-dimensional extension of V. For example let V be an abelian λ-Lie algebra with the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, and let $U=V+F_{\mathrm{k}}, F_{\mathrm{k}} \subseteq Z(U)$, then $\left[\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right]_{\lambda}=0$, and for all $k \in F_{k},\left[k, e_{i}, \mathrm{e}_{\mathrm{j}}\right]_{\lambda}=\left[e_{i}, \mathrm{e}_{\mathrm{j}}\right]_{\lambda^{\prime}} 1 \leq i, j \leq 3, i \leq j$. Therefore ($U,[,,]_{\lambda}$) is one-dimensional extension of V.
Theorem 3.2 :- Let V be $3-\lambda$ - Lie Algebras then U is one dimensional extension of a λ-Lie Algebras ($V,[,]_{\lambda}$) if and only if the exists an involutive λ - derivation D_{λ} on V such that either $\operatorname{dim} V_{1}=1$, or $\operatorname{dim} V_{-1}=1$.
Proof:- If U is one-dimensional extension of a λ-Lie algebra V then $U_{\lambda}=V_{\lambda}+F_{k}$. Since $\quad D_{\lambda}: U \rightarrow U$ is endomorphism which is defined by $D_{\lambda}(k)=k,(\operatorname{or}(-k))$ with $D_{\lambda}(r)=r(o r(-r) r \in \mathrm{~V}) . \quad D_{\lambda}^{2}(k)=D_{\lambda}\left(D_{\lambda}(k)\right)=D_{\lambda}(k)=$ k, and $D_{\lambda}^{2}(-k)=-k$ then $D_{\lambda}^{2}=I d$
$D_{\lambda}\left([u, r, h]_{\lambda}\right)=\left[D_{\lambda}(u), r, h\right]_{\lambda}+\left[\mathrm{u}, D_{\lambda}(r), h\right]_{\lambda}+\left[u, r, D_{\lambda}(h)\right]_{\lambda}=0$
$D_{\lambda}\left([k, u, r]_{\lambda}\right)=\left[D_{\lambda}(k), u, r\right]_{\lambda}+\left[\mathrm{k}, D_{\lambda}(\mathrm{u}), r\right]_{\lambda}+\left[\mathrm{k}, \mathrm{u}, D_{\lambda}(r)\right]_{\lambda}=[k, u, r]_{\lambda}=[u, r]_{\lambda}$, for all $u, r \in V$.Therefore D_{λ} is an involutive λ - derivation on V such that $\operatorname{dim} V_{1}=1$, or $\operatorname{dim} V_{-1}=1$. Conversely, let D_{λ} be an involutive $-\lambda$-derivation on V such that $\operatorname{dim} V_{1}=1$, or $\operatorname{dim} V_{-1}=1$. Let $U_{-1}=F_{K}$, and $U_{1}=V$ (or $U_{-1}=V$, and $U_{1}=F_{K}$) ,where $k \in U-V$. Then by Theorem $2.6, V$ is an λ - Lie algebra with the multiplication $[u, r]_{\lambda}=[k, u, r]_{\lambda}$ for all $u, r \in V$, and U is one - dimensional extension of V.
Let $\left(V,[,]_{1 \lambda}\right)$ and $\left(V,[,]_{2 \lambda}\right)$ be λ - Lie algebras, and $\left\{v_{1}, \ldots . ., v_{n}\right\}$ is a basis of V. It is easy to define λ-Lie algebras $\left(V,[,]_{\lambda}\right)$ be $V_{m}, m=1,2$, and let k_{1}, k_{2} are two distinct elements which are not contained in V, and $3-\lambda$-Lie Algebras $\left(U_{1},[,]_{1 \lambda}\right)$ and $\left(U_{2},[,]_{2 \lambda}\right)$ are one-dimentional extension of λ-Lie algebras V_{1}, and V_{2}, respectively such that $U_{1}=V_{1}+F_{K 1}, U_{2}=V_{2}+F_{K 2}$, then $D_{\lambda}\left(V_{1}\right)$ and $D_{\lambda}\left(V_{2}\right)$ are sub algebras of $g l_{\lambda}(V)$.
Definition 3.3 : Let $U_{1}=\left(V,[,]_{1 \lambda}\right)$, and $U_{2}=\left(V,[,]_{2 \lambda}\right)$ be two λ - Lie algebras, and k_{1}, k_{2} are two special elements that are not present in V such that $U=V+F_{K 1}+F_{K 2}$. Then $3-\lambda$-Lie Algebras $\left(U,[,,]_{\lambda}\right)$ is called a two-dimensional extension of λ - Lie Algebras $V_{m}, m=1,2$ such that $[,,]_{\lambda}: U \wedge U \wedge U \rightarrow U$ defined by
$\left[u, r, k_{1}\right]_{\lambda}=[u, r]_{1 \lambda} \quad, \quad\left[u, r, k_{2}\right]_{\lambda}=[u, r]_{2 \lambda}, \quad[u, r, h]_{\lambda}=0$
$\left[k_{1}, k_{2}, u\right]_{\lambda}=\alpha_{u} k_{1}+\beta_{u} k_{2} \forall u, r, h \in V$, and $\alpha_{u}, \beta_{u} \in F$
If U is an $3-\lambda-$ Lie Algebras then U is called a two-dimensional extension $3-\lambda-$ Lie Algebras of λ - Lie Algebras $V_{m}, m=1,2$
Let $\mathrm{U}=V_{m}+\mathrm{R}$ be a two - dimensional extension of λ - Lie Algebras $V_{m}, m=1,2$
And $R=F_{K 1}+F_{K 2}$. Define linear mappings $3-\lambda-$ Lie Algebras as follows
$D_{1 \lambda}(u)=a d\left(k_{1}, u\right), D_{2 \lambda}(u)=a d\left(k_{2}, u\right)$,
(6)
$D_{\lambda}(u)=a d\left(k_{1}, k_{2}\right)(u) \forall u \in V$ that is, for all $\forall r \in V$
$D_{1 \lambda}(u)(r)=\left[u, r, k_{1}\right]_{\lambda}=[u, r]_{1 \lambda}$,
$D_{2 \lambda}(u)(r)=\left[u, r, k_{2}\right]_{\lambda}=[u, r]_{2 \lambda}$, and, $D_{\lambda}(u)=\left[k_{1}, k_{2}, u\right]_{\lambda}$
Theorem 3.4 :- Let $3-\lambda$-Algebras U be a two-dimensional extension of λ - Lie Algebras $V_{m}, m=1,2$ then U is a $3-\lambda-$ Lie Algebras if and only if linear mappings $D_{1 \lambda}, D_{2 \lambda}$, and D_{λ} where $D_{1 \lambda}: V_{1} \rightarrow \operatorname{Der}_{\lambda}\left(V_{1}\right), D_{2 \lambda}: V_{2} \rightarrow \operatorname{Der}_{\lambda}\left(V_{2}\right)$ are $\lambda-$ Lie
homomorphisms, and
$D_{1 \lambda}\left(u_{3}\right)\left[u_{1}, u_{2}\right]_{2 \lambda}=\left[D_{1 \lambda}\left(u_{3}\right)\left(u_{1}\right), u_{2}\right]_{2 \lambda}+\left[\left(u_{1}\right), D_{1 \lambda}\left(u_{3}\right) u_{2}\right]_{2 \lambda}$
$D_{2 \lambda}\left(u_{3}\right)\left[u_{1}, u_{2}\right]_{1 \lambda}=\left[D_{2 \lambda}\left(u_{3}\right)\left(u_{1}\right), u_{2}\right]_{1 \lambda}+\left[\left(u_{1}\right), D_{2 \lambda}\left(u_{3}\right) u_{2}\right]_{1 \lambda}$
(9)

$$
\begin{align*}
& +\alpha_{u_{3}}\left[u_{1}, u_{2}\right]_{1 \lambda}+\beta_{u_{3}}\left[u_{1}, u_{2}\right]_{2 \lambda} \\
& D_{\lambda}\left(\left[u_{1}, u_{2}\right]_{1 \lambda}\right)=\left(\beta_{u_{1}} \alpha_{u_{2}}-\alpha_{u_{1}} \beta_{u_{2}}\right) k_{1} \\
& (10) \\
& D_{\lambda}\left(\left[u_{1}, u_{2}\right]_{2 \lambda}\right)=\left(\beta_{u_{1}} \alpha_{u_{2}}-\alpha_{u_{1}} \beta_{u_{2}}\right) k_{2} \tag{11}
\end{align*}
$$

$D_{i \lambda}\left(u_{1}\right),\left(u_{2}\right)=-D_{i \lambda}\left(u_{2}\right),\left(u_{1}\right)$
(12)
for all $u_{1}, u_{2} \in V, i=1,2$
Where $u_{1}, u_{2}, u_{3} \in \mathrm{~V}, D_{\lambda}\left(u_{i}\right)=\alpha_{u i} k_{1}+\beta_{u i} k_{2} \quad i=1,2,3$
Proof : If U is two - dimensional extension $3-\lambda$-Lie Algebras then, by definition 3.3 linear mappings $D_{i \lambda}$ satisfy $D_{i \lambda}\left(V_{i}\right) \subseteq \operatorname{Der}_{\lambda}\left(V_{i}\right)$, and $D_{i \lambda}$ are λ - Lie homomorphisms $i=1,2$ by (5) we have

$$
\begin{gathered}
D_{1 \lambda}\left(u_{3}\right)\left[u_{1}, u_{2}\right]_{2 \lambda}=\left[k_{1}, u_{3},\left[u_{1}, u_{2}\right]_{2 \lambda}\right]_{\lambda}=\left[k_{1}, u_{3}\left[k_{2}, u_{1}, u_{2}\right]_{2 \lambda}\right]_{\lambda} \\
\left.=\left[k_{2},\left[k_{1}, u_{3}, u_{1}\right]_{\lambda}, u_{2}\right]_{\lambda}+\left[k_{2}, u_{1},\left[k_{1}, u_{3}, u_{2}\right]_{\lambda}\right]_{\lambda}+\left[k_{1}, u_{3}, k_{2}\right]_{\lambda,}, u_{1}, u_{2}\right]_{\lambda} \\
=\left[k_{2}, D_{1 \lambda}\left(u_{3}\right)\left(u_{1}\right), u_{2}\right]_{\lambda}+\left[k_{2}, u_{1}, D_{1 \lambda}\left(u_{3}\right)\left(u_{2}\right)\right]_{\lambda}-\left[\left[k_{1}, k_{2}, u_{3}\right]_{\lambda}, u_{1}, u_{2}\right]_{\lambda} \\
=\left[D_{1 \lambda}\left(u_{3}\right)\left(u_{1}\right), u_{2}\right]_{2 \lambda}+\left[u_{1}, D_{1 \lambda}\left(u_{3}\right)\left(u_{2}\right)\right]_{2 \lambda}-\alpha_{u_{3}}\left[u_{1}, u_{2}\right]_{1 \lambda}-\beta_{u_{3}}\left[u_{1}, u_{2}\right]_{2 \lambda}
\end{gathered}
$$

Then for all $u_{1}, u_{2}, u_{3} \in V$ the equation (8) holds , The same way can be found (9)
Now if $\quad D_{\lambda}\left(\left[u_{1}, u_{2}\right]_{1 \lambda}\right)=\operatorname{ad}\left(k_{1}, k_{2}\right)\left[u_{1}, u_{2}\right]_{1 \lambda}=\left[k_{1}, k_{2},\left[u_{1}, u_{2}\right]_{1 \lambda}\right]_{\lambda}$
$=\left[k_{1}, k_{2},\left[k_{1}, u_{1}, u_{2}\right]_{\lambda}\right]_{\lambda}=$
$\left[k_{1},\left[k_{1}, k_{2}, u_{1}\right]_{\lambda}, u_{2}\right]_{\lambda}+\left[k_{1}, u_{1},\left[k_{1}, k_{2}, u_{2}\right]_{\lambda}\right]_{\lambda}+\left[\left[k_{1}, k_{2}, k_{1}\right]_{\lambda}, u_{1}, u_{2}\right]_{\lambda}$
$=-\left[\left[k_{1}, k_{2}, u_{1}\right]_{\lambda}, k_{1}, u_{2}\right]_{\lambda}+\left[\left[k_{1}, k_{2}, u_{2}\right]_{\lambda}, k_{1}, u_{1}\right]_{\lambda}$
$=\left(-\alpha_{u_{1}}\left[k_{1}, u_{2}\right]_{\lambda} k_{1}-\beta_{u_{1}}\left[k_{1}, u_{2}\right]_{\lambda} k_{2}\right)+\left(\alpha_{u_{2}}\left[k_{1}, u_{1}\right]_{\lambda} k_{1}-\beta_{u_{2}}\left[k_{1}, u_{1}\right]_{\lambda} k_{2}\right)$
$=-\alpha_{u_{1}} D_{\lambda_{1}}\left(u_{2}\right)\left(k_{1}\right)-\beta_{u_{1}} D_{\lambda_{1}}\left(u_{2}\right)\left(k_{2}\right)+\alpha_{u_{2}} D_{\lambda_{1}}\left(u_{1}\right) k_{1} \beta_{u_{2}} D_{\lambda_{1}}\left(u_{1}\right)\left(k_{2}\right)$
$=-\alpha_{u_{1}}\left[k_{1}, u_{2}, k_{1}\right]_{\lambda}-\beta_{u_{1}}\left[k_{1}, u_{2}, k_{2}\right]_{\lambda}+\alpha_{u_{2}}\left[k_{1}, u_{1}, k_{1}\right]_{\lambda}+\beta_{u_{2}}\left[k_{1}, u_{1}, k_{2}\right]_{\lambda}$
$=\beta_{u_{1}}\left[k_{1}, k_{2}, u_{2}\right]_{\lambda}-\beta_{u_{2}}\left[k_{1}, k_{2}, u_{1}\right]_{\lambda}=\beta_{u_{1}}\left(\alpha_{u_{1}} k_{1}+\beta_{u_{2}} k_{2}\right)-\beta_{u_{2}}\left(\alpha_{u_{1}} k_{1}+\beta_{u_{1}} k_{2}\right)$
$=\beta_{u_{1}} \alpha_{u_{1}} k_{1}+\beta_{u_{1}} \beta_{u_{2}} k_{2}-\beta_{u_{2}} \alpha_{u_{1}} k_{1}-\beta_{u_{2}} \beta_{u_{1}} k_{2}=\beta_{u_{2}} \alpha_{u_{1}} k_{1}-\beta_{u_{2}} \alpha_{u_{1}} k_{1}$
$D_{\lambda}\left(\left[u_{1}, u_{2}\right]_{1 \lambda}\right)=\left(\beta_{u_{1}} \alpha_{u_{2}-} \beta_{u_{2}} \alpha_{u_{1}}\right) k_{1}$

Then for all $u_{1}, u_{2} \in V$, and $\alpha_{u i}, \beta_{u i} \in F, i=1,2$ equation (10) holds .The same way can be found (11)
$D_{i \lambda}\left(u_{1}\right)\left(u_{2}\right)=a b\left(k_{i},\left(u_{1}\right)\left(u_{2}\right)\right)=\left[k_{i}, u_{1}, u_{2}\right]_{\mathrm{i} \lambda}=-\left[k_{i}, u_{2}, u_{1}\right]_{\mathrm{i} \lambda}$
$D_{i \lambda}\left(u_{1}\right)\left(u_{2}\right)=-D_{i \lambda}\left(u_{2}\right),\left(u_{1}\right), \forall u_{1}, u_{2} \in V, i=1,2 \quad$.Then for all $u_{1}, u_{2} \in V, i=1,2$ equation (12) hold

Conversely, by equation (5), for all $u_{1}, u_{2}, u_{3}, u \in \mathrm{~V}$
$\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}=0,\left[k_{1}, u_{1}, u_{2}\right]_{\lambda}=D_{1 \lambda}\left(u_{1}\right)\left(u_{2}\right)=\left[u_{1}, u_{2}\right]_{1 \lambda}$
$\left[k_{2}, u_{1}, u_{2}\right]_{\lambda}=D_{2 \lambda}\left(u_{1}\right)\left(u_{2}\right)=\left[u_{1}, u_{2}\right]_{2 \lambda}, \quad\left[k_{1}, k_{2}, u\right]_{\lambda}=D_{\lambda}(u)=\alpha_{u} k_{1}+\beta_{u} k_{2}$
(13)

Since $D_{i \lambda}\left(V_{i}\right) \subseteq D_{\lambda}\left(V_{i}\right)$, and $D_{i \lambda}$ are λ-Lie homomorphisms, $i=1,2, U_{1}=V_{1}+F_{K 1}$, $U_{2}=V_{2}+F_{K 2}$ are $3-\lambda$-Lie Algebras which are one - dimensional extension 3 λ - Lie Algebras of λ-Lie Algebras $V_{i}, \quad i=1,2$, respectively .
Next it suffices to prove that the multiplication on U defined by equation (5) satisfies fulfills of the definition 1.6 for all $u_{i} \in V$ such that $1 \leq i \leq 5$, and the products
$\left[u_{1}, u_{2},\left[u_{3}, u_{4}, u_{5}\right]_{\lambda}\right]_{\lambda}=\left[\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}, u_{4}, u_{5}\right]_{\lambda}+\left[u_{3},\left[u_{1}, u_{2}, u_{4}\right]_{\lambda}, u_{5}\right]_{\lambda}$
$+\left[u_{3}, u_{4}\left[u_{1}, u_{2}, u_{5}\right]_{\lambda}\right]_{\lambda}$
and the products $\left[\left[k_{j}, u_{2}, u_{3}\right]_{\lambda}, u_{4}, u_{5}\right]_{\lambda},\left[\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}, u_{4}, k_{j}\right]_{\lambda}$ and $\left[\left[u_{1}, u_{2}, k_{j}\right]_{\lambda}, u_{4}, k_{j}\right]_{\lambda}$ with definition $1.6, j=1,2$. Therefore $U_{1}=V_{1}+F_{K 1}$, and $U_{2}=V_{2}+F_{K 2}$ are one dimensional extension $3-\lambda$ - Lie Algebras of $V_{i}, i=1,2$ and equation (5) is directly obtained from equation (8), and equation (9). It follows that the products $\left[\left[k_{i}, u_{1}, u_{2}\right]_{\lambda}, k_{j}, u_{3}\right]_{\lambda} 1 \leq \mathrm{i} \neq \mathrm{j} \leq 2$ fulfill definition 1.6. It follows from equation (10) (12) that the products $\left[k_{1}, k_{2},\left[k_{i}, u_{1}, u_{2}\right]_{\lambda}\right]_{\lambda},\left[u_{1}, u_{2}\left[k_{i}, k_{2}, u_{3}\right]_{\lambda}\right]_{\lambda}$, and $\left[k_{i} u_{1},\left[k_{1}, k_{2}, u_{2}\right]_{\lambda}\right]_{\lambda}$, $i=1,2$ fulfill the conditions of definition 1.6.
Theorem3.5:- Let ($\mathrm{U},[,, \mathrm{l}$) be a $3-\lambda$ - Lie Algebras. Then U is a two dimensional extension $3-\lambda$-Lie Algebras of λ-Lie Algebras if and only if there is an
involutive $-\lambda-$ derivation D on U such that $\operatorname{dim}_{1}=2$ or $\operatorname{dim} U_{-1}=2$.
Proof . If U is a two-dimensional extension 3- λ - Lie Algebras of λ Lie Algebras then by Theorem 3.2 there are λ-Lie Algebras
$V_{1}=\left(V,[,]_{1 \lambda}\right)$ and $V_{2}=\left(V,[,]_{2 \lambda}\right)$
such that $U=V+R$, and the multiplication of U is defined by equation (5) where $R=F_{K 1}+$ $F_{K 2}$.

Now define the endomorphism D of U by $D(u)=u, D\left(K_{1}\right)=-K_{1}, D\left(K_{2}\right)=-K_{2}$, or $D(u)=-u, D\left(K_{1}\right)=K_{1}, D\left(K_{2}\right)=K_{2}, \forall u \in V$ then $D^{2}=I d$, and $U_{1}=V, U_{-1}=$ R, or $U_{-1}=V, U_{1}=R$.Thus by equation (4), and equations (8) - (12), involutive $-\lambda-$ derivation D of U.
Conversely, if there is an involutive $-\lambda$-derivation D on the $3-\lambda-$ Lie Algebras U such that $\operatorname{dim}_{-1}=2\left(\right.$ or $\left.\operatorname{dim} U_{1}=2\right)$ then by Theorem 2.8 we have $\left[U_{1}, U_{1}, U_{1}\right]=0,\left[U_{1}, U_{1}, U_{-1}\right] \subseteq U_{1},\left[U_{1}, U_{-1}, U_{-1}\right] \subseteq U_{-1}$. Let $V=$ U_{1} and $U_{1}=F_{K 1}+F_{K 2}$.
Therefore $[V, V, K 1] \subseteq V,\left[V, V, K_{2}\right] \subseteq V \quad$ and $\quad\left(V,[,]_{1 \lambda}\right), \operatorname{and}\left(V,[,]_{2 \lambda}\right) \quad$ are $\lambda-$ Lie Algebras, where $[u, r]_{1 \lambda}=\left[u, r, k_{1}\right]_{\lambda},[u, r]_{2 \lambda}=\left[u, r, k_{2}\right]_{\lambda}, \forall u, r \in V$. Hence by Theorem 3.4
the $3-\lambda$-Lie Algebras U is a two - dimensional extension $3-\lambda-$ Lie Algebras of λ-Lie Algebras V_{1}, V_{2}.

4 -Involutive λ - derivations and compatible $3-\lambda$ - pre Lie algebras

In this section, we study involutive λ-derivations on compatible $3-\lambda$-pre Lie algebras
Definition 4. 1:- A λ-representation of V (or an $V-\lambda$-module) is a pair (U, ρ), where V is a vector space, $\rho^{\lambda}: V \wedge V \rightarrow \operatorname{End}(U)$ is a linear map such that

$$
\begin{gathered}
{\left[\rho^{\lambda}\left(v_{1}, v_{2}\right)_{\lambda}, \rho^{\lambda}\left(v_{3}, v_{4}\right)_{\lambda}\right]_{\lambda}=\rho^{\lambda}\left(v_{1}, v_{2}\right)_{\lambda} \rho^{\lambda}\left(v_{3}, v_{4}\right)_{\lambda}-\rho^{\lambda}\left(v_{3}, v_{4}\right)_{\lambda} \rho^{\lambda}\left(v_{1}, v_{2}\right)_{\lambda}} \\
=\rho^{\lambda}\left(\left[v_{1}, v_{2}, v_{3}\right]_{\lambda}, v_{4}\right)_{\lambda}-\rho^{\lambda}\left(\left[v_{1}, v_{2}, v_{4}\right]_{\lambda}, v_{3}\right)_{\lambda} \\
\rho^{\lambda}\left(\left[v_{1}, v_{2}, v_{3}\right]_{\lambda}, v_{4}\right)_{\lambda}=\rho^{\lambda}\left(v_{1}, v_{2}\right)_{\lambda} \rho\left(v_{3}, v_{4}\right)_{\lambda}+\rho^{\lambda}\left(v_{2}, v_{3}\right)_{\lambda} \rho^{\lambda}\left(v_{1}, v_{4}\right)_{\lambda} \\
+\rho^{\lambda}\left(v_{1}, v_{3}\right)_{\lambda} \rho^{\lambda}\left(v_{2}, v_{4}\right)_{\lambda}
\end{gathered}
$$

for all $v_{i} \in V, \quad 1 \leq i \leq 4$.
A linear mapping $T^{\lambda}: U \rightarrow V$ is called an $\lambda-\wp$-operator which is associated to an $V-\lambda$ - module (U, ρ) if T satisfies
$\left[T^{\lambda} u, T^{\lambda} v, T^{\lambda} w\right]_{\lambda}=T^{\lambda}\left(\rho^{\lambda}\left(T^{\lambda} u, T^{\lambda} v\right) w+\rho^{\lambda}\left(T^{\lambda} v, T^{\lambda} w\right) u+\rho^{\lambda}\left(T^{\lambda} w, T^{\lambda} u\right) v\right)_{\lambda}$
for all $u, v, w \in U$, and $(V, a d)$ is called the adjoint $-\lambda$ - representation of V.
Theorem 4.2 : Let $\left(V,[\because, \cdot]_{\lambda}\right)$ be a $3-\lambda$-Lie algebr a with an involutive $-\lambda-$ derivation
D_{λ}. Then D_{λ} is an $\lambda-\wp-$ operator of V associated to the adjoint $-\lambda$-representation ($V, a d$), and D satisfies, $\forall u_{1}, u_{2}, u_{3} \in V$
$\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}=D\left(\left[D u_{1}, D u_{2}, u_{3}\right]_{\lambda}+\left[D u_{2}, D u_{3}, u_{1}\right]_{\lambda}+\left[D u_{3}, D u_{1}, u_{2}\right]_{\lambda}\right.$
Proof. By defined the a λ-derivation D_{λ}, and for all $u_{1}, u_{2}, u_{3} \in V$,
$D\left(a d\left(D u_{1}, D u_{2}\right)_{\lambda} u_{3}+a d\left(D u_{2}, D u_{3}\right)_{\lambda} u_{1}+a d\left(D u_{3}, D u_{1}\right)_{\lambda} u_{2}\right)_{\lambda}$
$=D\left(\left[D u_{1}, D u_{2}, u_{3}\right]_{\lambda}+\left[D u_{2}, D u_{3}, u_{1}\right]_{\lambda}+\left[D u_{3}, D u_{1}, u_{2}\right]_{\lambda}\right)$
$=D\left(\left[D u_{1}, D u_{2}, D^{2} u_{3}\right]_{\lambda}+\left[D^{2} u_{1}, D u_{2}, D u_{3}\right]_{\lambda}+\left[D u_{1}, D^{2} u_{2}, D u_{3}\right]_{\lambda}\right)$
$=\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}$. The proof is completed
Definition 4.3 : Let V be an associative Γ - algebra over a field with a λ-linear multiplication [, ,] $\lambda: V^{\wedge 3} \rightarrow V, \forall u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \in V$. The pair $\left(V,\{,,\}_{\lambda}\right)$ is called a
$3-\lambda$-preLie algebra if the next identities are correct

$$
\begin{gather*}
\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda}=-\left\{u_{2}, u_{1}, u_{3}\right\}_{\lambda} \tag{16}\\
\left\{u_{1}, u_{2},\left\{u_{3}, u_{4}, u_{5}\right\}_{\lambda}\right\}_{\lambda}=\left\{\left[u_{1}, u_{2}, u_{3}\right]_{\lambda c}, u_{4}, u_{5}\right\}_{\lambda}+\left\{u_{3},\left[u_{1}, u_{2}, u_{4}\right]_{\lambda c}, u_{5}\right\}_{\lambda} \\
+\left\{u_{3}, u_{4},\left\{u_{1}, u_{2}, u_{5}\right\}_{\lambda}\right\}_{\lambda} \tag{17}\\
\left\{\left[u_{1}, u_{2}, u_{3}\right]_{\lambda c}, u_{4}, u_{5}\right\}_{\lambda}=\left\{u_{1}, u_{2},\left\{u_{3}, u_{4}, u_{5}\right\}_{\lambda}\right\}_{\lambda}+\left\{u_{2}, u_{3},\left\{u_{1}, u_{4}, u_{5}\right\}_{\lambda}\right\}_{\lambda} \\
+\left\{u_{3}, u_{1},\left\{u_{2}, u_{4}, u_{5}\right\}_{\lambda}\right\}_{\lambda} \tag{18}
\end{gather*}
$$

and $[,,]_{\lambda \mathrm{C}}$ is defined by $\left[u_{1}, u_{2}, u_{3}\right]_{\lambda \mathrm{C}}=\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda}+\left\{u_{2}, u_{3}, u_{1}\right\}_{\lambda}+\left\{u_{3}, u_{1}, u_{2}\right\}_{\lambda}$
(19)

Proposition 4.4: Let $\left(V,\{,,\}_{\lambda}\right)$ be a $3-\lambda-$ pre Lie algebra. Then the $\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda c}$ defines a $3-\lambda-$ Lie algebra
Proof. By previous definition $\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda \mathrm{C}}$ is skew-symmetric for all $u_{i} \in V, 1 \leq i \leq 5$ $\left[u_{1}, u_{2},\left[u_{3}, u_{4}, u_{5}\right]_{\lambda c}\right]_{\lambda c}-\left[\left[u_{1}, u_{2}, u_{3}\right]_{\lambda c}, u_{4}, u_{5}\right]_{\lambda c}-\left[u_{3},\left[u_{1}, u_{2}, u_{4}\right]_{\lambda c}, u_{5}\right]_{\lambda c}$

$$
\begin{gathered}
-\left[u_{3}, u_{4},\left[\left\{u_{1}, u_{2}, u_{5}\right\}\right]_{\lambda c}\right]_{\lambda c} \\
=\left\{u_{1}, u_{2},\left\{u_{3}, u_{4}, u_{5}\right\}_{\lambda}\right\}_{\lambda}+\left\{u_{1}, u_{2},\left\{u_{4}, u_{5}, u_{3}\right\}_{\lambda}\right\}_{\lambda}+\left\{u_{1}, u_{2},\left\{u_{5}, u_{3}, u_{4}\right\}_{\lambda}\right\}_{\lambda} \\
+\left\{u_{2},\left[u_{3}, u_{4}, u_{5}\right]_{\lambda c}, u_{1}\right\}_{\lambda}+\left\{\left[u_{3}, u_{4}, u_{5}\right]_{\lambda_{c}}, u_{1}, u_{2}\right\}_{\lambda} \\
-\left\{u_{4}, u_{5},\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda}\right\}_{\lambda}-\left\{u_{4}, u_{5},\left\{u_{2}, u_{3}, u_{1}\right\}_{\lambda}\right\}_{\lambda}-\left\{u_{4}, u_{5},\left\{u_{3}, u_{1}, u_{2}\right\}_{\lambda}\right\}_{\lambda} \\
-\left\{u_{5},\left[u_{1}, u_{2}, u_{3}\right]_{\lambda c}, u_{4}\right\}_{\lambda}-\left\{\left[u_{1}, u_{2}, u_{3}\right]_{\lambda c}, u_{4}, u_{5}\right\}_{\lambda} \\
-\left\{u_{3}, u_{5},\left\{u_{1},,_{2}, u_{4}\right\}_{\lambda}\right\}_{\lambda}-\left\{u_{3}, u_{5},\left\{u_{2}, u_{4}, u_{1}\right\}_{\lambda}\right\}_{\lambda}-\left\{u_{3}, u_{5},\left\{u_{4}, u_{1}, u_{2}\right\}_{\lambda}\right\}_{\lambda} \\
-\left\{u_{3},\left[u_{1}, u_{2}, u_{4}\right]_{\lambda c}, u_{5}\right\}_{\lambda}-\left\{\left[u_{1}, u_{2}, u_{4}\right]_{\lambda c}, u_{5}, u_{3}\right\}_{\lambda} \\
-\left\{u_{3}, u_{4},\left\{u_{1}, u_{2}, u_{5}\right\}_{\lambda}\right\}_{\lambda}-\left\{u_{3}, u_{4},\left\{u_{2}, u_{5}, u_{1}\right\}_{\lambda}\right\}_{\lambda}-\left\{u_{3}, u_{4},\left\{u_{5}, u_{1}, u_{2}\right\}_{\lambda}\right\}_{\lambda} \\
-\left\{u_{4},\left[u_{1}, u_{2}, u_{5}\right]_{\lambda c}, u_{3}\right\}_{\lambda}-\left\{\left[u_{1}, u_{2}, u_{5}\right]_{\lambda c}, u_{3}, u_{4}\right\}_{\lambda}=0
\end{gathered}
$$

This holds because

$$
\begin{aligned}
& \left\{u_{1}, u_{2},\left\{u_{3}, u_{4}, u_{5}\right\}_{\lambda}\right\}_{\lambda}=\left\{\left[u_{1}, u_{2}, u_{3}\right]_{\lambda c}, u_{4}, u_{5}\right\}_{\lambda}+\left\{u_{3},\left[u_{1}, u_{2}, u_{4}\right]_{\lambda c}, u_{5}\right\}_{\lambda} \\
& +\left\{u_{3}, u_{4},\left[u_{1}, u_{2}, u_{5}\right]_{\lambda c}\right\}_{\lambda} \\
& \left\{u_{1}, u_{2},\left\{u_{4}, u_{5}, u_{3}\right\}_{\lambda}\right\}_{\lambda}=\left\{\left[u_{1}, u_{2}, u_{4}\right]_{\lambda c}, u_{5}, u_{3}\right\}_{\lambda}+\left\{u_{4},\left[u_{1}, u_{2}, u_{5}\right]_{\lambda c}, u_{3}\right\}_{\lambda} \\
& +\left\{u_{4}, u_{5},\left[u_{1}, u_{2}, u_{3}\right]_{\lambda c}\right\}_{\lambda} \\
& \left\{u_{1}, u_{2},\left\{u_{5}, u_{3}, u_{4}\right\}_{\lambda}\right\}_{\lambda}=\left\{\left[u_{1}, u_{2}, u_{5}\right]_{\lambda c}, u_{3}, u_{4}\right\}_{\lambda}+\left\{u_{5},\left[u_{1}, u_{2}, u_{3}\right]_{\lambda c}, u_{4}\right\}_{\lambda} \\
& +\left\{u_{5}, u_{3},\left[u_{1}, u_{2}, u_{4}\right]_{\lambda}\right\}_{\lambda} \\
& \left\{u_{2},\left[u_{3}, u_{4}, u_{5}\right]_{\lambda c}, u_{1}\right\}_{\lambda}=\left\{u_{4}, u_{5},\left\{u_{2}, u_{3}, u_{1}\right\}_{\lambda}\right\}_{\lambda}+\left\{u_{5}, u_{3},\left\{u_{2}, u_{4}, u_{1}\right\}_{\lambda}\right\}_{\lambda} \\
& +\left\{u_{3}, u_{4},\left\{u_{2}, u_{5}, u_{1}\right\}_{\lambda}\right\}_{\lambda} \\
& \left\{\left[u_{3}, u_{4}, u_{5}\right]_{\lambda c}, u_{1}, u_{2}\right\}_{\lambda}=\left\{u_{3}, u_{4},\left\{u_{5}, u_{1}, u_{2}\right\}_{\lambda}\right\}_{\lambda}+\left\{u_{4}, u_{5},\left\{u_{3}, u_{1}, u_{2}\right\}_{\lambda}\right\}_{\lambda} \\
& +\left\{u_{5}, u_{3},\left\{u_{4}, u_{1}, u_{2}\right\}_{\lambda}\right\}_{\lambda} \text {. } \\
& \text { Therefore the proof is completed. }
\end{aligned}
$$

Theorem 4.5: Let $\left(V,[,]_{\lambda}\right)$ be a $3-\lambda$-preLie algebra, $D_{\lambda} \in D_{\lambda}(V)$ be an involutive $-\lambda-$ derivation. Then $\left(V,\{,,\}_{\lambda D}\right)$ is a $3-\lambda-$ preLie algebra where

$$
\begin{equation*}
\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda D}=\left[D u_{1}, D u_{2}, u_{3}\right]_{\lambda} . \tag{20}
\end{equation*}
$$

Moreover

$$
\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda D}=\left\{\begin{array}{l}
0, u_{1}, u_{2}, u_{3} \in v_{1} \text { or } u_{1}, u_{2}, u_{3} \in v_{-1} \tag{21}\\
{\left[u_{1}, u_{2}, u_{3}\right]_{\lambda} u_{1}, u_{2} \in v_{1}, u_{3} \in v_{-1}} \\
-\left[u_{1}, u_{2}, u_{3}\right]_{\lambda} u_{1} \in v_{1}, u_{2}, u_{3} \in v_{-1} \\
{\left[u_{1}, u_{2}, u_{3}\right]_{\lambda} u_{1}, u_{2} \in v_{-1}, u_{3} \in v_{1}} \\
-\left[u_{1}, u_{2}, u_{3}\right]_{\lambda} u_{1} \in v_{1}, u_{2}, u_{3} \in v_{-1}
\end{array}\right.
$$

And $\left(V,\{,,\}_{\lambda D}\right)$ is called the $3-\lambda$-preLie algebra which is associated with the $-\lambda-$ derivation D_{λ}.
Proof . By Theorem 4.2, D_{λ} is an $\lambda-\wp-$ operator associate to the adjoint $-\lambda-$ representation ($V, a d$) , and for all $v_{i} \in V, 1 \leq i \leq 5$,
$\left[\left[D u_{1}, D u_{2}, u_{3}\right]_{\lambda}+\left[u_{1}, D u_{2}, D u_{3}\right]_{\lambda}+\left[D u_{1}, u_{2}, D u_{3}\right]_{\lambda}, D u_{4}, u_{5}\right]_{\lambda}$
$\left.=-\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}, \mathrm{D} u_{4}, u_{5}\right]_{\lambda}$
$\left[D\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}, \mathrm{D} u_{4}, u_{5}\right]_{\lambda}=-\left[D\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}, \mathrm{D} u_{4}, u_{5}\right]_{\lambda}$
since $\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda D}=\left[D u_{1}, D u_{2}, u_{3}\right]_{\lambda}=-\left[D u_{2}, D u_{1}, u_{3}\right]_{\lambda}=-\left\{u_{2}, u_{1}, u_{3}\right\}_{\lambda D}$
we get equation (16). Since
$\left[D u_{3}, D u_{4}\left[D u_{1}, D u_{2}, u_{5}\right]_{\lambda}\right]_{\lambda}=\left[D u_{1}, D u_{2},\left[D u_{3}, D u_{4}, u_{5}\right]_{\lambda}\right]_{\lambda}$

$$
-\left[\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}, D u_{4}, u_{5}\right]_{\lambda}-\left[D u_{3},\left[D u_{1}, D u_{2}, D u_{4}\right]_{\lambda}, u_{5}\right]_{\lambda} .
$$

Therefore we have

$$
\begin{gathered}
\left\{\left[u_{1}, u_{2}, u_{3}\right]_{\lambda D C}, u_{4}, u_{5}\right\}_{\lambda D}+\left\{u_{3},\left[u_{1}, u_{2}, u_{4}\right]_{\lambda D c}, u_{5}\right\}_{\lambda D}+\left\{u_{3}, u_{4},\left\{u_{1}, u_{2}, u_{5}\right\}_{\lambda D}\right\}_{\lambda D} \\
=\left[D\left[u_{1}, u_{2}, u_{3}\right]_{\lambda D c}, D u_{4}, u_{5}\right]_{\lambda}+\left[D u_{3}, D\left[u_{1}, u_{2}, u_{4}\right]_{\lambda D c}, u_{5}\right]_{\lambda}+\left[D u_{3}, D u_{4}\left\{u_{1}, u_{2}, u_{5}\right\}_{\lambda D}\right]_{\lambda} \\
=\left[D\left(\left[D u_{1}, D u_{2}, u_{3}\right]_{\lambda}+\left[u_{1}, D u_{2}, D u_{3}\right]_{\lambda}+\left[D u_{1}, u_{2}, D u_{3}\right]_{\lambda}\right), D u_{4}, u_{5}\right]_{\lambda} \\
+\left[D u_{3}, D\left(\left[D u_{1}, u_{2}, u_{4}\right]_{\lambda}+\left[u_{1}, D u_{2}, D u_{4}\right]_{\lambda}+\left[D u_{1}, u_{2}, D u_{4}\right]_{\lambda}\right), u_{5}\right]_{\lambda} \\
+\left[D u_{3}, D u_{4}\left[D u_{1}, D u_{2}, u_{5}\right]_{\lambda}\right]_{\lambda} \\
=\left[\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}, D u_{4}, u_{5}\right]_{\lambda} \\
+\left[D u_{3},\left[D u_{1}, D u_{2}, D u_{4}\right]_{\lambda}, u_{5}\right]_{\lambda}+\left[D u_{3}, D u_{4}\left[D u_{1}, D u_{2}, u_{5}\right]_{\lambda}\right]_{\lambda} \\
=\left[\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}, D u_{4}, u_{5}\right]+\left[D u_{3},\left[D u_{1}, D u_{2}, D u_{4}\right]_{\lambda}, u_{5}\right]_{\lambda} \\
+\left[D u_{1}, D u_{2},\left[D u_{3}, D u_{4}, u_{5}\right]_{\lambda}\right]_{\lambda}-\left[\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}, D u_{4}, u_{5}\right]_{\lambda} \\
\quad-\left[D u_{3},\left[D u_{1}, D u_{2}, D u_{4}\right]_{\lambda}, u_{5}\right]_{\lambda} \\
=\left[D u_{1}, D u_{2},\left[D u_{3}, D u_{4}, u_{5}\right]_{\lambda}\right]_{\lambda}=\left\{u_{1}, u_{2},\left\{u_{3}, u_{4}, u_{5}\right\}_{\lambda D}\right\}_{\lambda D}
\end{gathered}
$$

Then we get equation
(17). By applying the same previous discussion we get equation (18).

Therefore, V is a $3-\lambda$ - pre Lie algebra in the multiplication (20). The equation (21) follows from equation (1), and equation (23) a direct computation.
Theorem 4.6 : Let $\left(V,[,,]_{\lambda}\right)$ be a $3-\lambda$-Lie algebra, D_{λ} be an involutive $-\lambda-$ derivation on V. Then D_{λ} is an λ-algebra isomorphism from the sub-adjacent 3 -λ-Lie algebra, $\left(V,\{,,\}_{\lambda D c}\right)$ of the $3-\lambda$-pre Lie algebra $\left(V,\{,,\}_{\lambda D}\right)$ to the $3-\lambda$-Lie algebra $\left(V,[,,]_{\lambda}\right)$, and

$$
\begin{align*}
\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda D c}= & \left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda D}+\left\{u_{2}, u_{3}, u_{1}\right\}_{\lambda D}+\left\{u_{3}, u_{1}, u_{2}\right\}_{\lambda D} \tag{22}\\
& =D\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}, u_{1}, u_{2}, u_{3} \in V
\end{align*}
$$

Furthermore $\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda D C}=\left\{\begin{array}{l}0, u_{1}, u_{2}, u_{3} \in v_{1} \text { or } u_{1}, u_{2}, u_{3} \in v-1 \\ -\left[u_{1}, u_{2}, u_{3}\right]_{\lambda} \\ -\left[u_{1}, u_{2} \in v_{1}, u_{3} \in v_{-1}\right. \\ -\left[u_{1}, u_{2}, u_{3}\right]_{\lambda} \\ u_{1}, u_{2} \in v_{-1}, u_{3} \in v_{1}\end{array}\right.$
Proof. By equation (20), the sub-adjacent $3-\lambda$-Lie algebra, $\left(V,\{,,\}_{\lambda D c}\right)$ with the multiplication

$$
\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda D C}=\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda D}+\left\{u_{2}, u_{3}, u_{1}\right\}_{\lambda D}+\left\{u_{3}, u_{1}, u_{2}\right\}_{\lambda D}
$$

$=\left[D u_{1}, D u_{2}, u_{3}\right]_{\lambda}+\left[D u_{2}, D u_{3}, u_{1}\right]_{\lambda}+\left[D u_{3}, D u_{1}, u_{2}\right]_{\lambda}=D\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}$
It follows Equation (22). Since
$D\left(\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda D c}\right)=D\left(D\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}\right)=D^{2}\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}=\left[D u_{1}, D u_{2}, D u_{3}\right]_{\lambda}$ for all $u_{1}, u_{2}, u_{3} \in V$, the D_{λ} is an λ-algebra isomorphism. Hence equations(22), and equation (23) hold.
Theorem 4.7 : Let $\left(V,[,,]_{\lambda}\right)$ be a $3-\lambda-$ Lie algebra, and D_{λ} is an involutive $-\lambda-$ derivation on V. Then there exists a compatible $3-\lambda$-pre Lie algebra $\left(V,\{,,\}_{\lambda V}\right)$ where

$$
\begin{equation*}
\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda V}=D\left[u_{1}, u_{2}, D u_{3}\right]_{\lambda} \tag{24}
\end{equation*}
$$

Proof. By equation (24), we have $\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda V}=D\left[u_{1}, u_{2}, D u_{3}\right]_{\lambda}=-D\left[u_{2}, u_{1}, D u_{3}\right]_{\lambda}=-\left\{u_{2}, u_{1}, u_{3}\right\}_{\lambda V}$ for all $v_{i} \in$ $V, 1 \leq i \leq 5$, and $\quad\left\{u_{1}, u_{2},\left\{u_{5}, u_{3}, u_{4}\right\}_{\lambda}\right\}_{\lambda}=D\left[u_{1}, u_{2}, D^{2}\left[u_{3}, u_{4}, D u_{5}\right]_{\lambda}\right]_{\lambda}=$ $D\left[u_{1}, u_{2},\left[u_{3}, u_{4}, D u_{5}\right]_{\lambda}\right]_{\lambda}$ we get equation (16) , and $D\left[u_{3}, u_{4}\left[u_{1}, u_{2}, D u_{5}\right]_{\lambda}\right]_{\lambda}=D\left(\left[u_{1}, u_{2},\left[u_{3}, u_{4}, D u_{5}\right]_{\lambda}\right]_{\lambda}\right.$ $\left.-\left[\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}, u_{4}, D u_{5}\right]_{\lambda}-\left[u_{3},\left[u_{1}, u_{2}, u_{4}\right]_{\lambda}, D u_{5}\right]_{\lambda}\right)$
Therefore

$$
\begin{aligned}
& \left\{\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda V c}, u_{4}, u_{5}\right\}_{V \lambda}+\left\{u_{3},\left\{u_{1}, u_{2}, u_{4}\right\}_{\lambda V c}, u_{5}\right\}_{V \lambda}+\left\{u_{3}, u_{4},\left\{u_{1}, u_{2}, u_{5}\right\}_{\lambda V}\right\}_{V \lambda} \\
& =D\left[\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda V c}, u_{4}, D u_{5}\right]_{\lambda}+D\left[u_{3},\left\{u_{1}, u_{2}, u_{4}\right\}_{\lambda V c}, D u_{5}\right]_{\lambda}+D\left[u_{3}, u_{4}\left\{u_{1}, u_{2}, D u_{5}\right\}_{\lambda}\right]_{\lambda} \\
& =D\left[D\left(\left[u_{1}, u_{2}, D u_{3}\right]_{\lambda}+\left[u_{2}, u_{3}, D u_{1}\right]_{\lambda}+\left[u_{3}, u_{1}, D u_{2}\right]_{\lambda}\right), u_{4}, D u_{5}\right]_{\lambda} \\
& +D\left[u_{3}, D\left(\left[u_{1}, u_{2}, D u_{4}\right]_{\lambda}+\left[u_{2}, u_{4}, D u_{1}\right]_{\lambda}+\left[u_{4}, u_{1}, D u_{2}\right]_{\lambda}\right), D u_{5}\right]_{\lambda} \\
& +D\left[u_{3}, u_{4},\left[u_{1}, u_{2}, D u_{5}\right]_{\lambda}\right]_{\lambda} \\
& = \\
& D\left(\left[D\left(D\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}\right), u_{4}, D u_{5}\right]_{\lambda}+\right. \\
& \left.\left[u_{3}, D\left(D\left[u_{1}, u_{2}, u_{4}\right]_{\lambda}\right), D u_{5}\right]_{\lambda}+\left[u_{3}, u_{4},\left[u_{1}, u_{2}, D u_{5}\right]_{\lambda}\right]_{\lambda}\right) \\
& \left.\left.=D\left(\left[D^{2}\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}\right), u_{4}, D u_{5}\right]_{\lambda}+\left[u_{3}, D^{2}\left[u_{1}, u_{2}, u_{4}\right]_{\lambda}\right), D u_{5}\right]_{\lambda}+\left[u_{3}, u_{4},\left[u_{1}, u_{2}, D u_{5}\right]_{\lambda}\right]_{\lambda}\right) \\
& \left.\left.=D\left(\left[\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}\right), u_{4}, D u_{5}\right]_{\lambda}+\left[u_{3},\left[u_{1}, u_{2}, u_{4}\right]_{\lambda}\right), D u_{5}\right]_{\lambda}+\left[u_{3}, u_{4}\left[u_{1}, u_{2}, D u_{5}\right]_{\lambda}\right]_{\lambda}\right) \\
& =D\left(\left[\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}, u_{4}, D u_{5}\right]_{\lambda}+\left[u_{3},\left[u_{1}, u_{2}, u_{4}\right]_{\lambda}, D u_{5}\right]_{\lambda}+\left[u_{1}, u_{2},\left[u_{3}, u_{4}, D u_{5}\right]_{\lambda}\right]_{\lambda}\right. \\
& \left.-\left[\left[u_{1}, u_{2}, u_{3}\right]_{\lambda}, u_{4}, D u_{5}\right]_{\lambda}-\left[u_{3},\left[u_{1}, u_{2}, u_{4}\right]_{\lambda}, D u_{5}\right]_{\lambda}\right) \\
& =D\left[u_{1}, u_{2},\left[u_{3}, u_{4}, D u_{5}\right]_{\lambda}\right]_{\lambda}=\left\{u_{1}, u_{2},\left\{u_{3}, u_{4}, u_{5}\right\}_{\lambda V}\right\}_{V \lambda}
\end{aligned}
$$

we get equation (17). By the same previous discussion we get equation (18). Hence $\left\{u_{1}, u_{2}, u_{3}\right\}_{\lambda V c}=D\left(\left[u_{1}, u_{2}, D u_{3}\right]_{\lambda}+\left[u_{2}, u_{3}, D u_{1}\right]_{\lambda}+\left[u_{3}, u_{1}, D u_{2}\right]_{\lambda}\right)$. Hence $\left(V,\{,,\}_{\lambda V}\right)$ is the compatible a $3-\lambda$ - pre Lie algebra of $\left(V,[,,]_{\lambda}\right)$.

References

[1] V.Filippov. "n-Lie algebras". Siberian Mathematical Journal . vol. 26, no. 6, pp. 126-140, 1985.
[2] C. Bai, L. Guo, and Y. Sheng. "Bialgebras, the classical Yang - Baxter equation and main triples for3-Lie algebras". Advances in Theoretical and Mathematical Physics, vol. 23, pp. 27-74, 2019. https://dx.doi.org/10.4310/ATMP.2019.v23.n1.a2.
[3] Ruipu Bai, Shuai Hou, and Yansha Gao ."Structure of n-Lie Algebras with Involutive Derivations", Hindawi International Journal of Mathematics and Mathematical Sciences, Article ID 7202141, 9 pages, 2018. https://doi.org/10.1155/2018/7202141.
[4] A. H. Rezaei and B. Davvaz. "Construction of Γ-algebra and Γ-Lie admissible algebras".Korean Journal of Mathematics, vol. 26, pp. 175-189, 2018. https://doi.org/10.11568/ kjm .2018.26.2.175.
[5] Ruipu Bai, Shuai Hou, and Chuangchuang Kang . "3- Lie bialgebras and 3-Pre- Algebras induced by Involutive Derivations", to appear, 2019 .
[6] Ahmed H. A. and Majeed A. H. " $\Gamma-(\lambda, \delta)$-Derivation on Semi-Group Ideals in Prime Γ-NearRing". Iraqi Journal of Science, vol. 61, no. 3, pp. 600-607, 2020. https://doi.org/10.24996 /ijs.2020.61.3.16
[7] MahmoodA. H., NayefM. S. and SalihS. M. "Generalized Higher Derivations on ГМModules". Iraqi Journal of Science, (Special Issue)The First Conference of Mathematics-2020 pp.35-44, 2020. https://doi.org/10.24996/ijs.2020.SI.1.6 .

[^0]: *Email: math.post10@qu.edu.iq

