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Abstract:

In this paper, we extend the work of our proplem in uniformly convex Banach
spaces using Kirk fixed point theorem. Thus the existence and sufficient conditions
for the controllability to general formulation of nonlinear boundary control problems
in reflexive Banach spaces are introduced. The results are obtained by using fixed
point theorem that deals with nonexpanisive mapping defined on a set has normal
structure and strongly continuous semigroup theory. An application is given to
illustrate the importance of the results.
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1. Introduction

Many engineering and scientific systems in the control theory in infinite dimensional
spaces can be formulated by partial differential equations, integral equations, or fractional
differential equations.
We can characterize these systems as differential equations by using semigroup theory,and
then
study the solution of these problems. Controllability is one of most significant properties of
the control system, it means that the ability to transmit the system from an arbitrary initial
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state to an arbitrary final state of a given set in a finite time by a convenient option of the
control function, one can refer to the references [1-3].

In this paper, we introduce the sufficient conditions for controllability of the following
boundary control problem in arbitrary reflexive Banach spaces (rBs).

Ww(t) = Bw(t) + As(t) + g(t, w(®)) + H (t, N(t,w(t))); almost everywhere in J = [0,a]

w(t) = A;s(t), 1.1)
w(0) = wy
where w(.) takes values in (rBs) Z with norm |[. ||, the control function s(.) € L%(J,S) be a

(rBs) of admissible control functions, with S is a Banach space (Bs). Let B a closed linear
and densely defined operator, with the domain of B, D(B) < Z, ||B|| < c¢;, where c; is a
positive constant, and 7 be a linear operator such that D(7) € Z and the range of 7, R(t) S
E, where E is a (Bs), A;:S — E be a linear continuous operator. The nonlinear operators
g, N and H are continuous from J X Z into Z and all of them satisfy Lipschitz condition on
the second argument. Here B be a linear operator generates a strongly continuous semigroup
(Co — semigroup) Y(t), t =0, on (rBs) Z and A:S — Z be a bounded linear operator with
|A]l < k, where k is a positive constant.

Fixed point theorems (FPTs) are basic mathematical tools which are used in studying the
controllability results of nonlinear equations. Controllability of the system (1.1) with different
geometric conditions on the spaces Z and S has been studied by using Banach contraction
theorem, Schauder (FPT) and Kirk (FPT), see [4-7].

Nonexpansive mappings on a space has normal structure, these mappings play an important
role in fixed point theory, see [8,11].

Since every uniformly convex Banach space (ucBs) is (rBs) ,howeverthe converse is not ture
in general, [7], as well as a nonexpansive mapping on a (Bs) has no fixed point (FP) in
general. . Then we extend the work of our problem by using Kirk (FPT) [5]. Thus, the aim of
this article is to study the controllability of the system (1.1) in arbitrary (rBs) by using (FPT)
that deals with nonexpansive mapping defined on a set has normal structure.

2. Preliminaries

In this section some well known definitions, theorems and examples that will be used in the
proof of the main results.

Definition 2.1 [8]: Let X be a normed space, a self mapping T is said to be Lipschitz
continuous, if there is ¢ > 0, such that ||T (x;) — T(x)|l < @llx; — x| forall x;, x, € X.
The smallest ¢ is the Lipschitz constant of T. If ¢ < 1 then T is contraction and if ¢ <1
then T is nonexpansive .

It is clear that from the previous definition the contraction mapping is nonexpansive and
isometry mapping is nonexpansive ,while it is not contraction. Isometry mapping means that
T satisfies the following condition ||T (x;) — T(x)|l = |lx; — x| for all x4, x, € X.
Definition 2.2 [9]: A (Bs) X is said to be satisfy Opial’s condition if for each x in X and each
sequence {x,} converges weakly to x, then Tlll_r)go infllx, —yll > %1_{210 inf||x, — x|| holds
for all y # x. Finite dimensional (Bs), [,, spaces for 1 <p <o and L, for p = 2 (Hilbert
space) satisfy Opial’s condition.

Definition 2.3 [7]: Let X* and X** be the first and second dual spaces of a normed space X.
Define a mapping J:X =» X™ by J(x) = F,, where F, = f(x), and f € X*. The normed
space X is called reflexive if the natural embedding is an onto mapping.It is clear (Bs) is
reflexive if the natural embedding is an onto mapping from X into X** .

Example 2.4 [7]: The Euclidean space R", all finite dimensional spaces and Hilbert spaces
are reflexive, so L, and [, spaces for 1 < p < o and (ucBs) are reflexive, while the space of
continuous real value function on [0,1] is not reflexive .
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Definition 2.5 [7]: Let X be a normed space, a subset K of X is called weakly compact, if
every sequence {x, } in K contains a subsequence which converges weakly in .

Remark 2.6: Every nonempty, bounded, closed and convex (bcc) subset of (rBs) is weakly
compact [8,9].

Definition 2.7 [8]: Let X be a Banach space, and K € X be nonempty, (bcc). A point x € K is
said to be diametral if sup {||lx — k| : k € K} =diam K. A subset K of X has normal
structure, if for each nonempty, convex D € K with diam > 0 , there exist a point x € D
which is not diametral .

Example 2.8 [8]: In (Bs) compact convex set has normal structure, so nonempty, (bcc) subset
of (ucBs) has normal structure, Opial’s condition also implies normal structure, see [10].

To have an extension of Kirk (FPT), on (ucBs), we need some geometric conditions on the
spaces in the domain of the nonexpansive maps in (rBs).

Theorem 2.9 [8,11]: Let T be nonexpansive mapping from C into C, where C is a nonempty
weakly compact convex subset having normal structure in a (Bs) X, then T has a (FP) in C.
Remark 2.10 [11]: In previous theorem the convexity can’t be dispense one can see the
following simple example

Let C =[-2,—-1]U[1,2] € R and T is a self mapping on C defined by Tx = —x, x € C,
therefore T is nonexpansive, but T has no (FP) in C.

Note that, the nonexpansive map on a non convex set in (Bs) has no fixed point .

Definition 2.11 [1]: Let X be a (Bs). A one parameter family Y(t), 0 < t < oo of linear
bounded operators from a (Bs) X into itself , is called a strongly continuous semigroup (Cy —
semigroup) , if it’s satisfied the following conditions:

(i) ) =1, (ii) Y(t+s)= Y()Y(s) forevery t,s = 0 (the semigroup property) .

(iii) ltl_I)I& Y(t)x = x for every x € X.

Definition 2.12 [11]: The infinitesimal generator B of the semigroup Y(t) on a (Bs) X is
defined by: Bx = tli%l% (Y(t) — Dx , for x € D(B) whenever the limit exists .

3. Controllability Of Nonlinear Control Problems

The main objective of this section, is to study the controllability of mild solution to the
boundary value control problem (1.1) in (rBs) by using C, — semigroup and Theorem 2.9.
Let B,:Z — Z, be the linear operator, defined by B,w = Bw, w €D(B;), where D(B;) =
{weD@B): tw = 0}. Here, let Zy={w:weC({,2),w(0) =w,,|lw()| <r, for all
t € ] }, where r is a positive constant, be a subset of Z, since Z, is closed subset of a (rBs),
then Z, is a (rBs) [7].
Throughout this paper, we also suppose the basic hypothesis as follows:
(Cy) D(B) < D(t) and the restriction of T to D(B) is continuous relative to such graph norm
of D(B,).
(Cy) The infinitesimal generator B; generates a Co-semigroup Y () with max,, || Y(©) || <1
(C3) There exists a linear  continuous  operator A, :S——>Z, with
BA, € L(S,Z),t(A;s) =A;s, for all s € S. And A,s(t) is continuously differentiable, such
that || A,s|| < L||Ays]| foralls € S, where L is a constant.
(Cy) Forall t € (0,a] ands € S, Y(t)A,s € D(B,). Further, there exists a positive function
f(.) €LY0,a),suchthat ||B;Y(t)A;| <f(t) a.e.,t € (0,a).
(Cs) The nonlinear operators : ] X Z — Z , and N: ] X Z — Z are continuous and they satisfy
Lipschitz condition on the second argument.
Let wy, w, € Zo, suchthat [lg(t, w1 (t)) — g(t, w2 (Ol < Lillwi (&) —w, (0], and
IN(t,w,(t)) — N(t, wo ()| < Lllw,(t) — wy(2)]|, where I, [, are positive constants.
Also, let I3 = max.¢|lg(t,0)]|, and k; = max.¢;|lw(t)]l.
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Further, the nonlinear operator H:J X Z — Z is continuous and satisfy Lipschitz condition,
such that for all w;,w, € Z, , we have :
IH(E, N(t, w1 () — H(E, N(& w2 (O < LlIN(E, wq (©) — N(& w2 ()] < Llallwy (8) -
w,(t)]|, where 1, is positive constant. Also, let I = r?gxllH(t,N(t, oIl .
(Ce) The linear operator U from L2(J,S) into , defined by :

Us =
foa Y(t — 2)As(2)dz
This leads to a bounded inverse operator U~ defined on L?(J,S) /ker(U), and hence
| T%|| < k2, where k, is a positive constant. For more details about the existence of

bounded inverse operator of U, see [5,12].
3.1 Result of Controllability to Problem (1.1):
Throughout this subsection, we want to define, and to find the mild solution to the problem
(1.2).
Suppose that w(.) € Z be a solution of problem (1.1), then we can define a function :
0(t)=w(t)-A,s(t) (3.1

From assumptions, we obtain that O(t) € D(B,). Therefore the problem (1.1) can be written
in term of B; and A, as follows :
W =B[0(t) + A;s(t)] + As(t) + g(t,w(t)) + H(t,N(t,w(t))) a.e.,in] =[0,a]
=BO(t) + BA,s(t) + As(t) + g(t,w(t)) + H(t,N(t,w(t)))
Since O(t) € D(B,), hence B;0(t) = BO(t), thus
w(t) = B;0(t) + BA,s(t) + As(t) + g(t,w(t)) + H(t,N(t,w(t))); (a.e.) in | =[0,a]
w(t) = 0(t) + A,s(t) (3.2)
w(0) = wy }
By condition (C3), we have A,s(t) is continuously differentiable, if w is continuously
differentiable on J, then by definition of the mild solution O(t) =w(t) —A4,s(t), it can be
defined as a mild solution to Cauchy problem [1],
d d d
S 0O =—w(t) —Az— s(t)
By equation (3.2), we get that
0(t)=B,0(t) + BA,s(t) + (As)(t) + g(t,w(t)) + H(t,N(t,w(t)))

— A, i s(t),a.ein ] = [0,a]

dt
0(0)
=wy - A,5(0) (3.3)
From condition (C,), we get that (t),t >0 , which is the Cp-semigroup generated by the linear
operator B;, and O(t) is a solution of (3.3), hence the function Q(z) =Y(t—=z)0(z) is
differentiable for 0 < z < t for more dailies see [1].

%Q(Z):Y(t—z) %O(Z) + 0(2) % Y (t—=z) . Thus by equation (3.3) we have
% Q(z) =Y(t—2)[B10(2) + BA;s(z) + (4s)(z) + g(z,w(2)) + H(z,N(z,w(2))) —
Ay = 5(2)] + 0(2)[-BY (t-2)]
%Q(z):Y(t—z)&O(z) + Y(t—2) BA,s(2) + Y(t—2)(A4s)(2) + Y(t—=2)g(z, w(2))
+Y(t—2z) H(z,N(z,w(2))) = Y(t—=2) A, % s(z) =Y(t —z)BO(z),
Since B;O(t) = BO(t), hence
% Q(z)=Y(t—z)BA,s(t) + Y(t—=2)(As)(t) + Y(t—=2) g(z,w(2)) +
Y(t—2) H(z N(z,w(2))) —Y(t-2) A; +5(2).
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On integrating both sides from 0 to ¢, yields :

Q(t) —Q(0) =, Y (t-2)BA,5(2)dz + [, Y (t-2)As(2)dz + [ Y (t-2) g(z,w(2))dz +
[, Y (t=2) H(z, N(z,w(2)))dz — [, Y (t-2) A; = s(z)dz

(3.4)

From the definition of Q(z) =Y (t—=2)0(z), we get :

%(8 =Y (t-)0()=Y (0)[w(t) —Azs()]=w(t) —Azs(t), Y (0) =1,

And,

?3(2)) =Y(t-0)0(0)=Y (t)[w(0)—A;s(0)] = Y(t)wo — Y (t) A25(0).

Now, by integrating the term fOtY (t—2)A, % s(z)dz, in (3.4) by parts we get that:
t
d
LY (t=2)4; = s(2)dz = Y(t-2) Ay5(2) | + J, 5 (2)By Y (t—2)A,dz
0
= A;5(8) — Y(t) 4,5(0) + [, 5 (2)By Y(t-2)Azdz

(3.7) Therefore,
By substituting the equations (3.5), (3.6), and (3.7) into equation (3.4), we get that
w(t) —A;5(t) = Y()wo + Y(t) A,5(0) = [ Y (t-2)BA,s5(2)dz + [ Y (t-2)As(z)dz
+ [, Y (t-2) gz, w(@)dz + [, Y (t-2) H(s, N(z,w(2)))dz — A;5(t) +Y(t) Ap5(0) —
fots (2)B; Y(t—z)A,dz. Therefore
w(t) =
Y(Owo + [ Y (t-2)BA,s(2)dz + [[ Y (t-2)As(2)dz + [, Y (t-2) g(z,w(2))dz

+ [ Y (t-2) H(z,N(2,w(2)))dz — [} By Y (t-2)A;s(2)dz.
(3.8)
If the function w:[0,a] — Z given by (3.8) is continuous on [0, a], and it is continuously
differentiable on (0, a), and w(z) € Z for 0 < z < t, then we say that w(.) is a mild solution
to problem (1.1).
Definition 3.1: The nonlinear boundary value control system (1.1) is said to be controllable
on the interval J = [0, a], if Vwy, wy € Z, 35(.) € L2(J, S) such that the mild solution w(t)
satisfies w(a) = wj.
3.2 Main Results

In this section, we will prove the theorem that deals with the controllability of the
problem (1.1).

Theorem 3.1: Let Zbe a (rBs) which satisfying Opial’s condition and the hypothesis
(C1)_(Ce) are satisfied for the nonlinear boundary control problem (1.1)
w(t) = Bw(t) + As(t) + g(t,w(t)) + H(t, N(t,w(t))); (a.e.)in J=1]0,a]
tw(t) = A;s(t), }
w(0) = wy,
Further, suppose that
(Cy) There exists a constant k3> 0, such that foa f(t) <ks.
(Cg) Let by =allyjky, b, =all;, bz =allylky and b, = alls , such that:
(Uwoll + by + by + bz + by + [ak,UIBA, || + kaks + akalk][llwy ]l + Ulwoll + by +
by +bs+ b)) <r
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(Co) @ = [[ally + alll,] + [ak,l||BA,|| + ko ks + akylk][ally, + allyl,]], such that
0<p<1.
Then the system (1.1) is controllable on J .

Proof: By using definition (3.1) and mild solution equation (3.8) we obtain that
a

wy =w(a) =Y(a)wy + faY (a—=z)BA,s(z)dz +f Y (a—2)(As)(z)dz
0 0
+f Y (a—=2) g(z,w(2))dz + f Y(a—2z)H(z,N(z,w(z)))dz

- faBl Y(t-2)A,s(z)dz
0

wy = Y(a)w, +Us+ [, Y (a—2) g(z,w(2))dz + [, Y (a — 2) H(z N(z,w(2)))dz.
Therefore,

Us = wy; — Y(a)wy — foa Y(a—2)g(z,w(z))dz — foa Y(a—2)H(z,N(z,w(z)))dz.
From constriction the operator U in (Cs) since s(t) = U~(Us(t)), thus

s(t) = U Y(wy = Y(a)wy — f Y(a—2)g(zw(z))dz

. 0
—f Y(a
— Z%H(Z, N(z,w(2)))dz)(t) (3.9)

We can explain implication when using this control, the operator defined by

t t
Bw)(t) =Y(O)w, + f Y(t —z) BA;s(z)dz + j Y(t —z)(As)(z)dz

0 0

+ ftY(t —-2z)g(z,w(z))dz + ftY(t —2z)H(z,N(z,w(2)))dz
0 0

t
—j B, Y(t—2)A,s(z)dz,
0

has a (FP), this (FP) is then a solution of (1.1).

Note that, (Bw)(a) = wjy, it know that the control s transmit the control system from the
initial wy to wy in time a, provided we can obtain a (FP) of the nonlinear operator f3 .

Let Z be a (rBs) that satisfies the Opial’s condition and let Z,={w :w € C(J,Z),w(0) =
wo, lw(®)|| <r, fort € J}, it's clear that Z, is (bcc) subset of Z [7]. We have also Z, is
weakly compact and has normal structure in (rBs) Z, see Remark 2.6 and Example 2.8.

Here, we will define a mapping B:Z — Z, by :

t
(Bw)(©) = YOwy + [

0

t

Y(t—2)g(z,w(z))dz + J Y(t—2z)H(z,N(z,w(2)))dz
0

+ fot[y(t —&)BA; —BY(t —&)A, + Y(t — E)A)Twy — Y(a)w,
-/ V(@ -9z w() dz

[

— z)H(z,N(z,w(2))) dz](§)d§ (3.10)

Now we want to show that the operator £ is continuous and maps Z, into itself. Thus, we take
the norm of both sides of (3.10)
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t

Y(t—2)g(z,w(z))dz + f Y(t—2z)H(z,N(z,w(2)))dz
0

1w (DIl = |Y<t)wo+ f

0

+ | (= OBA, = BV (= )4, + ¥ (e = AT, — V(@wy
0

- f Y(a—2)g(z,w(z))dz

—f Y(a —2)H(z,N(z,w(2))) dz]($)dS H
0
IBwWYDOI < [IY @O IHIwoll +

f Yt - [ g(z,w(2) - g(z 0) + g(z 0)dz
0

+

J.tY(t —z)[H(z,N(z,w(2))) —H(z,N(z,0)) + H(z,N(z,0))]dz

+

t
f V(& — ©)BA, — ByY(t — Ay + Y (t — AT [ws — ¥ (@wo
0

- f Y(a - 2)[g(zw(2) - g(z,0) + g(z,0)] dz
- f V(@ - DHENGWE)) - HE N 0)) + H(z Nz 00)] d] (f)de
BN < YO liwll + f (e = Do w) - gl Ol + I+9( 0)l1d
¥ f WY (e = I NG N Gw(@)) — Hz N (2 O L + 1z Nz, 0)
¥ f Y (e = OB ALINELY (& — DAl 1Y (& — O] T Cws
FIY @Il + j ¥ (e - D g w(z) - 9 0l + g, Il dz
+ [ 1Y@ = 2N 1N Gwe) ~ He NG ol

0
+1|H(z,N(z,0)ll]dz]()d¢
Under the conditions (C;) _(C;), we obtain that:

t t
IBW)DII < Uwoll +] L llw(@)] +l3]dz+f Ll llw(2)| + ls]dz
0 0

+f [LIBA N + f (&) + lk]ka[llws | + Uiwo |l + allly lw ()] + 15]

0
+alllyl lw@I + Is]] (§)dé
Since g, N and H are continuous and by condition (Cg) |[(Bw)(t)|| < 7, it follows that g is
also continuous mapping from Z,, into itself .
Now, we must prove that the operator £ is nonexpansive mapping from Z, into itself :
Letw;, w, € Z,, then
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1(Bw1) (&) — (Bwo) (D] t
= HY(t)WO +f

0

Y(t - 2) gz, wy(2))dz + fo Yt = 2) HO NG wi (2)))d
+ fot[Y(t —&BA, —BY(t — A, + Y(t — AT [wy — Y(a)w,

-/ V(@ - g(zwi @) dz - | V(@ - DHGNGwn (DAE)dE

- [Y(O)w, + fOtY(t —z) g(z,wy(2))dz + fOtY(t —2z)H(z,N(z,w,(2)))dz

+ f [Y(t = ©)BA, — ByY (¢ — E)As + Y(t — E)AIT[ws — Y(@) wy
0

_ f Y(a - 2)g(z,wy(2)) dz - f Y(a - 2)H(z N(zw,(2))) dz] (§)dE]|

0 0

1(Bw1) (&) = (Bw) (DI t t
= ’ Y(t)wy + f Y(t—2)g(z,wi(2))dz + f Y(t —2z)H(z,N(z,wi(2)))dz

0 0
t
4 ] V(& — ©)BA, — ByY (t — Ay + Y(t — AT [wy — Y(@wo
0

— f Y(a— Z)g(z, Wl(Z)) dz — f Y(a—z)H(z,N(z,w1(2))) dz](&)dé
0 0
t t
-Y()w, — f Y(t—2)g(z,wy(2))dz — J Y(t —2)H(z,N(z,w,(2)))dz
‘ 0 0
- f [Y(t — E)BAy — ByY(t — )45 + Y (t — AT [wy — Y(@)wg
0
- ] Y(a - 2)g(zws(2)) dz — j Y(a - 2)H(z N(z,wy(2))) dz] (§)dé |
0 0
1w © - Bu) O
- H ] Y(t - 2) [9(z w1 (D)) — gz ws(2))]dz
0
t
t j Y(t - 2) [H(z Nz w1 (2))) — H(z N (2 w3 (2)))]
0
+ f [Y(t — £)BA, — ByY(t — )4,
0
LY - AT f Y(a -2 [g(zw: (@) — g(zwy(2)))dz

0

- f Y(a —2z)[H(z,N(z,w1(2))) — H(z,N(z,w,(2)))]dz] |(§)dS]|
0
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1Bw)(© = Bw) O
< f 1Yt = DN [|9(z wi(2)) - 9(2 w2 () ||dz
0

+ fOtIIY(t — 2)|I|H(z, N(t,w1(2))) — H(z,N(z,w,(2)))lldz

+ fOtIIY(t = ONBAB,Y (€ = A Y (&

- E)IIIIAII||U‘1||[LaIIY(a =2l lg(z,w1(2)) — g(z, w2(2))ldz

+ anIIY(a = 2)I|H(z, N(t,w1(2))) — H(z,N(z,w,(2)))ldz] (§)d¢

From condition(C;) _(C5), we obtain that:

1BwD(© - Bw)OI t
< f ULy llw (2)—ws (2) ldz + f L llws (2)—ws (2) |2
Ot 0

+ j [LIBA|l + f (&) + lk] kx[all; [lwy(2)—w,(2) |
0
+ all L |lwy (2)—w,(2)||]dz

I(Bw) (@) — (Bw) (D)l
< [ally + allyl][lwy () —w, (O + [alk,|[BA || + kok3
+ ak,lk][ally + allyl,]||lwi (&) —w, (O]

I(Bw1) (@) — (Bw) (DI

< [ally + all l,][alk,||BA,|| + ko ks

+ akylk][all; + allyl,]]|wy (£) —w, ()]
By condition (Co), we get that:
I(Bw1) (&) — (Bw) (DI < @llw, (6)—w, (D]
Consequentially, B is nonexpansive mapping .Thus from Theorem (2.9) , there exists a (FP)
w € Z,, such that (Bw)(t) = w(t), and hence this (FP) is a solution of system (1.1) on the
interval J, which satisfied w(a) = w; . Therefore the nonlinear control system (1.1) is
controllable on J.

4. Applications
Let vy be a bounded and open subset of R", and let M be a boundary control integrodifferential
system

% — Ky(t,x) = w; (t,y(t, x),folt W, (t, z,y(z, x))dz)inL1 =(0,a) XY (4.2)
y(t,0) = s(t,0),onL, =(0,a) x M, t €[0,qa] (4.2a)
v(0,x) = yo(x), forx €y (4.2b)

where s € L2( L), y, € L*(¥), w; € L*(L, ) and w, € L;.
This problem can be characterization as a boundary control problem of the form (1.1) by
suitably taking the spaces, C, E, S and the operators By, w, and x as follows:
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1
Let C= L*(y), E= H 2(I'), S=L? (M) , B;= | (the identity operator) and D(w)={y €
L>(¥); Ky € L*(3)}, w = K. The operator x is the “trace” operator With xy = y/|,, is well

1
defined and belongsto H 2(77) for each yeD (w) (see[13]) and the operator B is given by
B =K, D(B) = H} W)UH?(y) (Here H* (), H*(I")and H}(y) are usual Sobolev

Spaceson vy, ).
Define the linear operator A: L*(M) —» L?(y) by As = Us where Us is the unique solution to
the Dirichlet boundary value problem,
DUs =0in o
Us=sinM
In other words, (see [14])

_ ou 1 2
fw Us AUdx=[s—dx, for all Ue€HUH?*( )
(4.3)
Where Z—U denotes the outward normal derivative of U which is well-defined as an element

n
of HY/2(T") . From (4.3) it follows that,

" US"LZ(w) < G ||| -v2 (D), forall s € HY2(T)

and
1Us ]l 1y < C2 s HY2 (@), foralls € HY2(D),

where C; , i=1,2 are positive constants independent of u. From the above estimates it follows
by an interpolation argument [15] that

IBY AN, 2y 2y < CE73/* forallt > 0with f(t) = Ct~/*

Further assume that the bounded invertible operator U exists. Choose a and other constants,
such that satisfying the last condition (Cg). Hence, one can see that all the conditions stated in
the theorem are satisfied and so the system (1.1) is controllable on (0, a).

Conclusions

e We have been studied the controllability of different kinds of general formulation of
control systems.

e Extended the method using Kirk fixed point theorem which deals with contraction
mapping to fixed point theorem of nonexpansive mapping.

e The controllability of the above systems discussed by using the concepts of semigroup
theory with fixed point theorem.
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