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Abstract: 

      In this paper, we extend the work of our proplem in uniformly convex Banach 

spaces using Kirk fixed point theorem. Thus the existence and sufficient conditions 

for the controllability to general formulation of nonlinear boundary control problems 

in reflexive Banach spaces are introduced. The results are obtained by using fixed 

point theorem that deals with nonexpanisive mapping defined on a set has normal 

structure and strongly continuous semigroup theory. An application is given to 

illustrate the  importance of the results.  
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 نظرية الظقطة الصامدة لدراسة قابلية السيطرة لطسائل السيطرة في فضاءات بظاخ الانعكاسية
 

، نصيف الجواري  *ريام بسام  
 قدم الرياضيات، كليه العلهم، جامعة بغداد، بغداد، العراق

 الخلاصه
السعرفة على فزاءات بشاخ السحدب في هذا البحث تم تهسعة العسل لسدألتشا السطروحة ضسن البحث      

طرة ي. لذلك تم تقديم الهجهد للحل والذروط الكافية لامكانية الدبأنتظام بأستخدام نظرية الشقطة الرامدة لكريك
 تم الحرهل على الشتائج  للريغة العامة لسدائل الديطرة الحدودية غير الخطية في فزاءات بشاخ الانعكاسية. 

الشقطة الرامدة التي تتعامل مع التطبيق غير السسدد والسعرف على مجسهعة تستلك  من خلال استخدام نظرية
البشية العسهدية وكذلك نظرية شبة الزمرة السدتسرة بقهة. ثم تم اعطاء تطبيق يهضح قيسة الشتائج التي تم 

 الحرهل عليها. 
 

1. Introduction  
      Many engineering and scientific systems in the control theory in infinite dimensional 

spaces can be formulated by partial differential equations, integral equations, or fractional 

differential equations.  

We can characterize these systems as differential equations by using semigroup theory,and 

then  
study the solution of these problems. Controllability is one of most significant properties of 

the control system, it means that the ability to transmit the system from an arbitrary initial 
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state to an arbitrary final state of a given set in a finite time by a convenient option of the 

control function, one can refer to the references  [1-3].  

In this paper, we introduce the sufficient conditions for controllability of the following 

boundary control problem in arbitrary reflexive Banach spaces (rBs).                                                                          

 ( )    ( )    ( )   (   ( ))   .   (   ( ))/                            ,   - 

  ( )     ( ) 

 ( )      

} (   ) 

where  ( ) takes values in (rBs)    with norm  ‖ ‖, the control function  ( )    (   ) be a 

(rBs) of admissible control functions, with   is a Banach space (Bs). Let    a closed linear 

and densely defined operator, with the domain of B,  ( )   ,  ‖ ‖      where    is a 

positive constant, and   be a linear operator such that   ( )    and the range of  ,  ( )  
 , where     is a (Bs),          be a linear continuous operator. The nonlinear operators 

 ,   and    are continuous from     into   and all of them satisfy Lipschitz condition on 

the second argument. Here   be a linear operator generates a strongly continuous  semigroup 

(   – semigroup)  ( ),     , on (rBs) Z and         be a bounded linear operator with 
‖ ‖   , where   is a positive constant. 

Fixed point theorems (FPTs) are basic mathematical tools which are  used in studying the 

controllability results of nonlinear equations. Controllability of the system (1.1) with different 

geometric conditions on the spaces   and   has been studied by using Banach contraction 

theorem, Schauder (FPT) and Kirk (FPT), see  [4-7].  

Nonexpansive mappings on a space  has normal structure, these mappings play an important 

role in fixed point theory, see [8,11].  

Since every uniformly convex Banach space (ucBs) is (rBs) ,howeverthe converse is not ture 

in general, [7], as well as  a nonexpansive mapping on a (Bs) has no fixed point (FP) in 

general. . Then we extend the work of our problem by using Kirk (FPT) [5]. Thus, the aim of 

this article is to study the controllability of the system (1.1) in arbitrary (rBs) by using (FPT)  

that deals with nonexpansive mapping defined on a set has normal structure. 

 2. Preliminaries 

In this section some well known definitions, theorems and examples that will be used in the 

proof of the main results. 

Definition 2.1 [8]: Let   be a normed space, a self mapping   is said to be Lipschitz 

continuous, if there is    , such that ‖ (  )   (  )‖   ‖     ‖ for all           . 

The smallest   is the Lipschitz constant of   . If      then   is contraction and if      

then     is nonexpansive . 

It is clear that from the previous definition  the contraction mapping is nonexpansive and 

isometry mapping is nonexpansive ,while it is not contraction. Isometry mapping means  that 

  satisfies the following condition ‖ (  )   (  )‖   ‖     ‖ for all           
Definition 2.2 [9]: A (Bs)   is said to be satisfy Opial’s condition if for each   in   and each 

sequence {  +                        , then      
   

   ‖    ‖      
   

   ‖    ‖ holds 

for all    . Finite dimensional (Bs),    spaces for        and     for     (Hilbert 

space) satisfy Opial’s condition. 

Definition 2.3 [7]: Let    and     be the first and second dual spaces of a normed space  . 

Define a mapping             ( )                 ( ), and     . The normed 

space   is called reflexive  if  the natural embedding is an onto mapping.It is clear (Bs) is 

reflexive if the natural embedding is an onto mapping from   into     . 
Example 2.4 [7]: The Euclidean space   , all finite dimensional spaces and Hilbert spaces  

are reflexive, so            spaces for       and (ucBs) are reflexive, while  the space of 

continuous real value function on ,   - is not reflexive . 
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Definition 2.5 [7]: Let   be a normed space, a subset   of   is called weakly compact, if 

every sequence *  +      contains a subsequence which converges weakly in  . 

Remark 2.6: Every nonempty, bounded, closed and convex (bcc) subset of (rBs) is weakly 

compact [8,9].  

Definition 2.7 [8]: Let   be a Banach space, and     be nonempty, (bcc). A point       is 

said to be  diametral  if     * ‖   ‖        +        . A subset   of    has normal 

structure, if for each nonempty, convex     with diam    , there exist a point      

which is not diametral . 

Example 2.8 [8]: In (Bs) compact convex set has normal structure, so nonempty, (bcc) subset 

of (ucBs) has normal structure,  Opial’s  condition also implies normal structure, see [10]. 

To have an extension of Kirk (FPT), on (ucBs), we  need  some geometric conditions on the 

spaces in the domain of the nonexpansive maps in (rBs). 

Theorem 2.9 [8,11]: Let   be nonexpansive mapping from   into  , where   is a nonempty 

weakly compact convex subset having normal structure in a (Bs)  , then   has a (FP) in  . 

Remark 2.10 [11]:  In previous  theorem the convexity can t be dispense one can see the 

following simple example  

Let   ,     -  ,   -     and     is a self mapping on   defined by       ,    , 

therefore   is nonexpansive, but     has no (FP) in    
 Note that, the nonexpansive map on a non convex set in (Bs) has no fixed point . 

Definition 2.11 [1]: Let   be a (Bs). A one parameter family  ( )           of linear 

bounded operators from a (Bs)   into itself , is called a strongly continuous semigroup  (   – 

semigroup) , if it’s satisfied the following  conditions: 

(i) ( )    ,   (ii)   (   )    ( ) ( )   for every          ( the semigroup property ) . 

(iii)      
   
 ( )    for every  x   . 

Definition 2.12 [11]: The infinitesimal generator   of the semigroup  ( ) on a (Bs)   is 

defined by:           
    

 

 
 ( ( )   )  , for x   ( ) whenever the limit exists . 

3. Controllability Of Nonlinear Control Problems 
      The main objective of this section,  is to study the controllability of mild solution to the 

boundary value control problem (1.1)  in (rBs)  by using    – semigroup  and Theorem 2.9. 

Let       , be the linear operator, defined by        ,   D(  ),  where  D(  ) = 

{   D(B):    = 0}. Here, let    *      (   )  ( )      ‖ ( )‖     for all 

    +, where   is a  positive constant, be a subset of   , since     is closed subset of a (rBs), 

then    is a (rBs) [7]. 

Throughout this paper, we also suppose the basic hypothesis as follows: 
 (C1)  ( )   ( ) and the restriction of   to  ( ) is continuous relative to such graph norm 

of  (  ). 
(C2) The infinitesimal generator    generates a C0-semigroup  ( ) with          ( )       
(C3) There exists a linear continuous operator           with 

     (   )  (   )      , for all    .  And    ( ) is continuously differentiable, such 

that                 for all      where L is a constant. 

(C4) For all   (   - and    ,  ( )     (  ). Further, there exists a positive function 

 ( )     (   )  such that      ( )       ( )        (   )  
(C5) The nonlinear operators        , and         are continuous and they satisfy 

Lipschitz condition on the second argument.  
Let             such that  ‖ (    ( ))   (    ( ))‖    ‖  ( )    ( )‖ , and  
‖ (    ( ))   (    ( ))‖    ‖  ( )    ( )‖, where        are positive constants.  

Also, let           ‖ (   )‖ ,  and            ‖ ( )‖  
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Further, the nonlinear operator         is continuous and satisfy Lipschitz condition, 

such that for all           , we have   
‖ (   (    ( )))   (   (    ( )))‖    ‖ (    ( ))   (    ( ))‖      ‖  ( )  
  ( )‖, where      is positive constant.  Also, let         

   
‖ (   (   ))‖ . 

(C6) The linear operator     from    (   )  into  , defined by : 

                                                                

∫  (   )  ( )  
 

 
                                                                                                        

This leads to a bounded inverse operator  ̃   
defined on   (   )     ( )⁄ , and hence 

‖  ̃  ‖    , where    is a positive constant.  For  more details about the existence of  

bounded inverse operator of  , see [5,12]. 
3.1 Result of Controllability to Problem (1.1): 

Throughout this subsection, we want to define, and to find the mild solution to the problem 

(1.1). 

  Suppose that   ( )    be a solution of problem (1.1), then we can define a function : 

                                                                      ( )   ( )     ( )   (3.1) 
 

From  assumptions, we obtain that  ( )   (  ). Therefore the problem (1.1) can be written 

in term of  B1 and A2, as follows : 

     , ( )      ( )-     ( )    (   ( ))     (   (   ( )))      ,      ,   -                  
           ( )       ( )      ( )     (   ( ))     (   (   ( )))   
Since  ( )   (  )  hence    ( )    ( )  thus                                                                               
 ( )     ( )      ( )     ( )    (   ( ))    (   (   ( ))) (    )       ,   -

  ( )   ( )     ( )

 ( )     
} (   ) 

By condition (C3), we have    ( ) is continuously differentiable, if   is continuously 

differentiable on  , then by definition of  the mild solution  ( )    ( )     ( )  it can be 

defined as a mild solution to Cauchy problem [1], 
 

  
 ( )  

 

   
 ( )   A2 

 

  
  ( ) 

By equation (3.2), we get that  

 ( )     ( )       ( )  (  )( )   (   ( ))    (   (   ( )))

    
 

  
  ( )            ,   - 

                                                      ( )
        ( )                                                                                    (   ) 

From condition (C2), we get that ( )       , which is the C0-semigroup generated by the linear 

operator B1, and  ( ) is a solution of (3.3), hence the function   ( )    (   ) ( ) is 

differentiable for       for more dailies see  [1]. 

 
 

  
 ( )   (   ) 

 

  
 ( )   ( ) 

 

  
  (   )   Thus by equation (3.3) we have  

  
 

  
 ( )    (   ),   ( )      ( )  (  )( )   (   ( ))   (   (   ( )))  

  
 

  
 ( )-                      ( ),   (   )- 

 
 

  
 ( )  (   )   ( )    (   )     ( )   (   )(  )( )   (   ) (   ( ))  

                  (   )  (   (   ( )))   (   )    
 

  
  ( )   (     )  ( )  

Since B1O(t) = BO(t), hence 

 
 

  
  ( )   (   )    ( )   (   )(  )( )   (   )  (   ( ))  

 (   )  (   (   ( )))                         (   )    
 

  
 ( )  
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On integrating both sides from       , yields : 

 ( )    ( )  ∫  
 

 
(   )    ( )    ∫  

 

 
(   )  ( )   ∫  

 

 
(   )  (   ( ))    

∫  
 

 
(   )  (   (   ( )))   ∫  

 

 
(   )    

 

  
  ( )                                                            

(3.4)     

From the definition of  ( )    (   ) ( ), we get : 

 ( )    (   ) ( )  ( ), ( )     ( )-   ( )      ( )  ( )    ,                                            
(3.5)      

And,   

 ( )    (   ) ( )  ( ), ( )     ( )-    ( )     ( )    ( )                                         
(3.6) 

 

Now, by integrating the term ∫  
 

 
(   )   

 

  
  ( )  , in (3.4) by parts  we get that: 

 ∫  
 

 
(   )   

 

  
  ( )      (   )    ( )

t

0

  ∫  
 

 
( )    (   )                                                                                                                                                                        

                                                    ( )     ( )    ( )    ∫  
 

 
( )    (   )                            

(3.7)  Therefore,  

By substituting the equations (3.5), (3.6), and (3.7) into equation (3.4), we get that 

 ( )      ( )   ( )     ( )    ( )    ∫  
 

 
(   )    ( )    ∫  

 

 
(   )  ( )    

  ∫  
 

 
(   )  (   ( ))    ∫  

 

 
(   )  (   (   ( )))       ( )    ( )    ( )   

 ∫  
 

 
( )    (   )    . Therefore  

 ( )   

 ( )    ∫  
 

 
(   )    ( )    ∫  

 

 
(   )  ( )    ∫  

 

 
(   )  (   ( ))       

            ∫  
 

 
(   )  (   (   ( )))   ∫   

 

 
 (   )   ( )                                                    

(3.8)                       

If the function   ,   -    given by (3.8) is continuous on ,   -, and it is  continuously 

differentiable on (   ), and  ( )    for      , then we say that w(.) is a mild solution 

to problem (1.1). 

Definition 3.1: The nonlinear boundary value control system (1.1) is said to be controllable 

on the interval   ,   -, if      ,     ,    ( )    (   ) such that the mild solution  ( ) 
satisfies   ( )    . 
3.2 Main Results 

           In this section, we will prove the theorem that deals with the controllability of the 

problem (1.1). 

Theorem 3.1: Let   be a (rBs) which satisfying Opial’s condition and the hypothesis 

(C1)_(C6) are satisfied for the nonlinear boundary control problem (1.1) 

 ( )    ( )    ( )   (   ( ))    (   (   ( )))      (    )       ,   -  

  ( )     ( ) 

 ( )    

}    

Further, suppose that 

(C7) There exists a constant  3  , such that  ∫  ( )
 

 
   3 . 

(C8)   Let                                                        , such that: 

        ( ‖  ‖              ,    ‖   ‖            -,‖  ‖   ‖  ‖     
        -)     
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(C9)      ,,           -  ,    ‖   ‖            -,           --, such that 

      .                             

Then the system (1.1) is controllable on   . 
Proof: By using definition (3.1) and mild solution equation (3.8) we obtain that   

    ( )   ( )   ∫  
 

 

(   )    ( )    ∫  
 

 

(   )(  )( )  

 ∫  
 

 

(   )  (   ( ))    ∫  
 

 

(   )  (   (   ( )))  

 ∫   

 

 

 (   )   ( )   

     ( )       ∫  
 

 
(   )  (   ( ))   ∫  

 

 
(   )  (   (   ( )))       

Therefore   

           ( )   ∫  
 

 
(   ) (   ( ))   ∫  

 

 
(   ) (   (   ( )))      

From constriction the operator   in (C6) since  ( )   ̃  (  ( )), thus  

 ( )   ̃  (    ( )   ∫  (   ) (   ( ))  
 

 

 ∫  ( 
 

 

  ) (   (   ( )))  )( )                                                                      (   ) 
                

We can explain implication when using this control, the operator defined by     

(  )( )   ( )   ∫  (   )
 

 

    ( )   ∫  (   )(
 

 

  )( )  

 ∫  (   )
 

 

 (   ( ))   ∫  (   )
 

 

 (   (   ( )))  

 ∫   

 

 

 (   )   ( )    

has a (FP), this (FP) is then a solution of (1.1). 

Note that,  (  )( )     , it know that the control   transmit the control system from the 

initial    to    in time  ,  provided we can obtain a (FP) of the nonlinear operator   . 

Let    be a (rBs) that satisfies the  Opial’s condition and let    =*      (   )  ( )  
    ‖ ( )‖   ,  for    },  it’s clear that    is (bcc) subset of    [7]. We have also     is 

weakly compact and has normal structure in (rBs)  , see Remark 2.6 and Example 2.8. 

Here, we will define a mapping   :     by : 

(  )( )   ( )   ∫  (   )
 

 

 (   ( ))   ∫  (   )
 

 

 (   (   ( )))  

 ∫ , (   )    
 

 

   (   )    (   ) - ̃
  ,    ( )  

 ∫  (   ) (   ( ))
 

 

  

 ∫  ( 
 

 

  ) (   (   ( )))   -( )                                                          (    ) 
Now we want to show that the operator   is continuous and maps    into itself. Thus, we take 

the norm of both sides of (3.10) 
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‖(  )( )‖   ‖ ( )   ∫  (   )
 

 

 (   ( ))   ∫  (   )
 

 

 (   (   ( )))  

 ∫ , (   )    
 

 

   (   )    (   ) - ̃
  ,    ( )  

 ∫  (   ) (   ( ))
 

 

  

 ∫  (   ) (   (   ( )))
 

 

  -( )   ‖                                    

‖(  )( )‖  ‖ ( )‖‖  ‖  ‖∫  (   ),
 

 

 (   ( ))   (   )   (   )-  ‖

 ‖∫  (   )
 

 

, (   (   ( )))   (   (   ))   (   (   ))-  ‖

 ‖∫ , (   )    
 

 

   (   )    (   ) - ̃
  ,    ( )  

 ∫  (   ), (   ( ))   (   )   (   )-
 

 

  

 ∫  (   ), (   (   ( )))   (   (   ))   (   (   ))-
 

 

  -( )  ‖ 

‖(  )( )‖  ‖ ( )‖‖  ‖  ∫ ‖ (   )‖,
 

 

‖ (   ( ))   (   )‖  ‖  (   )‖-  

 ∫ ‖ (   )‖
 

 

,‖ (   (   ( )))   (   (   ))‖  ‖ (   (   ))‖-  

 ∫ ,‖ (   )‖‖   ‖‖   (   )  ‖
 

 

‖ (   )‖‖ ‖-‖ ̃  ‖,‖  ‖

 ‖ ( )‖‖  ‖  ∫ ‖ (   )‖
 

 

,‖ (   ( ))   (   )‖  ‖ (   )‖-   

 ∫ ‖ (   )‖
 

 

,‖ (   (   ( )))   (   (   ))‖

 ‖ (   (   ))‖-  -( )   
Under the conditions (C1) _(C7), we obtain that: 

‖(  )( )‖   ‖  ‖  ∫  
 

 

,  ‖ ( )‖    -   ∫  ,    ‖ ( )‖
 

 

   -  

 ∫ , ‖   ‖   ( )    -  ,‖  ‖
 

 

  ‖  ‖    ,  ‖ ( )‖    -

   ,    ‖ ( )‖    -- ( )   

Since      and   are continuous and by condition (C8)  ‖(  )( )‖    , it follows that   is 

also continuous mapping from     into itself . 

Now, we must prove that the operator   is nonexpansive mapping from    into itself : 

Let          , then  
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‖(   )( )  (   )( )‖

 ‖ ( )   ∫  (   )
 

 

 (    ( ))   ∫  (   )
 

 

 (   (    ( )))  

 ∫ , (   )    
 

 

   (   )    (   ) - ̃
  ,    ( )  

 ∫  (   ) (    ( ))
 

 

   ∫  (   ) (   (    ( )))  
 

 

-( )  

 , ( )   ∫  (   )
 

 

 (    ( ))   ∫  (   )
 

 

 (   (    ( )))  

 ∫ , (   )    
 

 

   (   )    (   ) - ̃
  ,    ( )   

 ∫  (   ) (    ( ))
 

 

   ∫  (   ) (   (    ( )))
 

 

  -( )  -‖ 

 

‖(   )( )  (   )( )‖

 ‖ ( )   ∫  (   )
 

 

 (    ( ))   ∫  (   )
 

 

 (   (    ( )))  

 ∫ , (   )    
 

 

   (   )    (   ) - ̃
  ,    ( )  

 ∫  (   ) (    ( ))
 

 

   ∫  (   ) (   (    ( )))
 

 

  -( )  

  ( )   ∫  (   )
 

 

 (    ( ))   ∫  (   )
 

 

 (   (    ( )))  

 ∫ , (   )    
 

 

   (   )    (   ) - ̃
  ,    ( )  

 ∫  (   ) (    ( ))
 

 

   ∫  (   ) (   (    ( )))
 

 

  -( )  ‖ 

 

‖(   )( )  (   )( )‖

 ‖∫  (   )
 

 

, (    ( ))   (    ( ))-  

 ∫  (   )
 

 

, (   (    ( )))   (   (    ( )))-

 ∫ , (   )    
 

 

   (   )  

  (   ) - ̃  ,∫  (   ) , (    ( ))   (    ( ))-  
 

 

 ∫  (   ), (   (    ( )))   (   (    ( )))-  -
 

 

-( )  ‖ 
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‖(   )( )  (   )( )‖

 ∫ ‖ (   )‖
 

 

‖ (    ( ))   (    ( ))‖  

 ∫ ‖ (   )‖‖ (   (    ( )))   (   (    ( )))‖  
 

 

 ∫ ‖ (   )‖‖   ‖‖   (   )  ‖
 

 

‖ ( 

  )‖‖ ‖‖ ̃  ‖,∫ ‖ (   )‖
 

 

‖ (    ( ))   (    ( ))‖  

 ∫ ‖ (   )‖‖ (   (    ( )))   (   (    ( )))‖  -
 

 

( )   

 

 

 From condition(C1) _(C7), we obtain that: 

‖(   )( )  (   )( )‖

 ∫    ‖  ( )   ( )‖   ∫      ‖  ( )   ( )‖  
 

 

 

 

 ∫ , ‖   ‖   ( )    -   ,    

 

 

‖  ( )   ( )‖

       ‖  ( )   ( )‖-   
                          

 

‖(   )( )  (   )( )‖
 ,           -‖  ( )   ( )‖  ,    ‖   ‖      
      -,           -‖  ( )   ( )‖ 

 

‖(   )( )  (   )( )‖
 ,           -,    ‖   ‖      
      -,           --‖  ( )   ( )‖ 

By condition (C9), we get that: 

‖(   )( )  (   )( )‖   ‖  ( )   ( )‖  
Consequentially,    is nonexpansive mapping .Thus from Theorem (2.9) , there exists a (FP) 

    , such that (  )( )   ( ),  and hence this (FP) is a solution of system (1.1) on the 

interval  , which satisfied  ( )     . Therefore  the nonlinear control system (1.1) is 

controllable on   .     
   

 

4. Applications 

Let   be a bounded and open subset of
 
 R

n
, and let   be a boundary control integrodifferential  

system 
  (   )

  
   (   )    .   (   ) ∫   

 

 
(     (   ))  /in   (   )                      (4.1) 

                   (   )    (   )  on    (   )        ,   -                                           (4.2a) 

                         (   )     ( )                                                                                 (4.2b)     

where     (   )     
 ( )      

 (   ) and                                                                                            
This  problem can be characterization as a boundary control problem of the form (1.1) by 

suitably taking the spaces, C, E, S and the operators B1,  , and   as follows: 
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Let  =   ( )   E= 
1

 
2 ( )H 

 

, S=   ( ) , B1= I (the identity operator) and  D( )=*  

  ( )      ( )+,    = K. The operator x is the “trace” operator  with            is well 

defined and belongs to 
1

 
2 ( )H 

 

 for  each    ( ) (see[13]) and the operator   is given by 

      ( )    
  ( )   ( )  (Here    ( )   ( ) and   

 ( )  are usual Sobolev 

Spaces on  ,  ). 

Define the linear operator      ( )      ( ) by        where    is the unique solution to 

the Dirichlet boundary value problem,  

                                        in         

                                        in    

In other words, (see [14]) 

            ∫
  
   U  =∫

 
 
  

  
dx, for all     

    ( )                                                              

(4.3) 

Where   
  

  
  denotes the outward normal derivative of    which is well-defined as an element 

of      ( ) . From (4.3) it follows that, 

                        
  ( ) 

             ( )  for all       ( ) 

and 

                         
  ( )

          
    ( )  for all        ( )  

where    ,  i=1,2 are positive constants independent of  . From the above estimates it follows 

by an interpolation argument [15] that  

              ( )  
 (  ( )   ( ))

           for all             ( )           

Further assume that the bounded invertible operator  ̃ 
 exists.  Choose   and other constants, 

such that satisfying the last condition (C8). Hence, one can see that all the conditions stated in 

the theorem are satisfied and so the system (1.1) is controllable on (   ). 
Conclusions 

   We have been studied the controllability of different kinds of general formulation of 

control systems.   

 Extended the method using Kirk fixed point theorem which deals with contraction 

mapping to fixed point theorem of nonexpansive mapping. 

 The controllability of the above systems discussed by using the concepts of semigroup 

theory with fixed point theorem. 
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