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Abstract 

    Genetic Algorithm (GA) is a population-based approach for optimization. It 

belongs to metaheuristic procedures that use population characteristics to guide the 

search. It maintains and improves multiple solutions which may produce a high-

quality solution to an optimization problem. This study presents a comprehensive 

survey of GAs. We review and discuss genetic algorithms for new researchers in the 

field. We illustrate components of GA and view the main results on time 

complexity.  
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 الخوارزمية الجينية: دراسة استقصائية
 

 رويدة رزاق أبو الدبح*, عبد الله صالحي 
 قدم الخياضيات، كمية عمهم الحاسهب والخياضيات, جامعة الكهفة، العخاق*  

 قدم الخياضيات،كمية الخياضيات, جامعة إسكس، المممكة المتحجة  
 الخلاصه

 نيج الادلة العميا إنيا تنتمي إلى طخيقة لمتحدين.ىي نيج قائم عمى الدكان  (GA) الخهارزميات الجينية    
حلًا وىي تحافظ عمى حمهل متعجدة وتحدنيا والتي قج تنتج   الحي تدتخجم خرائص الدكان لتهجيو البحث.

تقجم ىحه الجراسة مدح شامل لمخهرازميات الجينية. حيث نقهم بمخاجعة ومناقذة  .عالي الجهدة لمذكمة التحدين
ونعخض النتائج  GAs نهضح المكهنات التي تبني الخهارزميات الجينية لمباحثين الججد في ىحا المجال.

 .الخئيدية لهقت التعقيج
1 Introduction 

      Since the 1960's there have been numerous attentions in mimicking living beings to 

develop strong algorithms for intractable optimization problems. Such techniques are called 

evolutionary computation. The most important algorithms in this type comprise evolution 

strategies provided by Rechenberg [1], and by Schwefel [2]; genetic algorithms (GAs) 

introduced by Holland [3]; genetic programming developed by Koza [4]; and evolutionary 

programming introduced by Fogel et al. [5]. 

     Classical search methods are often suitable to solve optimization problems with small 

spaces in which they search a space of potential solutions. As each one of these methods is 

designed to efficiently solve only a specific type of problems, a major challenge arises when 

one algorithm is performed to solve many different problems. Also, these methods usually 
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converge to a locally optimum solution because they do not have a global perspective. 

Another challenge is their lack to be efficiently performed in parallel computing [6]. For these 

reasons, artificial intelligence techniques should be used for large spaces. GAs are stochastic 

algorithms that relied on the idea of Darwinian of survival of the fittest and genetic 

inheritance. Genetic algorithms are well known types of evolutionary computation approach 

as a strong and largely usable optimization and stochastic search techniques [7]. 

     Their ability to make a good balance between exploring and exploiting the search space 

place them in the category of general use search methods. They have been successfully 

performed to large different optimization problems, because of their global perspective,  

simplicity, and inherent parallel working. Such problems include game playing, scheduling, 

wire routing, adaptive modelling, optimal control problems, traveling salesman problems, 

database query optimization, and transportation problems. See ([8- 14]).  

     The genetic algorithm belongs to the group of probabilistic algorithms, it varies from 

random algorithms. It is regarded as more robust than directed search methods because it 

joins stochastic search and elements of directed search. Another interesting feature is that the 

genetic algorithm applies a multi-directional search by preserving a population of potential 

solutions. It builds and exchanges the information between these directions while other 

methods handle only a single point of the search space [14]. 

    GA is a stochastic approximate approach that does not impose assumptions on the 

components of the problem in hand to work. While GA does not guarantee the optimality of 

the solutions it generates, it often produces near optimal solutions in a reasonable time when 

exact methods require prohibitive amounts of time. GA is population based, i.e. it maintains a 

population of solutions from generation to generation, [15]. Fitness is the key criterion for 

ranking individuals and creating future generations. Some individuals (parents) are 

transformed through genetic operations to create new individuals (children) that are called 

offspring by merging parts from two parents and performing a mutation, which forms children 

by making changes in a single parent. In the final generation, the optimal solution is the 

individual with the best fitness value. A brief outline of the GA is as follows.  

 

Algorithm 1 Pseudo-code of Genetic Algorithm  

 

1: Randomly generate a population of individuals; 

2: Evaluate the fitness of all population members, if termination criteria is met go to (5); 

3: Create a new population by performing some genetic operator and a reproduction strategy 

to the individuals of the current population; 

4: Go to (2); 

5: The individual with best fitness is the candidate for an optimum solution. Stop. 

 

2 Search space 

     Search strategies have two main properties: exploring the search (solution) space and 

exploiting the best solution [20, 21]. GAs basically do a blind search while they randomly 

search the landscapes. The eligible area of the solution space can be reached by employing the 

selection operators which guide the search. To improve the performance of GAs, a good 

balance between exploitation and exploration of the search space should take place. This can 

be obtained by carefully testing all the components of the genetic algorithm. Also, the 

algorithm should have a heuristic to encourage the performance. 

     The search space is the space of all feasible solutions. Relying on the definition of the 

problem, each potential solution can be assigned by measuring its fitness, in which each point 

represents a single potential solution in the search space. The GA searches the search space 
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for the best solution that is represented by a single point among a number of potential 

solutions. The challenges in this are the suitable initial point and reaching the local minima. 

     The process of searching the space includes the initialization of the population and then 

creating new solutions until the stopping criteria is met. One purpose of the process is finding 

the global optima which can be never guaranteed, but the chance of finding a better solution 

in the next generation is always there. Another aim is faster convergence which is needed 

when the fitness function is costly to evaluate. Yet, the chance of reaching local solutions 

exists. Achieving a range of diverse with good solutions is another aim of the process. 

3 Population 

      A population is a set of chromosomes (solutions). It includes a number of chromosomes  

for testing, the actual variables (phenotype parameters) that define the chromosomes, and 

search space information. The essential parts of the population that are used in the GAs are 

the population size and the initial population generation.  

     The size of the population is an essential parameter that plays an important role in the 

implementation of the GAs, it specifies the number of chromosomes in the population. 

Population size has been studied from different theoretical points of view. A larger size of 

population increases the number of fitness evaluations. In fact, too large a population would 

weaken the efficiency of the GA where finding the solution may cost a lot of time, while too 

small a population decreases the area for exploring the search space efficiently. Goldberg [16, 

17] used the idea of schemata to consider the size of the population. His theory showed that 

the size of the population must grow as an exponential function of the chromosome length. 

But experimental proof by [18, 19] showed that Goldberg’s suggestion is not necessary. The 

size of the population relies on the complexity of each problem. Choosing the initial 

population commonly assumed to be random. Another option is to seed the initial population 

with known good solutions.  

3.1 Encoding 

     Encoding is a task of the actual variable genes representation. It can be done using 

numbers, bits, arrays, trees, or any other objects. Representations for genetic and evolutionary 

algorithms are a major requirement. Using GAs for optimization problems needs 

representations for possible solutions, in which performing the GAs is impossible without 

them. 

     In 1899, Mendel distinguished that the full genetic information for an individual are stored 

by nature in pairwise alleles (values of a gene). This information that specifies the shape, 

appearance, and properties of an individual are stored by a number of chromosomes. This 

chromosome characterizes an individual by using genes (the values of those genes can take to 

alleles). He discovered that nature recognizes between the outward appearance of an 

individual and its genetic code. The outward appearance is represented by a phenotype and 

the chromosome that contains all the information is represented by a genotype. 

     According to this, in the GA approach, the representation of the variables of the problem 

can be separated. The actual variables (phenotype) in the original formula and the encoded 

representation of the variables (genotype). The GAs perform on these two types alternatively, 

the solution (phenotype) and the coding (genotype) spaces. In the GA, encoding a problem's 

solution into a string is a main matter. It has been studied from many sides, such that, when 

individuals are decoded into solutions, information are mapping from genotype space to 

phenotype space. Using genetic and evolutionary algorithms for solving optimization 

problems needs a decomposition of a genotype-phenotype function and phenotype fitness 

mapping. Suppose we have a genotype search space   (this space can be either continuous or 

discrete), and a function      , our problem is to find 
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where   is the objective (fitness) function, and   is a vector of the decision variables. Notice, 

the crossover and mutation genetic operators are applied to this space. Let   be the set made 

up of symbols of an alphabet. Suppose that a string where each component is a symbol 

from  . The vector   can be represented by a string  , of length   that relies on the dimension 

of   and  , by using the map 

                  (1)  

     Due to the fact that some strings under the mapping   may represent invalid individuals 

for the original formula, where   is preferred to be a bijection, we have to employ a search 

space     . Now the optimization problem becomes  

   
   

      

where the function              [22]. For binary strings, the cardinality of   is equal to 

two, where        . With binary alphabet,    different individuals can be encoded 

where | |    , while when the cardinality higher than two we get     different encoded 

possibilities where the size of the search space is      [23]. After generating a set of strings 

that represent the population, the reproduction process transforms it into a new population by 

performing the operators: selection, crossover, and mutation. There are different ideas in this 

regard. Holland and Goldberg [3, 9] claimed that encoding the variable by binary strings is in 

some sense optimal, while Rechenberg, and Schwefel [1, 24, 22] directly worked with the 

original decision variables. The type of problem that is being investigated imposes the choice 

of encoding. Different kinds of encoding that used for different problems are as follows: 

3.1.1 Binary encoding 

     For many reasons, this type of encoding is regarded as the most common one. The GA 

theory is relied on using fixed length, fixed order binary encodings. Holland concentrated in 

his work on this type of representation [3]. This theory is extended to nonbinary encodings, 

but it did not improve as the original GA theory. Another reason, the suitable parameter 

settings such as the mating and mutation probabilities for GA has been improved in the 

context of binary representations [25].  

                                                  
     The genotype-phenotype mapping in the binary encodings relies on the optimization 

problem. The representation permits a direct and more natural encoding for many discrete 

optimization problems. For using binary representations for encoding integer problems, 

certain genotype-phenotype mappings are needed. Various kinds of binary representations for 

integers represent the integers (phenotypes) in a various way to the binary vectors 

(genotypes). The binary, gray, and unary coding are the most known representations [23]. 

3.1.2 Integer encoding 

     For combinatorial optimization problems, integer or literal encoding is regarded the best. 

As long as, the fundamental of these problems is the search for a combination of items subject 

to constraints or a best permutation. The best method of this kind of problems is literal 

permutation encoding. In integer encoding, the decision variable vector is represented by a 

string with a cardinality greater than two. A set of alphabet   is used for the genotypes where 

the search space size is | |     [23].  

                                     
3.1.3 Real-number encoding 

     Using GA to solve any difficult problem needs presenting good encoding, in fact using the 
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best encoding is almost equivalent to solving the problem itself. While integer and literal      

permutation representations perform well for combinatorial and permutation problems, real-

valued representation can be used for a function optimization problem. It is better than gray or 

binary representation to perform for function optimizations and constrained optimizations 

[21]. As the form of the genotype space for this encoding is indistinguishable to the 

phenotype space, using beneficial techniques from appropriate methods can simply assist in 

forming efficient genetic operators. 

     Here, the search space is defined as   , where   is the individual length. Special genotype-

phenotype mappings and real-valued vectors simply can represent some problems such as 

schedules, tours, trees, and other discrete problems. Notice, many experimental comparisons 

between this type and the binary or multiple-character provided better results for the first [26, 

27, 25]. The work relies very much on the details of the GA being used and the problem. 

3.1.4 Tree encodings 

     Koza [4] used tree encoding schemes to represent computer programs. In concepts, the size 

of any tree could be constructed by means of mating and mutating. These schemes have some 

benefits, such as letting the search space to be open-ended. But, unfortunately, this can cause 

some possible misleads, in which the trees can widely expand in an uncontrolled way, stop 

the construction of more structured, hierarchical elect solutions [25]. 

3.2 Properties of representation 

     Testing a new representation method is important to check the genetic searching effect by 

using it. Some properties are suggested to evaluate encoding an individual [28, 1] such as, 

 Legality, there is a correspondence between any solution and its encoding permutation. 

This assures applying the existing genetic operators to the encoding. 

 Nonredundancy, in which the mapping between encoding and solution is one to one. 

 Completeness, where any solution has a corresponding encoding which assures that the 

genetic search accesses any point in the phenotype space. 

 Causality, this property is associated with mapping from encoding space to solution space. 

Rechenberg [1] proposed it to evolution techniques where small changes in the encoding 

space relate to a mutation show small changes in the solution space. 

 Lamarckian property, it focuses on whether or not one individual can move its features 

to the next population through genetic operators [29]. 

3.3 Infeasibility and illegality 

     Infeasibility means that a solution decoded from an individual locates out the feasible area 

of the problem. This arises from the essence of the constrained optimization problem. For 

some problems, the equalities and inequalities represent the fitness area. Penalty method is 

used to deal with infeasible chromosomes in such cases [30, 31, 21]. In these problems, the 

optimal solution occurs at the boundary between the infeasible and feasible regions. The 

purpose of the penalty method is to force the genetic to bring the optimal solution closer to 

both sides of the regions. 

     Illegality in a given problem means that the individual does not represent a solution. This 

case arises from the encoding techniques. It results from using problem with particular 

encodings in numerous combinatorial optimization problems. To convert an illegal individual 

to a valid one, repair techniques are used. For many combinatorial optimization problems 

repairing an illegal or infeasible chromosome is relatively simple. Actually, the repairing 

technique exceeds other strategies such as penalizing and rejecting strategies. 

     Breeding the population is the core of the GA, in which new and hopefully better solutions 

are created via the search process. Breeding includes three steps; selecting parents, mating 

them to create new children, replacing the parents with the children. 

4 Fitness 
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     Fitness function is regarded as the main idea of Darwinian evolution; the genetic 

algorithm’s direction progress relies on this function to improve the population. The ability of 

an individual to compete within a population of solutions is indicated by fitness. Goldberg 

[32] provided the fitness function as “some measure of profit, utility, or goodness that we 

want to maximize”. In a genetic algorithm, the competition between chromosomes relies on 

their performance in the domain of problem solutions. Chromosomes are given a fitness value 

that reflects their performance when applied to a problem. Thus the potential of each 

chromosome in the population can be tested. 

5 Selection 

     It is the process of picking pair of individuals from a population to creating children for the 

next generation. It is a procedure of randomly choosing individuals relying on their fitness 

evaluation. Individuals with higher fitness value have more chances to be selected. Selection 

pressure improves population fitness through successive generations. 

     GA convergence is affected by the selection rate. If the pressure is too high, the GA may 

converge early to an incorrect solution. If the pressure is too low, the average of the 

convergence will be slow. Selection should be balanced with variation from crossover and 

mutation. Too weak selection cases too slow evolution. Too high selection, suboptimal highly 

good enough solutions dominate the population which decreases the diversity required for 

further improvement. Some types of the main selection methods are introduced below. 

 Roulette wheel selection. Roulette wheel selection is used by Holland [3, 21]. The simple 

idea behind it is to find the selection rate for each individual proportional to the fitness value. 

This is implemented by dividing the individual's fitness by the fitness rate of the population. 

The selection process relies on twirling the wheel   time equal to the population size. On 

each spin, a single individual is chosen for parenthood. This method is easy to perform but 

noisy. The average of the evolution relies on the variance of the fitness values in the 
population. The roulette wheel method can be employed as follows;  

1. Evaluate the probability    of selecting each chromosome in the population; 

   
  

∑   
 
   

, where n is the population size,    is the fitness of each chromosome, 

And ∑   
 
    is the accumulative fitness of the population. 

2. Compute the cumulative probability,    ∑   
 
    for each chromosome. 

3. Choose a random number         such that if      then choose the first 

chromosome   , if not then choose the chromosome    such that           .  

 Stochastic uniform selection. It selects parents for the next generation based on their 

fitness values. It is also known as the Stochastic Universal Sampling (SUS) which is an 

improvement on the Roulette Wheel selection, [33]. It is a single phase sampling procedure 

with zero bias and minimum spread. While the Roulette wheel selects several parents from 

the population by repeated random sampling, SUS uses a single random value to sample all of 

the parents by selecting them at evenly spaced intervals. The parents are mapped to adjacent 

sections of a line. Each parent's section is equal in size to its fitness value. Let   be the 

number of selections needed, equally spaced pointers   are placed over the line to select these 

parents. The distance between the pointers is 
 

 
 and the location of the first pointer is provided 

by a uniformly randomly generated number in *  
 

 
+  [34]. See Figure 1. 

 
           Figure 1- The Stochastic uniform selection 
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 Remainder selection allocates one parent deterministically from the integer part of each 

a scaled value of a chromosome and then employs the selection on the residual fractional part 

[35]. Chromosomes have a probability of selection based on their fitness, these fitness are 

computed by dividing chromosome fitness by average fitness. 

 Uniform selection chooses chromosomes at random from a uniform distribution by 

applying the expectations and number of chromosomes [36].  

 Random selection. This method randomly picks an individual from the population. On 

average, the roulette wheel selection is a little less disruptive than this type [37]. 

 Rank selection. This method ranks the individuals to find out the probability of survival. 

That's by sorting the population from finest to worst and assign the picking probability of an 

individual concerning the ranking but not its raw fitness [21]. 

 Tournament selection. It is randomly drawing a set of individuals then chooses the 

finest individual with the highest fitness value for parenthood [21, 37]. 

 Other types such as      -selection and (   )-selection that introduced by Bäck, this 

method chooses the best individuals from parents and children [38, 21].  

 Elitist selection proposed by Kenneth [39, 25], in addition to proportional selection, 

elitist maintains the best individual in the new population if it is not chosen by the 

proportional selection. The best individual or the few best individuals are copied to the next 

generation. 

 Block selection and truncation selection methods rank all the chromosomes relating to 

their fitness value and choose the best as parents [40].  

 Boltzmann selection is continuously changing the average of the selection relying on a 

current schedule [25]. 

6 Genetic operators 

     Searching the space for a solution is a solving method. There are two types of search: local 

and random search. Best solution is exploited by a local search which is eligible to climb up 

toward a local optimum. The solution can be explored by a random search which is eligible to 

get escape from a local optimum. Using the two types together provides a perfect search, but 

designing such a method for searching the space with suitable mechanisms unfortunately 

almost impossible. 

     The GAs are general search methods that provide a good balance between exploring and 

exploiting the search space by joining elements of directed and stochastic search. Designing 

the genetic operators is influenced by our conceptualization of the genetic search. Both the 

directed search and the random search capabilities are desirable in a search method. Cheng 

and Gen [21] proposed a genetic search that has two types of search capabilities. The 

crossover to explore the region beyond a local optimum by implementing a random search 

and improving the solution by using mutation to perform a local search. Here, the mutation 

acts a significant role as well as the crossover.  

     Genetic operators implement a random search but cannot assure improving children. A 

simple GA uses three operators in many practical problems which produces good results, they 

are; Reproduction, Crossover, and Mutation. 

6.1 Reproduction 

     In GA this operation consists of two steps: selecting a single individual, and then copying 

it without alteration. This operator copies the chromosomes relying on their fitness values. 

Chromosomes with a higher value have a higher chance to provide one or more children in 

the next generation. This operator can be performed in many ways; the simplest way is using 

a biased roulette wheel in which each chromosome has a roulette wheel slot sized in 

proportion to its fitness [9]. 

6.2 Crossover 
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     The execution of a genetic system strongly relies on this operator which is performed to 

the mating pool to enrich the population with better chromosomes. It is performed after the 

selection (reproduction) process. It recombines pair of chromosomes with a given probability 

to produce a new child [37]. The two parents that are randomly selected for mating are chosen 

with a probability   . If      for a random number   then the parents are recombined, else, 

if     then the two children are simply copies of their parents [9]. Some types of crossover 

operators are: 

 

 One point, and two point crossover operators. These are the most well-known and 

easiest methods for recombining chromosomes. In one point crossover, to produce two 

children we choose two chromosomes and pick a single point on each of them which split 

both into two strands, then replace the two pieces. If some of the points are repeated, the 

validation of the chromosome will not be affected. In the second kind, we pick two points on 

the chromosome (say   and  ) which splits it into three parts. Genes numbered less than or 

equal to   are chosen from the first chromosome. Genes numbered from     to   are chosen 

from the second chromosome. Then genes numbered greater than   are chosen from the first 

chromosome. Then the algorithm concatenates these genes to form a single chromosome. This 

idea can be extended to  -point crossover.  

 

Table 1-Two points crossover for binary numbers 

 
 Scattered operator. It generates a random binary chromosome called a mask. It then 

chooses the genes that equal to 1 from the first parent, and the genes that equal 0 from the 

second parent, and combines them to form the child. Reversing the roles of the parents will 

produce the second child. [41]. 

 Heuristic operator. It generates children that are laid at random on the line including the 

parents, away from the parents who are of better fitness value and in a direction away from 

the parents of poor fitness value [21]. The children are found by the following equations, 

where         

                                  Child1 = Best Parent +   * (Best Parent - Worst Parent) 

                                  Child2 = Best Parent. 

 

Table 2-Scattered crossover for binary numbers 

    
 Arithmetic operator. It uniformly generates children that on the line between the parents 

from the random arithmetic mean of both of them [21]. The new child is computed using the 

following equations. For a random weighting factor  . 

 

Child1 =    Parent1 +        Parent2 
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Child2 =        Parent1      Parent2 

 

These types of crossover are not suitable for search problems with a chromosome of integer 

numbers such as the travelling salesman problem. 

 Order Crossover. This operation begins by choosing a substring (subchromosome) of 

random size from one of the two parents randomly, then copying it into its corresponding 

location in the child. The genes in the second parent that appeared in the substring are deleted 

to prevent repeating the gene. In the end, place the genes into the unfixed location of the child 

from left to right relying on the order of the sequence. See Figure 2, we create Child1 by 

choosing a substring from Parent1 (1, 10, 8) then delete this substring from Parent2 and add 

the rest (3, 6, 5, 2, 4, 7, 9) to Child1. The same for Child2, we choose (3, 6, 5) from Parent2 

then delete it from Parent1 and add the rest (1, 10, 8, 7, 2, 4, 9) to Child2.  

Table 3- Order crossover 

  
 

 Uniform order-based crossover. Here, two parents are randomly chosen and a random 

binary string is created. First, child1 chromosome is filled by taking genes from the first 

parent that are in the 1's location of the string. The rest of the genes of this parent that 

correspond to zeros in the string is sorted in the same order as they appear in the second 

parent. The sorted genes list is used to fill the 0's location in child1. Child2 is generated in the 

same way. 

 

Table 4- Uniform order-based crossover 

   
6.3 Mutation 

     This operator plays a secondary role in the GAs operation, which causes random changes 

in different chromosomes. It protects the search space from losing the diversity in genetic 

information that results from the crossover operation [9]. It enables GA to avoid being 

trapped in local optima. This is implemented by changing one or more genes. There are many 

types of mutation that can be suitable for various representations. Simple mutation can be 

used for binary representation where the gene can be converted via a small probability. The 

probability is the reciprocal of the length of the chromosome. Some of these mutations are: 

1. Flipping. It converts 0 to 1 and 1 to 0 relied on a mutation string created. 

2. Interchanging. It selects two locations at random then interchanges the bits in these 

locations. 

3. Reversing. It mutates the chromosome by selecting a random location and exchanges it by 

the bits beside this location. 

     Some other mutations that are employed for other types of representations are (Uniform, 

Gaussian, and Adaptivefeasible). 

 Gaussian mutation. It has been provided in Evolution Strategy by Rechenberg in 1973, 

[42], to create a new offspring, a Gaussian element is added to the chromosome or parent. It is 
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picked from a Gaussian distribution with a mean 0. Gaussian mutation can control the 

variance of the population fitness of each generation according to [43]. 

 Uniform mutation. It is a process of two steps. First, the algorithm chooses a fraction of 

the chromosome entries of an individual for mutation. These entries have a similar probability 

as the mutation rate of being mutated. Second, the entry is changed by the algorithm by 

choosing a random number from the range of the entry [21]. 

 Adaptive feasible mutation. It randomly generates directions that are adaptive for the last 

successful or unsuccessful generations. Along each direction, a step length is selected such 

that bounds and linear constraints are satisfied [44]. 

7 Convergence criteria 

     Genetic algorithms are stochastic search procedures that can be implemented forever. A 

stop criterion is necessary for practice. Some approaches to terminate search in GAs are as 

follows [37]. 

1. No change in fitness, if there is no change in the value of the population's fitness for a 

particular number of generations, the algorithm terminates. 

2. Still time limit, if there is no progress in the objective function within a period of time, the 

genetic algorithm will stop. 

3. Still generations, if there is no progress in the objective function for a certain number of 

successive generations, the algorithm terminates. 

4. Maximum generations, when a particular number of generations are reached, the algorithm 

terminates. 

5. Elapsed time, when a certain time passes the genetic process is ended. 

8 On GA complexity 

8.1 Some interesting general results 

     The time complexity analysis and the computation time theory of Evolutionary Algorithms 

(EAs) is a fundamental subject. It displays the expected number of generations to reach the 

optimal solution [45- 48]. The theoretical results regarding time complexity are relatively few 

although the EAs have a lot of applications in discrete optimization [49, 46, 50]. In previous 

work most of the time complexity focuses on easy cases or provided (1 + 1)
*
-EAs without 

crossover. Some general outcomes are covered in this survey. 

- He and Yao [51] suggested a general EA that employs a finite population, crossover, 

mutation, selection. For a problem the cost which is at least exponential time (in problem size 

 ), they proposed some drift conditions such that an EA will cost no more than polynomial 

time (in problem size  ) to solve the problem.  

     Instead of working on a specific EA, they provided a general theory for a class of EAs.  

Their theory has been improved via drift analysis which is a useful procedure for analysing 

random sequences [52]. This theory can find the first hitting time (the stopping time on the 

optimum) by estimating the drift of a random sequence which is simpler than estimating the 

first hitting time directly. Their simple proposal starts with modelling the evolution of an EA 

population as a random sequence, like a Markov chain. The EA consists of a population of 

multiple chromosomes with the crossover and mutation operators. The drift of the sequence is 

analyzed to and from the optimum value. Subject to various drift conditions, different bounds 

are found on the first hitting time. Some of these conditions lead the random sequence to drift 

in the direction of the optimum, whereas other conditions drift the sequence away from the 

optimum. 

      The result of the theory is applied to some classical combinatorial optimization problems 

such as (the subset sum problem). A simple description of the EAs and drift analysis with 

some results can be as follows: Find               for a function      and a finite state 

space        . Suppose            where    is one state with the optimum value, the 

EA used for solving the problem is as follows: 
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*
(1+1)-EAs is a population size of 1. 

1. Generate heuristically or randomly an initial population of    chromosomes, represented 

By               Let     and   an integer number,    . Define       
                   for any population   . 

2. Generate a new population of offspring using the crossover and mutation operators or any 

other operators and denote it       . 

3. Select and reproduce    chromosomes from populations       . and    and find a new 

intermediate one     . 

4. Stop if              ;  else let            and      , and go to second step 2.  

      This EA is nearer to evolutionary programming and the evolution strategies [2] than to 

GAs [9] with respect to applying the crossover and/or mutation before the selection operator. 

The drift analysis is described as follows: Let         be the distance between a point y and 

the optimum   . In case there is more than one optimal value, then the distance between the 

chromosome    and the optimal set     is suggested as                            , 
simply noted as     . The distance from a given population              to the optimum 

is 

                                                                          (2) 

 

The EA generates a random sequence                   which can be modelled by a 

homogeneous Markov chain. The drift of this sequence at time   is described as 

                       
 

     The time of the EA to stop is defined as                   which represents the first 

hitting time on the optimum value. Their work [51] tested the relationship between the 

problem size   and the predicted first hitting time  . In fact, they estimated the first hitting 

time      with respect to different conditions. To this end, suppose a deterministic algorithm 

is used to solve an optimization problem with the distance   between the optimum and the 

starting solution. We require at most     time iterations to reach the optimum when the drift 

towards the optimum is greater than   at each iteration. Many results were provided for some 

problems with polynomial time. The problems are; 

1. The subset sum problem is NP-complete. They found the first hitting time 

           where      is a polynomial of problem size n. 

2. The linear functions which are defined as; A function       is linear if         
∑     

 
    where       It is proved that it requires an average           steps to reach the 

optimum. 

3. Pesudo-modular functions; An example of this function is                  

     ∑∏  

 

   

 

   

                                                                       

 

      The expected first hitting time of the EA for the function is  | |         . 

4. Unimax functions; A function       is unimax if the      is the only locally 

maximal point. One of the known unimax problems is the long path problem. The path Ln for 

an odd number   is defined by recursion with          as the base path. The length of the 

paths is set out by the recurrence equations |  |   |    |   |  |   , and its solution is 

|  |     
   

    for odd    . Given   as a point on the path |  |, the fitness function 
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                     (   
   

   )  {
                                

 ∑   
 
                                

                   

where        is the location of   on the path that is numbered from 0 to    
   

                                                         

      is equal -1 for a point not belonging to the path. The expected hitting time of the EA 

of this function is  [        . 

5. Almost positive functions; Let       be a function, it says to be almost positive if 

the coefficients of all nonlinear terms are non-negative [47]. An example of the function 

where the distance function can be defined as      ∑ |    | 
   .  

       ∑        ∏  

 

   

 

   

                                                       

The expected first-hitting time of the EA for the almost positive function is 

  [        . 

- He and Yao [48] again estimated the complexity time of the EAs drift analysis. They 

discussed drift conditions that are employed to find the lower and upper bounds of the first 

hitting times. Also, a new general classification of easy and hard problems for EAs relies on 

this analysis are provided. Their EA is proposed to solve maximization problems. Let   be 

the set of all populations, and let a random variable     that its values from   be the 

    population of generation. Let    be the set of populations with the optimum, to test the 

distance of the population say   to    a distance function is used. The distance is defined in 

many ways like Hamming distance or          |         |       or        if  

     and        if     , where   and   are any population in  .  

     To find the EAs computation time, Markov chain and supermartingale
*
 are provided as 

mathematical models for the EAs. Markov chain is used to model the sequence of random 

variables                . To find the gain of a population towards the optimal solution, 

the one-step mean drift at     generation for a given distance function is needed. It is defined 

as 

 [                           ∑            

   

 

where          is the transition probability and       are populations. 

                  |        
     If this drift is positive then the population converges to the optimal solution and if it is 

negative then it diverges far from it. For the EA, number of generations to reach optimum 

(first hitting time), is defined as                  . The drift analysis that is applied 

for specific EAs is shown in the following two cases.  

Analysis of a (1+1)-EA for linear functions 

      This problem can be solved by a (1+1)-EA with mutation and selection with two different 

distance functions [48]. The first function with a binary string              which is 

             ∑ |    |

 

   

                                                    

Which produces first hitting time  [ |         . This result can be tightened further by 

using the second distance 

            ∑ |    |   ∑ |    |

 

  
 
 
  

   

   

                                           

where          and it gives a first hitting time  [ |           . 

Analysis of a (   )-EA for ONEMAX problem 
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      This problem can be solved by (1 + 1)-EA in time        . He and Yao solved by (   

 
*
Supermartingale is a method to model EAs to find the convergence of non-elitist selection strategy. 

 

      )-EA with mutation and selection only, where n is the length of the string. They found an 

optimal solution equal to  [ |           . 

   This result can be changed into  [ |         with a different distance function; 

Hamming distance between a chromosome and the optimum value. He and Yao separated the 

optimization problems into two types based on the average number of generations required to 

find the solution.  

1. Easy class; given EA, the average number of generations required by the EA to solve a 

problem is polynomial in the problem size. The sufficient and necessary conditions for this 

class are as follows. 

Theorem 8.1. [48] Given an EA which can be modelled by a homogeneous absorbing 

Markov chain, a problem belongs to the easy class iff there exists a distance function 

     such that; for a polynomial         in the problem size n,            , and for any 

population     at generation   with         , the one-step mean drift satisfies  

                                       [               |         ,                                      (8) 

where        is a lower bound constant. 

2. Hard class; given EA, the average number of generations required by the EA to solve a 

problem is exponential in the problem size. 

Theorem 8.2. [48] Given an EA which can be modelled by a homogeneous absorbing Markov 

chain, a problem belongs to the hard class iff there exists a distance function      such that; 

for some population     and an exponential        in the problem size  , G(y) satisfies 

          ,  and for any population     at generation   with         , the one-step mean 

drift satisfies 

                                       [               |        ,                                      (9) 

where     is a positive upper bound constant. 

- Chen et al [53], analyzed the time complexity of the population-based evolutionary 

algorithms on unimodal problems by improving a new general method relying on EAs models 

and some common[well-known] concepts, like the supermartinle [52, 51, 48, 54], the Markov 

chain model [55, 50, 56, 57], and the takeover time which provided by Goldberg and Deb 

[32]. They joined the idea of the overtake time to EAs and drift analysis to prove that the 

       -EA with truncation selection (or two-tournament selection) and the bitwise 

mutation requires                and              generations to obtain the 

global optimum of the ONEMAX and LEADINGONES problems, consequently, where   is 

a number of individuals and   is the length of the string. Instead of using only a selection 

operator, they generalized the takeover time for the EAs with mutation operators. 

- Thierens et al, [58] analyzed the time complexity of convergence of the BinInt problem 

which provided by Rudnick [59]. It is called the sequential convergence (domino 

convergence) because it is similar to a falling row of domino stones. They provided that the 

time complexity of domino convergence is exponential       for proportionate selection and 

linear in number of building blocks       for selection algorithms with constant selection 

intensity like (tournament or truncation selection). These results were compared with the 

previous results for ONEMAX problem, where   is the chromosome length. Their 

convergence behaviour differs from the ONEMAX or Bit-Counting problem which is the 

reason of choosing it as a prototype example. Their analysis provided that the ONEMAX 

problem is of order           for proportionate selection and   √   for selection algorithms 

with constant selection intensity. 
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- Fernando et al, [60] introduced experimental and theoretical analysis of the GAs complexity 

time on problems exponentially scaled building blocks. This work relies on the previous one 

of Thierens et al, but here for the building blocks instead of the case of single genes. They 

found an overall quadratic time complexity in terms of the evolution of the fitness function 

under idealized situations as they suggested perfect building block mixing. For the case of the 

building blocks uniformly scaling, where the time complexity of the GA with perfect mixing 

is       where the population size and convergence time grow linearly with √   and for the 

building blocks, exponential scaling is      . Integer   is a number of building blocks. 

- Rylander, [61] illustrated the Minimum Chromosome Length (MCL) method to compute 

genetic algorithm time complexity of problems. Using this approach shows the possibility of 

finding time complexity of problems based GAs. This approach relies on the search space 

growth rate as a function of the input problem size. They proved two particular cases 

empirically and defined a new complexity class NPG (the class of problems that can be 

solved by GA with cost more polynomial time). The worst case complexity of the problem for 

a GA can be bounded by the MCL growth rate. The problem belongs to the class PO (the 

optimization equivalent of P) if the MCL grows slowly enough. Conversely, it belongs to the 

class of NPO (the optimization equivalent of NP) as the MCL growth rate will be no more 

than linear where searching the space does not grow faster than exponentially [62]. 

9 Conclusion 

     Currently, large companies use GA to optimize problems that concern schedules and 

designing. GAs are very common for optimization [63, 64, 65], which is different from 

classical optimization approaches.  It uses the coding of the problem’s parameters instead of 

the parameters themselves. It implies a probabilistic transition function. This approach may 

not find the optimum because either the algorithm converges fast and stop before getting the 

optimum or the algorithm is far from the optimum solution. The ability of GAs to explore and 

exploit together and successfully apply to real-life problems confirms that GAs are robust and 

powerful optimization approaches. This survey introduced the basic idea of the GAs. The 

historical improvement of the evolutionary computation is viewed. The survey included the 

main concepts of GAs, GA operators, and convergence criteria. Also, some interesting results 

and theorems on time complexity were provided. 
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