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Abstract

The aim of the paper is to compute projective maximum distance separable
codes, PG-MDS of two and three dimensions with certain lengths and Hamming
weight distribution from the arcs in the projective line and plane over the finite field
of order twenty-five. Also, the linear codes generated by an incidence matrix of
points and lines of PG (2,25) were studied over different finite fields.

Keywords: Linear code, MDS, Projective space, Incidence matrix.
Og sy dmnad Ayl o Jaad) o Abadl) Eisasill (e ddma g5

clgd Jlhudlue Ll & LG S ke
Ghal) alais canyeationnl) analal ¢aslell LS (bl o
dadal)
Y g3 ae lllly S aedl I3 PG-MDS ,Lkalan) clipeiill Clas 58 Ganldl e Cangl)
et G5 e Jisdl o ggiaally BlaaY) Bal) 3 Y] e Osme clials Oligly lshl i
S 28 PG(2,25) has Ll e gsisll Aishas daals salsiall Lhall cliegll QS L opsde
i Lgiie Jgia e Ll

1. Introduction

Let GF(q) = F, denotes the Galois field of q elements, q is a prime power, F;* = F, is a plus
point at infinity, and Fq" is the vector space of row vectors of length n with entries in F;. Let
PG(k — 1, q) be the corresponding projective space of dimension k — 1. As a special case,
PG(1,q) and PG (2, q) are called projective line and projective plane, respectively. The points
P(xy,...,x;) of PG(k — 1,q) are the one dimensional subspaces of Fq". In PG(k —1,q), the
number of points is 8(k—1,q9) = (¢*—1)/(q—1) and the number of lines is
(¢ =1 (¥ -1)/(q*> — 1)(q — 1). An (n;7)-arc with n > r + 1 is a set of k points of a
projective space, such that most r points are on the hyperplane, but with at least one set of r
points are on the hyperplane. In the line, (n; 1)-arc is just an n-set; that is, a set of n distinct
points. An (n; r)-arc K is called complete if it is maximal with respect to inclusion; that is,
there is no an (n + 1;r)-arc containing K. The maximum size of an (n;r)-arc in PG(k —
1, q) is denoted by m,.(k — 1, q). In 1947, Bose [1] proved that

m,(2,q) = q + 2 forqeven, m,.(2,q) = q + 1 for qodd.

In the finite projective line, the value of m,(1, q) is just g + 1.

*Email: emad77_kaka@yahoo.com
4019



Al-Zangana and Shehab Iragi Journal of Science, 2021, Vol. 62, No. 11, pp: 4019-4031

Definition 1. A conic C in PG(2,q) is the set of rational points of a homogenous nonsingular
form F of degree two over F,.

Bose showed that: an (m,(2,q);2)-arc in PG(2,q),q odd, is just the conic, and that the
conic plus its nucleus (the intersection point of its tangents) is an (m,(2,q); 2)-arc in
PG(2,q),q even.

The points P(X,Y) of the projective line PG (1, q) are identified by F;* by sending the points
P(X,Y)to X/Y if Y # 0 and to o if Y = 0. The relation between the conic C*(X? — YZ) and
F;" exists by sending each point ¢ of F;* to P(t?,t, 1) point on the conic C*.

For details and basic results on the projective space and the essential subsets of the projective
space, see [2].

The Hamming weight of a vector x € F* is the number of non-zero coordinates of x, denoted
by wt(x). A q-ary [n, k, d]-code C over F, is a k-dimensional subspace of F, all of whose
non-zero vectors (codewords) have a weight of at least d = d(C). A g-ary [n, k, d]-code that

d-1 f .
corrects e = [TJ errors is called e-error correcting code, where [x] denotes the floor

function. Let A; denotes the number of codewords with Hamming weight i in a code C of
length n. The sequence (1,4, ,4,, ... ,4;, ) is called the weight distribution of the code C.
The dual code of g-ary [n, k, d]-code C over F,, denoted by C*, is defined by
n

ct= {x = (Xq, o, Xp) € Fq”:le-ci =0,Vc = (¢, ...,Cy) € Cy.
Any g-ary [n, k,d]-code C can be deﬁnedlb;/ a (k x n) matrix G = [I,,A] (standard form),
where A is a nonsingular (k X n) matrix with entries from F,, called the generator matrix,
whose rows form a basis. Also, the dual code C* can be defined by a (n — k) X n matrix
H = [~ATI¢h—ky]. Two linear codes are isomorphic (equivalent) if the generator matrices are
equivalent after doing a sequence of row (column) operations.
A sphere-packing bound of a g-ary [n, k,d = 2e + 1]-code C over F is

e
k n i n
q {;(i)(q 1)}Sq :
A code which achieves the sphere-packing bound is called a perfect code, see [3].

Definition 2 [4]. A g-ary [n, k, d]-code C over F, atd =n — k + 1 (the maximum value of
d) is called a maximum distance separable code, or MDS code for short. The code C is called
projective if the columns of a generator matrix are pairwise linearly independent and denoted
by PG-MDS.

Theorem 3 [4]

A g-ary [n, k,d]-code C over F, is MDS if and only if its dual C* is MDS; that is, d(C) =
n—k+1ifandonlyifd(Ct) =k + 1.

Therefore, A g-ary [n, k, d]-code C over F, is PG-MDS if and only if its dual C* is PG-
MDS, since the standard generator matrix of both are depending on the base matrix A.

It is well known that there is equivalence between the existence of a PG-MDS and an arc in
the projective space, where this equivalence comes from the fact that the matrix in which each
column is a point of an arc has formed a generator matrix of PG-MDS.

The full prove of this relation is presented elsewhere [4] and the statement of the theorem is
as follows.

Theorem 4: There exists a PG-MDS g-ary [n, k,d]-code if and only if an (n;n — d)-arc
exists in PG(k — 1, q). As special cases:
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(i) If k = 2, then every r-set, that is (r; 1)-arc, in PG(1, q) gives a generator matrix of PG-
MDS g-ary [r, 2,7 — 1]-code over F,.

(i) If kK = 3, then every (r;2)-arc in PG(2,q) gives a generator matrix of PG-MDS q-ary
[r,3,7 — 2]-code over F,.

The weight enumerator of an MDS (PG-MDS) g-ary [n, k, d]-code C over F, is unique, and
the weight distribution of the code C is (4, = 1,4, ,4,, ... , A, ), where

Aj=0 for0 < j< d,and
j—d

R ) X b ES S

1=0
ford <j <n.If d=n—-k+1,then
n

A= -1(,)- @
For details and descriptions of equations (1) and (2), see [3].
Ezerman et al. [5] determined the weight spectra of certain linear MDS codes, namely those
that satisfy the MDS Conjecture. Alderson [6] discussed the weight distribution of MDS g-
ary [n, k, d]-code and showed that all k weights fromnton — k + 1 are realized.
One of the important questions for a code with parameters n, k,d and g, is: how many non-
isomorphic codes are there having these parameters? Many researches discussed this question
directly by working on the code, see for example [7, 8], or indirectly through projective space,
both in general cases and for a certain g, see for example [9,10,11].
The first objective of this paper is to present a class of non-isomorphic error-correcting PG-
MDS codes over F,¢ of two and three dimensions with their weight distributions. The second
objective is to construct linear codes from the incidence matrix of lines and points of
PG(2,25) by giving details of generator matrices over distinct finite fields.
The GAP programming was used to perform the calculations required for achieving the
desired results [12].
2. Non-Isomorphic Error-Correcting PG-MDS Codes over F,5
Al-Zangana and Shehab [13] gave full details of the classification of projectively inequivalent
k-subsets in the projective line over F,g, such that each k-subset contains the standard frame
I,5(3) = {o0,0,1}. These results are summarized in Table 1. Let n; denotes the number of
projectively inequivalent k-subsets of PG (1,25).

Table 1- Projectively inequivalent k-subsets of PG(1,25).
k 4 5 6 7 8 9 10 11 12 13
e 5 8 28 54 131 225 398 531 692 714

Theorem 5. Over F,z, the non-isomorphic PG-MDS codes with parameters n, k, d, e, and no
zero weight distributions A; are listed in Table 2.

Table 2- Non-isomorphic PG-MDS codes of dimension 2.

m n k d e Ay Ay Ay

5 4 2 3 1 1 96 528

8 5 2 4 1 1 120 504
28 6 2 5 2 1 144 480
54 7 2 6 2 1 168 456
131 8 2 7 3 1 192 432
225 9 2 8 3 1 216 408
398 10 2 9 4 1 240 384
531 11 2 10 4 1 264 360
692 12 2 11 5 1 288 336
714 13 2 12 5 1 312 312
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692 14 2 13 6 1 336 288
531 15 2 14 6 1 360 264
398 16 2 15 7 1 384 240
225 17 2 16 7 1 408 216
131 18 2 17 8 1 432 192
54 19 2 18 8 1 456 168
28 20 2 19 9 1 480 144
8 21 2 20 9 1 504 120
5 22 2 21 10 1 528 96
1 23 2 22 10 1 552 72
1 24 2 23 11 1 576 48
1 25 2 24 11 1 600 24
1 26 2 25 12 1 624 ---

Here 7 denotes the number of non-isomorphic PG-MDS codes of specific parameters.
Proof. First of all, since each n-subset computed in [13] contains the points of the standard
frame, then the constructed (2 x n) matrix G from the points of n-subset will be in a
standard form and the second row of G takes the form 011 ..1; that is, G = [I,A] and a
2 X (n — 2) matrix A has now zero coordinate in each row (column) vector. According to the
construction of points of the projective line, the second coordinate is 1 and, hence, the second
row of A is always a vector with one in each coordinate. Hence, it is enough to give the first
row of the matrix A to refer to the generator matrix. Secondly, from Theorem 4, every n-
subset formed a PG-MDS g-[n, 2,n — 1]-code. For each n, the GAP program was used to
compute the weight distributions A4;, i = n — 1, n. Let £ be the primitive element of F,s.
n=4.
1% row of generating matrix

101 %

101p6*

1018

10 1p%

10187

1% row of generating matrix

101 25

1st row of generating matrix
101 B12 BG 318
10 1,81236 ,8
101 ,812 ,8,82
101 ,812 ,B ,83
10
10
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01 Blzﬁ Bll
01 BlZB 313
01 BlZB 314
01 BlZB Bls
01 BlZB 316
0
0
0
0

1 ﬁlzﬁ ﬁZO
1 ﬁlzﬁ ﬁ21
1 ﬁlzﬁ ﬁ22
1 ﬂlzﬂ ﬁ23

10 1ﬁ,38 315
Forn = 7,...13, the first rows of a one generating matrix are written below, since there is no

enough space to write all here.

1% row of generating matrix
n=7 10 18%26° '8¢
n=_8 10 1,812,86 B18 BZ
n=9 10 1ﬁ12ﬁ6ﬁ ,34 'Bs ﬁZO
n=10 10 1,812,86 B18‘8 BS 39 ,814
n=11 10 1,812,86 B18‘8 BZ B4 ,87 B16
n=12 10 1,812,86 B18‘8 BZ 33 ,89 B14 ,819
n =13 10 1ﬁ12ﬁ6ﬁﬁ2 ﬁS ﬁ4 ﬁll ﬁlﬁ ﬁ17 ﬁ22

The complement subset K¢of each n-subset K formed an (26 —n)-subset of PG(1,25).
Therefore, the number of inequivalent (26 — n)-subsets and n-subsets of PG (1,25) is equal.
Thus, the number of non-isomorphic PG-MDS codes with length equal to 26 —n and
dimension 2 is equal to the number of non-isomorphic PG-MDS codes with length n and
dimension 2, where n =4,...,12. The number of non-isomorphic PG-MDS codes with
lengths 23,24,25 and dimension 2 is one, since all the 3-sets are equivalents. Also, there is
only one non-isomorphism PG-MDS code of length 26 and dimension 2, since the 26-subset
of PG(1,25) is just the line. m

Corollary 5. Over F,s, the dual codes C* of the PG-MDS codes C with parameters
m, n, shown in Table 2, formed PG-MDS codes with dimensionn —2,d =3 ande = 1.
Proof. From Theorem 3, each dual code C* of the PG-MDS g-ary [n,2,n — 1]-code C over
F,s formed PG-MDS g-ary [n,n — 2,3]-code and e = 1 with n = 4, ...,26. Since the dual
code of C* is C, then the number of non-isomorphic code C+ for certain length n is 7, as in
Table 2. The weight distributions (43, ..., A,,) of C* for fixed n are as listed in Table 3.

Table 3- Weight distributions (A _3,...,A n) of C*Ll for n=4,...,14

n (A5, ..., 4A,)
4 (96, 528)
5 | (240, 2640, 12744 )
6 (480, 7920, 76464, 305760 )
7 (840, 18480, 267624, 2140320, 7338360)
8 (1344, 36960, 713664, 8561280, 58706880, 176120496)
9 (2016, 66528, 1605744, 25683840, 264180960, 1585084464, 4226892072)
10 (2880, 110880, 3211488, 64209600, 880603200, 7925422320, 42268920720
101445409536)
11 | (3960, 174240, 5887728, 141261120, 2421658800, 29059881840, 232479063960,
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1115899504896, 2434689829080)

(5280, 261360, 10093248, 282522240, 5811981120, 87179645520, 929916255840,
6695397029376, 29216277948960, 58432555897680)

(6864, 377520, 16401528, 524684160, 12592625760, 226667078352

13 | 3022227831480, 29013387127296, 189905806668240, 759623226669840,
1402381341544584)

(8736, 528528, 25513488, 918197280, 25185251520, 528889849488

14 | 8462237928144, 101546854945536, 886227097785120, 5317362586688880
19633338781624176, 33657152197069728)

(10920, 720720, 38270232, 1530328800, 47222346600, 1133335391760,

15 | 21155594820360, 304640564836608, 3323351616694200, 26586812933444400,
147250040862181320, 504857282956045920, 807771652729673784)

(13440, 960960, 55665792, 2448526080, 83950838400, 2266670783520,
48355645303680, 812374839564288, 10634725173421440, 106347251733777600
785333551264967040, 4038858263648367360, 12924346443674780544,
19386519665512170480)

(16320, 1256640, 78859872, 3784085760, 142716425280, 4281489257760, 102755746270320
1972910324656128, 30131721324694080, 361580655894843840,
3337667592876109920, 22886863494007415040, 109856944771235634624,
329570834313706898160, 465276471972292091880)

(19584, 1615680, 109190592, 5676128640, 233535968640, 7706680663968,
205511492540640, 4439048230476288, 77481569120641920, 1084741967684531520
12015603334353995712, 102990885723033367680, 659141668627413807744,
2966137508823362083440, 8374976495501257653840, 11166635327335010204736 )
(23256, 2046528, 148187232, 8295880320, 369765283680, 13311539328672
390471835827216, 9371324042116608, 184018726661524560, 2944299626572299840,
19 | 38049410558787653088, 391365365747526797184,
3130922925980215586784,18785537555881293195120,79562276707261947711480,
212166071219365193889984, 267999247856040244914072 )

(27360, 2558160, 197582976, 11851257600, 568869667200, 22185898881120
709948792413120,18742648084233216, 408930503692276800,

20 | 7360749066430749600,108712601596536151680, 1304551219158422657280,
12523691703920862347136, 93927687779406465975600, 530415178048412984743200,
2121660712193651938899840, 5359984957120804898281440, 6431981948544965877937296 )

12

16

17

18

(31920, 3160080, 259327656, 16591760640, 853304500800, 35838759731040
1242410386722960, 35781419069899776, 858754057753781280,
17175081155005082400, 285370579190907398160, 3913653657475267971840,
21 | 43832920963723018214976, 394496288673507157097520
2784679684754168169901800, 14851624985355563572298880,
56279842049768451431955120, 135071620919444283436683216
154367566765079181070495560)

(36960, 3862320, 335600496, 22813670880, 1251513267840, 56318051005920,
2102540654454240, 65599268294816256, 1717508115507562560,
37785178541011181280, 697572526911106973280, 10762547558056986922560,
22 | 137760608743129485818496, 1446486391802859576024240,
12252590612918339947567920, 81683937419455599647643840,
412718841698301977167670880, 1485787830113887117803515376
3396086468831741983550902320, 3704821602361900345691892960)

(42504, 4675440, 428822856, 30865554720, 1799050322520, 86354344875744,
3454173932317680, 116060243906213376, 3291890554722828240,
79005373313023379040, 1604416811895546038544,27504288203923411024320,
396061750136497271728176, 4752741001637967178365360,
46968264016186969799010360, 375746112129495758379161664,
2373133339765236368714107560, 11391040030873134569826951216
39054994391565032810835376680, 85210896854323707950913538080,
88915718456685608296605431544 )

23

(48576, 5610528, 541670976, 41154072960, 2539835749440, 129531517313616,
5526678291708288, 198960418124937216, 6077336408719067520,
158010746626046758080,3500545771408464084096,
66010291689416186458368,1056164667030659391275136

24
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14258223004913901535096080,161034048055498182168035520,
1502984448517983033516646656,11391040030873134569827716288
68346240185238807418961707296,312439955132520262486683013440,
1022530762251884495410962456960, 2133977242960454599118530357056
2133977242960454599118530356528)

(55200, 6679200, 677088720, 54150096000, 3527549652000, 190487525461200,
8635434830794200, 331600696874895360, 10852386444141192000
303866820434705304000,292803690434300175200, 150023390203218605587200,
2640411667576648478187840, 39606175013649726486378000, 503231400173431819275111000,
5367801601849939405416595200, 47462666795304727374282151200
341731200926194037094808536480, 1952749719578251640541768834000,
8521089685432370795091353808000, 26674715537005682488981629463200
53349431074011364977963258913200, 51215453831050910378844728557224)
(62400, 7893600, 838300320, 70395124800, 4827173208000, 275148647888400,
13207135623567600, 538851132421704960, 18810803169844732800,
564324095093024136000, 14585607380868600350400, 325050678773640312105600,
6240973032453896402989440, 102976055035489288864582800, 1453779600501025255683654000,
26 | 17445355206012303067603934400, 176289905239703273104476561600,
1480835204013507494077503658080, 10154298541806908530817197936800,
55387082955310410168093799752000, 231180867987382581571174122014400,
693542603962147744713522365871600,1331601799607323669849962942487824,
1229170891945221849092273485372800)

25

|

Al-Zangana and Shehab [14] proved that there are eight inequivalent 5-arcs and 365
inequivalent 6-arcs in the projective plane over F,s through the standard frame I5(4) =
{Uy,U,,U,, U}. The corresponding PG-MDS codes to these arcs are summarized in the
following theorem.

Theorem 6. Over F,s, there are

(i) eight non-isomorphic PG-MDS [5,3,3]-codes with e =1 and weight distribution
(1,0,0,240,2640,12744). The dual codes of these codes are PG-MDS [5,2,4]-code with
e = 1 and weight distribution (1, 0,0, 0,120, 504).

(i) 365 non-isomorphic PG-MDS [6,3,4]-codes with e =2 and weight distribution
(1,0,0,0,360,3024, 12240). The dual codes of these codes are equivalent to the base codes.
Example 7

100116
(i) PG-MDS [5,3,3]-code C; with generator matrix G; = [0101 B7 |- The generator matrix of
0011 1
12 p12 p12
PG-MDS [5,2,4]-code C1- is Hy = [@ﬁwgnég .
1001,820,819
i - ,3,4]-code C, with generator matrix G, = 0101 20|, The generator
i) PG-MDS [6,3,4]-code C, with t trix G B B Th t
0011 1 1
’312 [312 ﬁ12100
matrix of PG-MDS [6,3,4]-code C; is H, =|p® g*3p12010(. The matrix H, can be
'37 '38'36(12001

transformed to G, after dividing the first, second, and third columns of H, by '? and
applying some permutations in rows and columns. Thus, Cy is equivalent to C,.

3. Codes from Incidence Matrix

The incidence matrix IM* = (a;;) of points and k-dimensional projective subspaces in the
projective space PG(n,q),q = p", p prime, h > 1, is defined as the matrix whose rows are
indexed by the k-spaces of PG(n,q), 1 < k <n — 1, and whose columns are indexed by the
points of PG(n, q), and with the entry
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o {0 if point j belongs to k — space i,
' _ Y1 otherwise. _
Clearly, the dimension of IM* is 6(n, q) X 6(n, q). For more details, see [15, 16].

It is known that the rows of the matrix IM* generate a p-ary [n, k, d]-code over a field F,.
This code is normally denoted by C, = Cr(n,q),and by C(2,q) ifk =1andn = 2.

The minimum weight of C(2,q) is g + 1, which is provedin by giving the general case for

that. Therefore, e = l%] = lq+;_1j = EJ

Over F,s, The incidence matrix IM* = (a;;) of points and lines in the projective space
PG(2,25) was computed. An algorithm was executed with GAP program to compute the
generator matrices of linear codes from IM*over several finite fields. The results are
summarized below.

The matrix IM* is given by identifying each row, r;, by a non-zero position, as shown below.

1,2,4,44,65,74,93,162,170,176,215,252,269,310,397,422,454,472,501,506,516,528,532,539,552,587
( 2,3,5,45,66,75,94,163,171,177,216,253,270,311,398,423,455,473,502,507,517,529,533,540,553,588 \

\ 2,42,63,72,91,160,168,174,213,250, 267,308, 395, 426, 452,470,499,504,514,526,530,537,550, 585,650, 651/
1,3,43,64,73,92,161,169,175,214,251,268,309,396,421,453,471,500, 505, 515,527,531, 538,551, 586,651

In the following theorem, the g-ary [n, k, d]-code over F,,q = p™, generated by IM*, was
founded for 2 < p <397 and p is prime. Since the results will be out of the memory of the
computer, the program for p > 397 cannot be run .

Theorem 8. Over F,5, the IM* generates the following error-correcting, e, g-ary [n, k, d]-
code over the field F,;, g = p™:

(i) g-ary[651,226,1 < d < 26]-code with e = 12 if g = 5™,

(ii) g-ary [651,650,1 < d < 2]-code withe = 0if g = p™,p = 2,13.

(iii) g-ary [651,651,1]-code with e = 0 if ¢ = p™, 3 < p(+ 2,5,13) < 397.

Proof. The procedure that was used to find the generating matrix of the g-ary [n, k, d]-code,
depending on the field F, is firstly looking for the linearly dependent rows in the matrix
IM*and secondly looking for the linearly dependent codewords that are generated from the
linearly dependent rows of IM*. This was achieved using the mathematical language GAP.
The generating matrix of g-ary [n, k,d]-code over F,, ¢ =p™ is exactly the generating
matrix of g-ary [n, k, d]-code over F,. Since the entries of the matrix /M* are just 0 and 1,
then the sums between rows of IM* will behave like elements of E,.

(i) The details of the generating matrix ¥ of the 5-ary [651,226,1 < d < 26]-code, C(2,25),
with e = 12, are given in Tables 4 and 5. Let n,, denotes the order of the row r; and =
denotes the size of non-zero positions of row r;.
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Table 4- Details of the generator matrix ¥ of C(2,25)

My =s My s My s My s My s

1 26 51 26 101 427 151 410

2 26 52 26 102 427 152 397

3 26 53 26 103 434 153 397

4 26 54 26 104 434 154 397

5 26 55 26 105 432 155 397

6 26 56 26 106 424 156 394

7 26 57 26 107 434 157 420

8 26 58 26 108 421 158 404

9 26 59 26 109 436 159 379

10 26 60 26 110 436 160 408

11 26 61 26 111 429 161 404

12 26 62 26 112 449 162 402 201

13 26 63 26 113 449 163 385 202 366
14 26 64 26 114 430 164 361 203 361
15 26 65 26 115 442 165 361 204 360
16 26 66 468 116 440 166 367 205 358
17 26 67 448 117 440 167 399 206 365
18 26 68 441 118 435 168 387 207 364
19 26 69 452 119 439 169 385 208 358
20 26 70 465 120 439 170 390 209 363
21 26 71 447 121 444 171 390 210 353
22 26 72 460 122 419 172 385 211 353
23 26 73 469 123 432 173 374 212 342
24 26 74 463 124 434 174 387 213 342
25 26 75 444 125 434 175 389 214 352
26 26 76 458 126 415 176 388 215 353
27 26 77 449 127 412 177 391 216 351
28 26 78 461 128 420 178 391 217 351
29 26 79 451 129 420 179 370 218 347
30 26 80 451 130 423 180 370 219 347
31 26 81 453 131 405 181 389 220 345
32 26 82 465 132 398 182 380 291 345
33 26 83 440 133 412 183 354 299 344
34 26 84 456 134 404 184 354 223 342
35 26 85 456 135 404 185 354 224 344
36 26 86 442 136 425 186 359 225 345
37 26 87 455 137 425 187 381 226 342
38 26 88 440 138 424 188 385 343
39 26 89 436 139 416 189 385

40 26 90 437 140 421 190 362

41 26 91 437 141 414 191 367

42 26 92 437 142 402 192 365

43 26 93 449 143 410 193 387

44 26 94 459 144 410 194 376

45 26 95 450 145 411 195 365

46 26 96 450 146 403 196 350

47 26 97 460 147 422 197 370

48 26 98 451 148 422 198 370

49 26 99 443 149 411 199 370

50 26 100 443 150 410 200 370
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Table 5- Numerical information of the generator matrix ¥ of €(2,25)

No. = n., No. =5 N=s
1 26 65 44 411 2
2 342 4 45 412 2
3 343 1 46 414 1
4 344 2 47 415 1
5 345 3 48 416 1
6 347 2 49 419 1
7 350 1 50 420 3
8 351 2 51 421 2
9 352 1 52 422 2
10 353 3 53 423 1
11 354 3 54 424 2
12 358 2 55 425 2
13 359 1 56 427 2
14 360 1 57 429 1
15 361 3 58 430 1
16 362 1 59 432 2
17 363 1 60 434 5
18 364 1 61 435 1
19 365 3 62 436 3
20 366 1 63 437 3
21 367 2 64 439 2
22 370 6 65 440 4
23 374 1 66 441 1
24 376 1 67 442 2
25 379 1 68 443 2
26 380 1 69 444 2
27 381 1 70 447 1
28 385 5 71 448 1
29 387 3 72 449 4
30 388 1 73 450 2
31 389 2 74 451 3
32 390 2 75 452 1
33 391 2 76 453 1
34 394 1 77 455 1
35 397 4 78 456 2
36 398 1 79 458 1
37 399 1 80 459 1
38 402 2 81 460 2
39 403 1 82 461 1
40 404 4 83 463 1
41 405 1 84 465 2
42 408 1 85 468 1
43 410 4 86 469 1

(it) Over the field F,, the Hamming weights of vectors in the generating matrix take the
values 2, 4,6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98,
100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134,
136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172,
174,176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210,
212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248,
250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286,
288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324,
326, 328, 330, 336, 340. Therefore, the Hamming weight of this code is 2.
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Over the field F;3, the Hamming weights of vectors in the generating matrix take the values
from 2 to 556 and 558. Therefore, the Hamming weight of this code is 2.

(iii) Over the field F;, the Hamming weights of vectors in the generating matrix take the
values from 1 to 418 and 425. Therefore, the Hamming weight of this code is 1.

Over the field F;4,, the Hamming weights of vectors in the generating matrix take the values
1,2,3,4,56,7,8,9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 82, 84, 85,
86, 87, 89, 90, 91, 92, 93, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
112,113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 133,
134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 148, 149, 151, 152, 153, 154, 156, 157, 159,
160, 162, 164, 165, 167, 168, 169, 171, 172, 173, 174, 176, 177, 178, 180, 181, 182, 184, 185,
187, 189, 190, 191, 192, 193, 194, 196, 197, 199, 200, 201, 202, 204, 205, 206, 207, 209, 211,
212, 213, 214, 215, 216, 218, 219, 220, 221, 223, 224, 225, 227, 229, 230, 231, 233, 234, 235,
236, 237, 238, 241, 243, 244, 245, 246, 248, 249, 250, 251, 252, 254, 255, 256, 257, 259, 260,
261, 262, 263, 264, 265, 267, 268, 270, 271, 272, 274, 275, 276, 278, 279, 280, 281, 283, 284,
285, 286, 287, 289, 290, 292, 294, 295, 296, 297, 299, 300, 301, 303, 305, 307, 308, 310, 311,
312, 314, 316, 317, 320, 321, 322, 323, 324, 325,326, 328, 330, 332, 333, 335, 337, 338, 339,
340, 341, 344, 345, 346, 347, 348, 350, 351, 352, 354, 355, 357, 358, 359, 360, 361, 362, 363,
365, 368, 369, 372, 374, 376, 377, 379, 381, 382, 384, 385, 386, 387, 388, 389, 391, 392, 393,
395, 396, 397, 398, 400, 402, 403, 404, 407, 408, 409, 411, 412, 414, 415, 418, 419, 421, 422,
424, 425, 428, 429, 430, 431, 432, 435, 436, 437, 438, 440, 442, 444, 445, 446, 447, 450, 451,
452, 454, 455, 456, 458, 461, 463, 464, 466, 467, 469, 471, 472, 473, 475, 476, 477, 479, 480,
481, 484, 485, 488, 490, 492, 494, 495, 496, 497, 499, 500, 502, 503, 504, 507, 508, 509, 510,
511, 512, 514, 515, 518, 520, 522, 523, 524, 526, 527, 529, 530, 531, 533, 536, 538, 539, 540,
541, 542, 543, 544, 545, 546, 548, 549, 550, 551, 552, 553, 556, 557, 558, 559, 561, 562, 563,
564, 565.

The unique codeword in the generator matrix over F,m, 3 < p(# 2,5,13) <397 with a
weight of 1 is the codeword with 1 in the last coordinate. m

A linear code C of length n over F, is called cyclic if: (aoa,..a,_,) € C then
(ap—1aq ...ay_5) € C. Since each codeword is identified with a polynomial ay,+a;X +
@y X" € Fy[X]/(X™ — 1) (ring of polynomials in F,[X] of degree less than n),
therefore, a g-ary [n, k, d]-code C over F, can be viewed as a subset of F;* and a subset of
F,[X]/(X™ — 1). 1t is known that every non-zero cyclic C code is generated by a unique
monic irreducible polynomial f(X) with smallest degree r, and the property that f(X) is a
factor of X™ — 1 and k = n — r. This polynomial is called the generator polynomial of C. For
details and characteristics of cyclic code, see [3].

Remark 9

(i) The rows ry, ..., g5 Of IM™ are only rows in the generating matrix of each code generated
by IM* over F.

The calculations show that:

(i1) the covering radius p of 5-ary [651,226,1 < d < 26]-code is 204 < p < 425, and that
of 5™22-ary [651,226,1 < d < 26]-code is p < 425.

(iii) the covering p of g™-ary [651,650,1 < d < 2]-code is 1, where q = 2,13.

(iv) the g-ary [651,651,1]-code, g = p™>2, 3 < p(+ 2,5,13) < 397 is a perfect code with
zero covering radius.
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Corollary 10. All the dual codes of the codes in Theorem 8,i,ii are cyclic codes.

Proof. The dual codes of 5™-ary [651,226,1 <d < 26]-code are cyclic, 5™-ary
[651,425,1 < d < 195]-code, and its covering radius is less than 226. The coefficients of the
generator polynomials which are of degree 26 are 1, 1,4, 3,4,3,1,2,4,2,4,4,1,4, 3,0, 2,

01344300 1,0,2,0,4,1,3,2,3,32303,213,3021,3,302223,0,
2,1,4,3,2,3,4,1,3,3,2,3,3,40,0,2,2,1,0,2,4,2,2,2,1,3,0,3,1,0,4,1,1,0,4, 1, 2,
2,0,0,2,4,3,4,0,1,1,2,1,3,4,4,3,0,1,2,2,1,4,3,4,4,2,1,2,4,4,3,4,2,2,1,4,1,4,
2,1,3,2,2,4,3,2,2,0,4,2,3,4,3,2,2,3,3,3,1,2,4,0,1,4,2,1,4,3,3,2,3,4,4,4,3, 4,
2,0,4,4,4,0,4,1,4,3,2,3,2,2,4,1,4,4,1,2,2,0,3,3,1,4,3,1,1,3,3,3,0,42,1,0, 3,
0,10,3,0,0,3,2,3,3,1,1,0,3,4,3,2,1, 2, 3, 1. The weight of each row of the generator
matrix is 195. Therefore, 1 < d < 195

The dual code of p™-ary [651,650,1 < d < 2]-code is cyclic, p-ary [651,1,651]-code. The
coefficient of the generator polynomials which are of degree 650 is just 1’s. When p =
2, m = 1, the weight of each row of the generator matrix is 195 and its covering radius is
325. Since e = 325, then this code is perfect.

4. Conclusions

Over the finite field of order twenty-five, using ideas of arcs in the projective space, many
non-isomorphic projective MDS were found. Also, with incidence matrix idea of points and
lines in the projective space, many other linear perfect (non-perfect) codes were founded. The
most important property of the rows of incidence matrix IM* is that each i-th row is just
circulate to the (i —1)-th row, except the last row. The best linear code that can be
constructed from the incidence matrix IM™* is when it is taken over Fg, since it will have a
Hamming weight 1 < d < 226, while over the others that are of order distinct from 5, it
behaves like a trivial code. Also, when the matrix IM* is taken over F,, a perfect code is
founded.
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