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Abstract 

     The aim of the paper is to compute projective maximum distance separable 

codes,   -MDS of two and three dimensions with certain lengths and Hamming 

weight distribution from the arcs in the projective line and plane over the finite field 

of order twenty-five. Also, the linear codes generated by an incidence matrix of 

points and lines of   (    ) were studied over different finite fields.    
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من الرتبة خمدة وعذرون  أنواع معينة من الترميزات  الخطية على الحقل  
 
 

، ايلاف عبدالدتار شهاب*عماد بكر الزنكنة   
 قدم الرياضيات، كلية العلهم، الجامعه المدتنرريه، بغداد، العراق

 الخلاصة
ذات البعد الثاني والثالث مع تهزيع الاوزان   MDS-   ,الاسقاطيةث هه حداب الترميزات حالهدف من الب

الاسقاطي والمدتهي على الحقل من الرتبة خمدة  طالخ فيذات اطهال واوزان هامنك معينين من الاقهاس 
قد تم   (    )  من نقاط وخط  الهقهع وعذرين. كذلك, الترميزات الخطية المتهلدة بهاسطة مرفهفة 

 .دراستها على حقهل منتهية مختلفة
 
1. Introduction 

Let   ( )     denotes the Galois field of   elements,   is a prime power,    
     is a plus 

point at infinity, and   
   is the vector space of row vectors of length   with entries in   . Let 

  (     ) be the corresponding projective space of dimension    . As a special case, 

  (   ) and   (   ) are called projective line and projective plane, respectively. The points 

 (       ) of   (     ) are the one dimensional subspaces of   
 . In   (     ), the 

number of points is  (     )  (    ) (   )⁄  and the number of lines is 

(    )(      ) (    )(   )⁄ . An (   )-arc with       is a set of    points of a 

projective space, such that most   points are on the hyperplane, but with at least one set of   

points are on the hyperplane. In the line, (   )-arc is just an  -set; that is, a set of   distinct 

points. An (   )-arc   is called complete if it is maximal with respect to inclusion; that is, 

there is no an (     )-arc containing  . The maximum size of an (   )-arc in   (  
   ) is denoted by   (     ). In 1947, Bose [1] proved that 

   (   )                       (   )                    
In the finite projective line, the value of   (   ) is just       

         ISSN: 0067-2904 
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Definition 1. A conic   in   (   ) is the set of rational points of a homogenous nonsingular 

form   of degree two over   . 

Bose showed that:  an (  (   )  )-arc in   (   )   odd, is just the conic, and that the 

conic plus its nucleus (the intersection point of its tangents) is an (  (   )  )-arc in 

  (   )   even. 

The points  (   ) of the projective line   (   ) are identified by   
  by sending the points 

 (   ) to   ⁄  if     and to   if    . The relation between the conic   (     ) and 

  
  exists by sending each point   of   

  to  (      ) point on the conic   . 
For details and basic results on the projective space and the essential subsets of the projective 

space, see [2]. 

The Hamming weight of a vector     
  is the number of non-zero coordinates of    denoted 

by   ( ). A  -ary ,     --code   over      is a  -dimensional subspace of   
 , all of whose 

non-zero vectors (codewords) have a weight of at least    ( ). A  -ary ,     --code that 

corrects   ⌊
   

 
⌋ errors is called  -error correcting code, where ⌊ ⌋ denotes the floor 

function. Let    denotes the number of codewords with Hamming weight   in a code   of 

length  . The sequence (                ) is called the weight distribution of the code  . 

The dual code of  -ary ,     --code   over   ,  denoted by   , is defined by  

   {  (       )    
  ∑          (       )   

 

   

}  

Any  -ary ,     --code   can be defined by a (   ) matrix   ,   - (standard form), 

where   is a nonsingular (   ) matrix with entries from   , called the generator matrix, 

whose rows form a basis. Also, the dual code     can be defined by a (   )    matrix 

  [    (   )]. Two linear codes are isomorphic (equivalent) if the generator matrices are 

equivalent after doing a sequence of row (column) operations. 

A sphere-packing bound of a  -ary ,          --code   over     is  

  {∑.
 

 
/ (   ) 

 

   

}      

A code which achieves the sphere-packing bound is called a perfect code, see [3]. 

Definition 2 [4].  A  -ary ,     --code   over     at         (the maximum value of 

 ) is called a maximum distance separable code, or MDS code for short. The code   is called 

projective if the columns of a generator matrix are pairwise linearly independent and denoted 

by   -MDS. 

Theorem 3 [4] 

 A  -ary ,     --code   over     is MDS if and only if its dual    is MDS; that is,   ( )  

      if and only if  (   )     . 

Therefore, A  -ary ,     --code   over     is   -MDS if and only if its dual    is   -

MDS, since the standard generator matrix of both are depending on the base matrix  . 

It is well known that there is equivalence between the existence of a   -MDS and an arc in 

the projective space, where this equivalence comes from the fact that the matrix in which each 

column is a point of an arc has formed a generator matrix of   -MDS. 

The full prove of this relation is presented elsewhere [4] and the statement of the theorem is 

as follows. 

Theorem 4: There exists a    -MDS   -ary ,     --code if and only if  an (     )-arc 

exists  in   (     ). As special cases: 
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(i) If    , then every   -set, that is (   )-arc, in   (   ) gives a generator matrix of   -

MDS  -ary ,       --code over   . 

(ii) If    , then every  (   )-arc in   (   ) gives a generator matrix of   -MDS  -ary 

,       --code over   . 

The weight enumerator of an MDS (  -MDS)  -ary ,     --code   over    is unique, and 

the weight distribution of the code   is (                   ), where  

      for         , and  

   (   ) (
 

 
)∑(  ) (

   

 
)

   

   

                       ( ) 

for        . If         , then 

   (   ) .
 

 
/                                                               ( ) 

For details and descriptions of equations (1) and (2), see [3]. 

Ezerman et al. [5] determined the weight spectra of certain linear MDS codes, namely those 

that satisfy the MDS Conjecture. Alderson [6] discussed the  weight distribution of MDS  -

ary ,     --code and showed that all   weights from   to         are realized. 

One of the important questions for a code with parameters        and  ,  is: how many non-

isomorphic codes are there having these parameters?  Many researches discussed this question 

directly by working on the code, see for example [7, 8], or indirectly through projective space, 

both in general cases and for a certain  , see for example [9,10,11].   

The first objective of this paper is to present a class of non-isomorphic error-correcting   -

MDS codes over     of two and three dimensions with their weight distributions. The second 

objective is to construct linear codes from the incidence matrix of lines and points of 

  (    ) by giving details of generator matrices over distinct finite fields. 

 The GAP programming was used to perform the calculations required for achieving the 

desired results [12].   

2. Non-Isomorphic Error-Correcting   -MDS Codes over     

Al-Zangana and Shehab [13] gave full details of the classification of projectively inequivalent 

 -subsets in the projective line over      such that each  -subset contains the standard frame 

   ( )  *     +. These results are summarized in Table 1. Let    denotes the number of 

projectively inequivalent  -subsets of   (    ). 
 

Table 1- Projectively inequivalent k-subsets of PG(1,25). 
  4 5 6 7 8 9 10 11 12 13 

   5 8 28 54 131 225 398 531 692 714 

Theorem 5. Over    , the  non-isomorphic   -MDS codes with parameters        , and no 

zero weight distributions    are listed in Table 2. 

 

Table 2- Non-isomorphic PG-MDS codes of dimension 2. 
 ̂                    

5 4 2 3 1 1 96 528 

8 5 2 4 1 1 120 504 

28 6 2 5 2 1 144 480 

54 7 2 6 2 1 168 456 

131 8 2 7 3 1 192 432 

225 9 2 8 3 1 216 408 

398 10 2 9 4 1 240 384 

531 11 2 10 4 1 264 360 

692 12 2 11 5 1 288 336 

714 13 2 12 5 1 312 312 
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692 14 2 13 6 1 336  288  

531 15 2 14 6 1 360 264 

398 16 2 15 7 1 384  240  

225 17 2 16 7 1 408  216  

131 18 2 17 8 1 432 192 

54 19 2 18 8 1 456  168  

28 20 2 19 9 1  480  144 

8 21 2 20 9 1  504  120 

5 22 2 21 10 1  528  96 

1 23 2 22 10 1 552 72 

1 24 2 23 11 1 576 48 

1 25 2 24 11 1 600 24 

1 26 2 25 12 1 624 --- 

 

Here  ̂ denotes the number of non-isomorphic   -MDS codes of specific parameters.  

Proof. First of all, since each  -subset computed in [13] contains the points of the standard 

frame, then the constructed  (   ) matrix   from the points of   -subset will be in a 

standard form and the second row of   takes the form        ; that is,   ,   - and a  

  (   ) matrix   has now zero coordinate  in each row (column) vector. According to the 

construction of points of the projective line, the second coordinate is 1 and, hence, the second 

row of   is always a vector with one in each coordinate. Hence, it is enough to give the first 

row of the matrix   to refer to the generator matrix. Secondly, from Theorem 4, every  -

subset formed a   -MDS  -,       --code. For each  , the GAP program was used to 

compute the weight distributions   ,        . Let   be the primitive element of    . 

    .  
1

st
 row of generating matrix 

            

           

           

            

           

   .  

1
st
 row of generating matrix 

               

               

                 

                

              

               

                

              

    . 
 1st row of generating matrix 
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For          , the first rows of a one generating matrix are written below, since there is no 

enough space to write all here. 
 1

st
 row of generating matrix 

                         

                            

                                 

                                       

                                           

                                                
                                                     

The complement subset   of each  -subset   formed an (    )-subset of   (    ). 
Therefore, the number of inequivalent (    )-subsets and  -subsets of    (    ) is equal. 

Thus, the number of non-isomorphic   -MDS codes with length equal to      and 

dimension   is equal to the number of non-isomorphic   -MDS codes with length    and 

dimension  , where         . The number of non-isomorphic   -MDS codes with 

lengths          and dimension   is one, since all the  -sets are equivalents. Also, there is 

only one non-isomorphism   -MDS code of length    and dimension  , since the   -subset 

of   (    ) is just the line.    

Corollary 5. Over    , the dual codes    of the   -MDS codes   with parameters  
 ̂    shown in Table 2, formed   -MDS codes with dimension         and    . 

Proof. From Theorem 3, each dual code    of the   -MDS  -ary ,       --code   over 

    formed   -MDS  -ary ,       --code and     with         . Since the dual 

code of    is  , then the number of non-isomorphic code    for certain length   is  ̂, as in 

Table 2. The weight distributions (       ) of    for fixed   are as listed in Table 3. 

 

Table 3- Weight distributions (A_3,…,A_n )  of C^⊥ for n=4,…,14 
  (       ) 

4 (96, 528 ) 

5 (240, 2640, 12744 ) 

6 (480, 7920, 76464, 305760 ) 

7 (840, 18480, 267624, 2140320, 7338360) 

8 (1344, 36960, 713664, 8561280, 58706880, 176120496) 

9 (2016, 66528, 1605744, 25683840, 264180960, 1585084464, 4226892072) 

10 
(2880, 110880, 3211488, 64209600, 880603200, 7925422320, 42268920720, 

101445409536) 

11 (3960, 174240, 5887728, 141261120, 2421658800, 29059881840, 232479063960, 
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1115899504896, 2434689829080) 

12 
(5280, 261360, 10093248, 282522240, 5811981120, 87179645520, 929916255840, 

6695397029376, 29216277948960, 58432555897680) 

13 

(6864, 377520, 16401528, 524684160, 12592625760, 226667078352, 

3022227831480, 29013387127296, 189905806668240, 759623226669840, 

1402381341544584) 

14 

(8736, 528528, 25513488, 918197280, 25185251520, 528889849488, 

8462237928144, 101546854945536, 886227097785120, 5317362586688880, 

19633338781624176, 33657152197069728) 

15 

(10920, 720720, 38270232, 1530328800, 47222346600, 1133335391760, 

21155594820360, 304640564836608, 3323351616694200, 26586812933444400, 

147250040862181320, 504857282956045920, 807771652729673784) 

16 

(13440, 960960, 55665792, 2448526080, 83950838400, 2266670783520, 

48355645303680, 812374839564288, 10634725173421440, 106347251733777600, 

785333551264967040, 4038858263648367360, 12924346443674780544, 

19386519665512170480) 

17 

(16320, 1256640, 78859872, 3784085760, 142716425280, 4281489257760,   102755746270320, 

1972910324656128, 30131721324694080, 361580655894843840, 

3337667592876109920, 22886863494007415040, 109856944771235634624, 

329570834313706898160, 465276471972292091880) 

18 

(19584, 1615680, 109190592, 5676128640, 233535968640, 7706680663968, 

205511492540640, 4439048230476288, 77481569120641920, 1084741967684531520, 

12015603334353995712, 102990885723033367680, 659141668627413807744, 

2966137508823362083440, 8374976495501257653840, 11166635327335010204736 ) 

19 

(23256, 2046528, 148187232, 8295880320, 369765283680, 13311539328672, 

390471835827216, 9371324042116608, 184018726661524560, 2944299626572299840, 

38049410558787653088, 391365365747526797184, 

3130922925980215586784,18785537555881293195120,79562276707261947711480, 

212166071219365193889984, 267999247856040244914072 ) 

20 

(27360, 2558160, 197582976, 11851257600, 568869667200, 22185898881120, 

709948792413120,18742648084233216, 408930503692276800, 

7360749066430749600,108712601596536151680, 1304551219158422657280, 

12523691703920862347136, 93927687779406465975600, 530415178048412984743200, 

2121660712193651938899840, 5359984957120804898281440,  6431981948544965877937296 ) 

21 

(31920, 3160080, 259327656, 16591760640, 853304500800, 35838759731040, 

1242410386722960, 35781419069899776, 858754057753781280, 

17175081155005082400, 285370579190907398160, 3913653657475267971840, 

43832920963723018214976, 394496288673507157097520, 

2784679684754168169901800, 14851624985355563572298880, 

56279842049768451431955120, 135071620919444283436683216, 

154367566765079181070495560) 

22 

(36960, 3862320, 335600496, 22813670880, 1251513267840, 56318051005920, 

2102540654454240, 65599268294816256, 1717508115507562560, 

37785178541011181280, 697572526911106973280, 10762547558056986922560, 

137760608743129485818496, 1446486391802859576024240, 

12252590612918339947567920, 81683937419455599647643840, 

412718841698301977167670880, 1485787830113887117803515376, 

3396086468831741983550902320, 3704821602361900345691892960) 

23 

(42504, 4675440, 428822856, 30865554720, 1799050322520, 86354344875744, 

3454173932317680, 116060243906213376, 3291890554722828240, 

79005373313023379040, 1604416811895546038544,27504288203923411024320, 

396061750136497271728176, 4752741001637967178365360, 

46968264016186969799010360, 375746112129495758379161664, 

2373133339765236368714107560, 11391040030873134569826951216, 

39054994391565032810835376680, 85210896854323707950913538080, 

88915718456685608296605431544 ) 

24 

(48576, 5610528, 541670976, 41154072960, 2539835749440, 129531517313616, 

5526678291708288, 198960418124937216, 6077336408719067520, 

158010746626046758080,3500545771408464084096, 

66010291689416186458368,1056164667030659391275136, 
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14258223004913901535096080,161034048055498182168035520, 

1502984448517983033516646656,11391040030873134569827716288, 

68346240185238807418961707296,312439955132520262486683013440, 

1022530762251884495410962456960, 2133977242960454599118530357056, 

2133977242960454599118530356528) 

25 

(55200, 6679200, 677088720, 54150096000, 3527549652000, 190487525461200, 

8635434830794200, 331600696874895360, 10852386444141192000, 

303866820434705304000,292803690434300175200, 150023390203218605587200, 

2640411667576648478187840, 39606175013649726486378000, 503231400173431819275111000, 

5367801601849939405416595200, 47462666795304727374282151200, 

341731200926194037094808536480, 1952749719578251640541768834000, 

8521089685432370795091353808000, 26674715537005682488981629463200, 

53349431074011364977963258913200, 51215453831050910378844728557224) 

26 

(62400, 7893600, 838300320, 70395124800, 4827173208000, 275148647888400, 

13207135623567600, 538851132421704960, 18810803169844732800, 

564324095093024136000, 14585607380868600350400, 325050678773640312105600, 

6240973032453896402989440, 102976055035489288864582800, 1453779600501025255683654000, 

17445355206012303067603934400, 176289905239703273104476561600, 

1480835204013507494077503658080, 10154298541806908530817197936800, 

55387082955310410168093799752000, 231180867987382581571174122014400, 

693542603962147744713522365871600,1331601799607323669849962942487824, 

1229170891945221849092273485372800) 

                                                                                                                                                      

                       

Al-Zangana and  Shehab [14] proved that there are eight inequivalent  -arcs and 365 

inequivalent  -arcs in the projective plane over     through the standard frame    ( )  
*          +. The corresponding PG-MDS codes to these arcs are summarized in the 

following theorem.  

 Theorem 6. Over    , there are 

(i)  eight non-isomorphic   -MDS ,     --codes with     and weight distribution 

(                    ). The dual codes of these codes are   -MDS ,     --code with 

    and weight distribution (               ). 

(ii) 365 non-isomorphic   -MDS ,     --codes with   2 and weight distribution 

(                      ). The dual codes of these codes are equivalent to the base codes. 

Example 7  

(i)   -MDS ,     --code    with generator matrix    [
 
 
 

 
 
 

 
 
 

 
 
 

   

  

 

]. The generator matrix of 

  -MDS ,     --code   
   is     [

   

  
   

   
   

   
 
 
 
 
]  

(ii)   -MDS ,     --code    with generator matrix    [
 
 
 

 
 
 

 
 
 

 
 
 

   

 
 

   

   

 

]. The generator 

matrix of   -MDS ,     --code   
   is     [

   

  

  

   

   

   

   

   

   

 
 
 

 
 
 

 
 
 
]  The matrix    can be 

transformed to    after dividing the first, second, and third columns of    by     and 

applying some permutations in rows and columns. Thus,    
   is equivalent to   . 

3. Codes from Incidence Matrix 

The incidence matrix     (   ) of points and  -dimensional projective subspaces in the 

projective space   (   )       ,   prime,      ,  is defined as the matrix whose rows are 

indexed by the  -spaces of   (   ),        , and whose columns are indexed by the 

points of   (   ), and with the entry 
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    {
                                 

                                                    
 

Clearly, the dimension of     is  (   )   (   ). For more details, see [15, 16]. 

 

It is known that the rows of the matrix     generate a  -ary ,     --code over a field   . 

This code is normally denoted by      (   ), and by  (   ) if     and    . 

   

The minimum weight of  (   ) is      which is provedin by giving the general case for 

that. Therefore,   ⌊
   

 
⌋  ⌊

     

 
⌋  ⌊

 

 
⌋. 

 

Over    , The incidence matrix     (   ) of points and lines in the projective space 

  (    ) was computed. An algorithm was executed with GAP program to compute the 

generator matrices of linear codes from    over several finite fields. The results are 

summarized below. 

 

The matrix     is given by identifying each row,   ,  by a non-zero position, as shown below.  

    

(

 
 

  
  
 
    
    )

 
 

 

 

(

  
 

                                                                                             
                                                                                              

 
 

                                                                                                  
                                                                                                 )

  
 
  

 

In the following theorem, the  -ary ,     --code over       
   generated by      was 

founded for         and    is prime. Since the results will be out of the memory of the 

computer, the program for       cannot be run .  

Theorem 8. Over    , the     generates the following error-correcting, e,  -ary ,     --
code over the field   ,     : 

(i)    -ary ,              --code with      if     . 

(ii)  -ary ,             ]-code with     if     ,       . 

(iii)  -ary ,         --code with     if     ,    (       )     . 

 

Proof. The procedure that was used to find the generating matrix of the  -ary ,     --code, 

depending on the field     is firstly looking for the linearly dependent rows in the matrix 

   and secondly looking for the linearly dependent codewords that are generated from the 

linearly dependent rows of    . This was achieved using the mathematical language GAP.  

The generating matrix of  -ary ,     --code over   ,       is exactly the generating 

matrix of   -ary ,     --code over   . Since the entries of the matrix     are just   and  , 

then the sums between rows of     will behave like elements of   .  

(i) The details of the generating matrix   of the  -ary ,              --code,  (    ), 
with       are given in Tables 4 and 5. Let     denotes the order of the row    and    

denotes the size of non-zero positions of row   . 
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Table 4- Details of the generator matrix Ψ  of C(2,25) 
                                   

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

26 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

44 

44 

44 

44 

44 

44 

44 

44 

44 

44 

44 

44 

44 

44 

44 

444 

444 

441 

444 

444 

444 

444 

444 

444 

444 

444 

444 

441 

441 

441 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

450 

450 

444 

441 

444 

443 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

427 

444 

444 

444 

444 

444 

444 

441 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

414 

444 

444 

444 

414 

414 

444 

444 

444 

444 

444 

412 

444 

444 

444 

444 

444 

414 

441 

414 

444 

414 

414 

411 

444 

444 

444 

411 

414 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

414 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

441 

441 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

441 

441 

444 

444 

444 

444 

444 

444 

444 

444 

441 

444 

385 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

370 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

 

366 

441 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

444 

441 

441 

444 

444 

444 

444 

444 

444 

444 

444 

444 

343 
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Table  5- Numerical information of the generator matrix   of  (    ) 

No.        No.        

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

26 

342 

343 

344 

345 

347 

350 

351 

352 

353 

354 

358 

359 

360 

361 

362 

363 

364 

365 

366 

367 

370 

374 

376 

379 

380 

381 

385 

387 

388 

389 

390 

391 

394 

397 

398 

399 

402 

403 

404 

405 

408 

410 

65 

4 

1 

2 

3 

2 

1 

2 

1 

3 

3 

2 

1 

1 

3 

1 

1 

1 

3 

1 

2 

6 

1 

1 

1 

1 

1 

5 

3 

1 

2 

2 

2 

1 

4 

1 

1 

2 

1 

4 

1 

1 

4 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

411 

412 

414 

415 

416 

419 

420 

421 

422 

423 

424 

425 

427 

429 

430 

432 

434 

435 

436 

437 

439 

440 

441 

442 

443 

444 

447 

448 

449 

450 

451 

452 

453 

455 

456 

458 

459 

460 

461 

463 

465 

468 

469 

4 

4 

1 

1 

1 

1 

4 

4 

4 

1 

4 

4 

4 

1 

1 

4 

4 

1 

4 

4 

4 

4 

1 

4 

4 

4 

1 

1 

4 

4 

4 

1 

1 

1 

4 

1 

1 

4 

1 

1 

4 

1 

1 

  

(ii) Over the field    , the Hamming weights of  vectors in the generating matrix take the 

values  2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,  42, 44, 46, 48, 

50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78,  80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 

100, 102, 104, 106, 108, 110, 112,   114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 

136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172,  

174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 

212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 

250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 

288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 

326, 328, 330, 336, 340. Therefore, the Hamming weight of this code is 2. 
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Over  the field     , the Hamming weights of  vectors in the generating matrix take the values  

from 2 to 556 and 558. Therefore, the Hamming weight of this code is 2. 

(iii) Over the field    , the Hamming weights of  vectors in the generating matrix take the 

values from 1 to 418 and  425. Therefore, the Hamming weight of this code is 1.  

Over the field      , the Hamming weights of  vectors in the generating matrix take the values 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 

55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 82, 84, 85, 

86, 87, 89, 90, 91, 92, 93, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 

112, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 133, 

134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 148, 149, 151, 152, 153, 154, 156, 157, 159, 

160, 162, 164, 165, 167, 168, 169, 171, 172, 173, 174, 176, 177, 178, 180, 181, 182, 184, 185, 

187, 189, 190, 191, 192, 193, 194, 196, 197, 199, 200, 201, 202, 204, 205, 206, 207, 209, 211, 

212, 213, 214, 215, 216, 218, 219, 220, 221, 223, 224, 225, 227, 229, 230, 231, 233, 234, 235, 

236, 237, 238, 241, 243, 244, 245, 246, 248, 249, 250, 251, 252, 254, 255, 256, 257, 259, 260, 

261, 262, 263, 264, 265, 267, 268, 270, 271, 272, 274, 275, 276, 278, 279, 280, 281, 283, 284, 

285, 286, 287, 289, 290, 292, 294, 295, 296, 297, 299, 300, 301, 303, 305, 307, 308, 310, 311, 

312, 314, 316, 317, 320, 321, 322, 323, 324, 325,326, 328, 330, 332, 333, 335, 337, 338, 339, 

340, 341, 344, 345, 346, 347, 348, 350, 351, 352, 354, 355, 357, 358, 359, 360, 361, 362, 363, 

365, 368, 369, 372, 374, 376, 377, 379, 381, 382, 384, 385, 386, 387, 388, 389, 391, 392, 393, 

395, 396, 397, 398, 400, 402, 403, 404, 407, 408, 409, 411, 412, 414, 415, 418, 419, 421, 422, 

424, 425, 428, 429, 430, 431, 432, 435, 436, 437, 438, 440, 442, 444, 445, 446, 447, 450, 451, 

452, 454, 455, 456, 458, 461, 463, 464, 466, 467, 469, 471, 472, 473, 475, 476, 477, 479, 480, 

481, 484, 485, 488, 490, 492, 494, 495, 496, 497, 499, 500, 502, 503, 504, 507, 508, 509, 510, 

511, 512, 514, 515, 518, 520, 522, 523, 524, 526, 527, 529, 530, 531, 533, 536, 538, 539, 540, 

541, 542, 543, 544, 545, 546, 548, 549, 550, 551, 552, 553, 556, 557, 558, 559, 561, 562, 563, 

564, 565. 

The unique codeword in the generator matrix over    ,    (       )       with a 

weight of 1 is the codeword with 1 in the last coordinate.   

 

A linear code   of length   over    is called cyclic if:  (         )    then   

(           )   . Since each codeword is identified with a polynomial        
      

      , - ⌌ 
   ⌍⁄  (ring of polynomials in   , - of degree less than  ), 

therefore, a  -ary ,     --code   over     can be viewed as a subset of   
  and a subset of 

  , - ⌌ 
   ⌍⁄ . It is known that every non-zero cyclic   code is generated by a unique 

monic irreducible polynomial  ( ) with smallest degree  , and the property that  ( ) is a 

factor of      and      . This polynomial is called the generator polynomial of  . For 

details and characteristics of cyclic code, see [3].  

Remark 9 

(i) The rows          of     are only rows in the generating matrix of each code generated 

by     over   . 

The calculations show that: 

(ii) the covering radius    of  -ary ,              --code is          , and that 

of     -ary ,              --code is      . 

(iii) the covering    of   -ary ,             --code is  , where       . 

(iv) the  -ary ,         --code,       ,    (       )      is a perfect code with 

zero covering radius. 
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Corollary 10. All the dual codes of the codes in Theorem 8,i,ii are cyclic codes. 

Proof. The dual codes of   -ary ,              --code are cyclic,   -ary 

,               --code, and its covering radius is less than    . The coefficients of the 

generator polynomials which are of degree 26 are 1, 1, 4, 3, 4, 3, 1, 2, 4, 2, 4, 4, 1, 4, 3, 0, 2, 

0, 1, 3, 4, 4, 3, 0, 0,  1, 0, 2, 0, 4, 1, 3, 2, 3, 3, 2, 3, 0, 3, 2, 1, 3, 3, 0, 2, 1, 3, 3, 0, 2, 2, 2, 3, 0, 

2, 1, 4, 3, 2, 3, 4, 1, 3, 3, 2, 3, 3, 4, 0, 0, 2, 2, 1, 0, 2, 4, 2, 2, 2, 1, 3, 0, 3, 1, 0, 4, 1, 1, 0, 4, 1, 2, 

2, 0, 0, 2, 4, 3, 4, 0, 1, 1, 2, 1, 3, 4, 4, 3, 0, 1, 2, 2, 1, 4, 3, 4, 4, 2, 1, 2, 4, 4, 3, 4, 2, 2, 1, 4, 1, 4, 

2, 1, 3, 2, 2, 4, 3, 2, 2, 0, 4, 2, 3, 4, 3, 2, 2, 3, 3, 3, 1, 2, 4, 0, 1, 4, 2, 1, 4, 3, 3, 2, 3, 4, 4, 4, 3, 4, 

2, 0, 4, 4, 4, 0, 4, 1, 4, 3, 2, 3, 2, 2, 4, 1, 4, 4, 1, 2, 2, 0, 3, 3, 1, 4, 3, 1, 1, 3, 3, 3, 0, 4, 2, 1, 0, 3, 

0, 1, 0, 3, 0, 0, 3, 2, 3, 3, 1, 1, 0, 3, 4, 3, 2, 1, 2, 3, 1. The weight of each row of the generator 

matrix is    . Therefore,        .  

 

The dual code of   -ary ,             --code is cyclic,  -ary ,         --code. The 

coefficient of the generator polynomials which are of degree     is just  ’s. When   
     , the weight of each row of the generator matrix is     and its covering radius is 

   . Since      , then this code is perfect.  

4. Conclusions 

Over the finite field of order twenty-five, using ideas of arcs in the projective space, many 

non-isomorphic projective MDS were found. Also, with incidence matrix idea of points and 

lines in the projective space, many other linear perfect (non-perfect) codes were founded. The 

most important property of the rows of incidence matrix     is that each  -th row is just 

circulate to the (   )-th row, except the last row. The best linear code that can be 

constructed from the incidence matrix      is when it is taken over   , since it will have a 

Hamming weight        , while over the others that are of order distinct from    it 

behaves like a trivial code. Also, when the matrix      is taken over   , a perfect code is 

founded.  
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