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Abstract

Since the first outbreak in Wuhan, China, in December 31, 2019, COVID-19
pandemic has been spreading to many countries in the world. The ongoing COVID-
19 pandemic has caused a major global crisis, with 554,767 total confirmed cases,
484,570 total recovered cases, and 12,306 deaths in Iraq as of February 2, 2020. In
the absence of any effective therapeutics or drugs and with an unknown
epidemiological life cycle, predictive mathematical models can aid in the
understanding of both control and management of coronavirus disease. Among the
important factors that helped the rapid spread of the epidemic are immigration,
travelers, foreign workers, and foreign students. In this work, we develop a
mathematical model to study the dynamical behavior of COVID-19 pandemic,
involving immigrants' effects with the possibility of re-infection. Firstly, we studied
the positivity and roundedness of the solution of the proposed model. The
stability results of the model at the disease-free equilibrium point were presented
when R, < 1. Further, it was proven that the pandemic equilibrium point will
persist uniformly when R, > 1. Moreover, we confirmed the occurrence of the local
bifurcation (saddle-node, pitchfork, and transcritical). Finally, theoretical analysis
and numerical results were shown to be consistent.
Keywords: COVID-19, Coronavirus, Immigrants, Mathematical model, Stability,
Local bifurcation.
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1. Introduction

In December 2019, the spread of nCoV-19 disease commenced in Wuhan, China. The World
Health Organization (WHO) has classified the new disease as pandemic on March 11, 2020. Recently,
COVID-19 has spread fast to many countries in all continents, such as United States, Brazil, India,
Russia and South Africa. The outbreak of COVID-19 has become a globally public health concern the
in medical community, as the virus is spreading around the world [1, 2]. Initially, the Iragi government
adopted a social distancing strategy and lockdown in all provinces after the discovery of the first
infection to a traveling student on February 2, 2020 [3].

The migration factor is one of the reasons that help the spread of the epidemic, especially if the
immigrant is infected but without symptoms. This case is considered a dangerous source of spreading
the epidemic. For example, Naji and Mohsen performed a stability analysis on an SVIR epidemic
model, involving immigrants [4]. Kiran et al. suggested the modeling of SARS-CoV2 with effects of
population migration and punctuated lockdown [5].

A COVID-19 is a new disease; it spreads between people more easily than influenza. People are
most infectious when they show symptoms (even mild or non-specific symptoms), but may be
infectious for up to two days before symptoms appear (pre-symptomatic transmission). They remain
infectious for an estimated 7 to 12 days in moderate cases and an average of two weeks in severe
cases. People can also transmit the virus without showing any symptom (asymptomatic transmission);
some studies found that 40-45% of infected people are asymptomatic [6-8].

Also, sputum and saliva carry large amounts of virus. Thus, the direct contact routes such as kissing,

intimate contact, and speaking are sources to transmit the virus (Figure-1). The virus may occur in
breast milk, but whether it is transmittable to the baby is unknown [9].
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Figure 1-Spread of coronavirus by saliva due to speaking and coughing

Obviously, COVID-19 has become a global disease. Thus, several researchers suggested
epidemiological mathematical models to understand the dynamics of the spread of the epidemic, as in
the study of Mohsen at el. [10]. They proposed and analyzed a modeling of COVID-19 with media
coverage effects and quarantine strategy to control the spread of the disease. Mamo [11] developed a
mathematical model for transmission dynamics of COVID-19 propagation with public health
intervention. Yang and Wang [12] suggested a mathematical model for the novel coronavirus
epidemic in Wuhan, China. Samui et al. [13] proposed a mathematical model for COVID-19 in India.
Garba et al. [14] studied a model of COVID-19 pandemic outbreak in South Africa.

In this paper, a mathematical model that describes the dynamics of COVID-19 pandemic, involving
immigrants' effects with the possibility of re-infection, is proposed and studied. The order of this paper
is as follows; the mathematical modeling of the novel coronavirus is shown in Section 2. Some basic
properties of the model (positivity, boundedness of solution, calculated basic reproduction number,
and existence equilibrium points) are discussed in Section 3. The local stability analysis is studied by
using Gersgorin’s theorem in Section 4. By using Castillo-Chavez method and Lyapunov function, the
global stability of the proposed model at all equilibrium points was analyzed in Section 5. The
occurrence of local bifurcation near the disease-free equilibrium point is discussed in Section 6.
Finally, in Section 7, the effects of varying all the system parameters are investigated using numerical
simulation.
2. The Model Formulation

At the beginning of Coronavirus outbreak, there were many countries that did not record any
infection with the epidemic. However, as their citizens, travelers, or immigrants returned,
the infections began to increase. Accordingly, one of the main reasons for the spread of the epidemic
is the migration factor. For example, in Iraq, the first infection case appeared was that of a foreign
student who was carrying the virus, but without symptoms. On the other hand, most of
the mathematical models that have studied the spread of Coronavirus depended on the basic model of
SIR- type of disease, which implies that the patient acquires permanent immunity against the virus
after recovery. Meanwhile, there are many reports that prove the opposite, meaning that a person
infected with the virus acquires temporary immunity against the virus. Therefore, in this paper,
a mathematical model that simulates the dynamics of coronavirus pandemic is proposed. It is assumed
that the model taking into account the effect of immigrants. In addition, loss of immunity to
coronavirus after recovery is also included. In this work, we create a mathematical model that
describes COVID-19 transmission. The model considers a total population of N on time t such
that S(t) + E(t) + C(t) + I(t) + R(t) = N. We assume that the total population is divided into to
five compartments, which are: S(t) individuals are susceptible for being exposed, E(t)
susceptibility due to direct contact with asymptomatic individuals (Carriers) and symptomatic
individuals (Infected), denoted by C(t) and I(t), respectively. The number of individuals R(t)
represents those carriers and infected people, respectively, who have recovered , and can be
reinfected. Thus, the assumption can be written by the following set of differential equations,
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S=A+(1-p)A—BSC—L5L 4 R —ps,

1+ml
E=p85C+25L _ (a+u+a)E,
. 1+mi )
C=pA+qaE - (u+y, +0)C,

I=(1—-q@QaE—(u+y,+6+0,)l,
R =y,C +v,I — (e + WR.

under the initial point condition S(0) > 0,E(0) > 0,€(0) > 0,1(0) =0,R(0) > 0. The
recruitment rate of the population in model (1) is represented by A, while A is the number of

£2L (with B, > 0 and m > 0)

denotes the saturated contact rate. u is the natural death rate of the population, and @ is the
death rate from carrier and infected individuals due to disease. a is the transmission rate
between the number of exposed people and the number of all carriers and infected people, with
a fraction rate of q € [0,1]. 0;,i = 1,2 are quarantine rates of exposed and infected subjects,
respectively. y;,i = 1,2 are recovery rates of carrier and infected subjects, respectively. € = 0 is
the rate of immunity loss and return to susceptibility.
3. Basic analysis of the model (1)
3.1 Positivity and boundedness

In this section, we discuss the case when the solution of model (1) is non-negative, as in the
following theorem.
Theorem 1: All solutions S(t), E(t),C(t),I(t),R(t) of model (1), starting from positive initial
conditions, remain positive for all t > 0.

immigrants with fraction rate p € [0,1], and f is the infection rate.

Proof-We have
Sls:o =A+(1—-p)A+€eR>0,forallR=>0,
Elg=o =BSC + >0,forall S,C,1 =0,

1+ml
C"|C=O=pA+an>0,forallE20,

i|,_,=1=qaE 20 forallE >0,
R|R=0 =y1C+vy2l =20, forallC,1 = 0.

Since all the above rates are non-negative, then, clearly, it is easy to show that the region is
positive. O

For the boundedness of solutions, we consider the following function
N({@t)=S{)+E()+C(t) +1(t) + R(t).
Then, taking the time derivative of N(t) along the solution of model (1) gives

dN dN
— <A+A-ILN > —+LN SA+A4,
dt dt

where

L=min{y,p+o,u+06,u+06+o0,}
Now, it is easy to verify that the solution of the above linear differential inequalities can be
written as

A+ A A+ A
no s A (g A )
where Ny = (5(0), E(0),€(0),1(0),R(0)), so that
. A+ A A+ A
tllmsupN(t)ST = N(t) < — vt >0,

Thus, all solutions are uniformly bounded and the proof is complete. m|
3.2 Basic reproduction number
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The infection components in this model are E and I. The new infection matrix F and the
transition matrix v are given by

0 BSy PiS, O a+u+o; 0 0 0
g0 0 0 0], _ —qa p+y +6 0 0

0 O 0 ol —(1—-¢q)a 0 u+y,+0+o0, 0

0 0 0 0 0 —Y1 —Y> eE+u

The basic reproduction number of model (1) is then defined as the spectral radius of the next
generation matrix FV ~1 [15], as follows

— qapSy (1-q)aB1Sy (2)
(a+p+o)(u+y1+6)  (a+p+or)(u+y,+6+0z)’

Ro

Clearly, by results in theorem 2 [15], we have that the model (1) always exhibits a disease-free
equilibrium ey = (S, 0,0,0,0) where Sy = %, if Ry < 1. Hence, we get the following summaries.

Theorem (2): The disease-free equilibrium point e, of model (1) is locally asymptotically stable
when R, < 1, and vice versa. O

Otherwise, the existence of the pandemic equilibrium point of the model (1) is investigated by
equating the right hand of model (1) to zero and by solving the following set of algebraic
equations simultaneously

_ _ _ BaSt _C —
A+(1—p)A—PSC—+—+eR—uS =0,

pSC+ L8 — (@ +p+a)E =0,

pA+qaE —(u+y, +0)C =0,
1-q@)aE—-—(u+y,+0+0,)I=0,
y1C + vyl — (e + wWR = 0.

(3)

The simultaneous solution of equation (3) gives the pandemic equilibrium point, denoted by
e; = (S1,E1, Cy, 11, Ry), where

Clz—, [1:—, 1=
D, D, (€ +w)D1 D,

here

Dl =Hu + Y1 + 9!

D, =pu+vy, +6+0,,

D3 =y1(pA + qaE;)D; +y,(1 — q)aE,D;.

while (§;, E;) represents a positive intersection point of the following two isoclines:

f(S,E) = 1E? + 1,SE? + r3E + 1, SE + 15§ = 0, (4a)
g(S,E) = n;SE? + nyE +n3SE + S+ ng = 0, (4b)
here

rn =—am(a +p+o0)(1—q)Dy,

r, =m(1 - q)a’qp,

r; = —(a+ p+0,)D1Dy,

1, = BaqD; + a(1 — q)(pABm + B1D,),

s = IBPADZ'

ny = —pa’qm(l—q)(e + p)Dy,
n, = am((A+ (1 —p)A)(A — q)(€ + WD; D, + (1 — q)D3),
nz = —a(e + WD {BpmA(l — q) + BqD; + (By + um)(1 — q)D;D,},
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ny = —(BpA + uD;) (e + w)D3,
ng = (A+ (1 —p)A)(e + WD, D2 + €D,Ds.

Clearly, as E — 0, the first isocline (4a) intersects the S — axis at zero.
However, when E — 0, the second isocline (4b) will intersect the § — axis at a unique positive
point, say S;.

Consequently, these two isoclines (4a) and (4b) have an intersection point in the interior of
the positive quadrant of SE - plane, namely (S;, E;), provided that the following conditions are
satisfied

as af /OE as dg/dE
ﬁz—#>0 and Fri _—a%as , (40)

Therefore, the pandemic equilibrium point e; = (51, E;, Cy, 11, R1) exists uniquely in the
interior of R if Ry > 1 and condition (4c) holds.
4. Local stability analysis

In this section, the local stability conditions of the pandemic equilibrium point e; of model
(1) are established in the following theorem.

Theorem (3): The pandemic equilibrium point e; of the model (1) is locally asymptotically stable
when Ry > 1, with the following condition holds:

u+6 >max {ZﬁSl ) 2% _ Gz}, )

(1+miy)?
Proof: The Jacobian matrix of model (1) at e; can be written as
bll 0 b13 b14 b15
b21 b22 b23 b24- 0
Jer)=| 0 bz b3z O 0 |
0 byy 0 by O
0 0  bsz bsy bss

here

bi1 = —pC — 113111111 —U; biz=—BS1; biy = _(1571:,11)2 ; bis =€
b1 = BCy + 161,:1111 s boy = —(a+pu+01); by = BSy;

byy = (15715111)2 s b3y =qa; bz =—(u+vy;+0); by =(1—-qa;

byy =—(U+y2+0+02); bsz=y1; bsy =7V bss=—(e+p);
Now, according to Gersgorin’s theorem [16], if the following condition holds:
|b;| > Z?=1|bij| =P (6)
i)
then all the eigenvalues of /(e ) exist in the region:

s )
Q=uU { U*eH : |U* - biil < Z|bu| }
o)

Then, all the eigenvalues of J(e;) exists in the disc centered at b;; with radius P;. Thus, if the
diagonal elements are negative and the condition (5) holds, all the eigenvalues will exist in the
left half plane and the e; of model (1) is locally asymptotically stable with Ry > 1.

5. Global stability analysis

In this section, the region of global stability (basin of attraction) of all equilibrium points of
model (1) is presented as shown in the following theorems.

Theorem (4): The disease-free equilibrium point e, is globally asymptotically stable in the sub
region of R} that satisfies R, < 1.

Proof: Let Y=S5, Z=(ECILR) and eo = (Y5,0) = (S,
,0). Then,
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ax _ _ e _ BasI
S =K(Y,Z)=A+A—uS—BSC— L0 1 eR 7
IfS =S,and K(Y,0) = 0, it becomes
E _K(Y,0)=A+A—uS, (8)

dt
ast » oandY - Y. Therefore, Y =Y, = S, is globally asymptotically stable.

Now,

—(a+p+oy) B1So BSo 0
BZ — M(Y,Z) = qa —(u+y,+6) 0 0
1-qa 0 —(u+y, +0+0,) 0
0 Y1 , Y2 —(e+w
11
g H’BC + 1+m1] [So — Sﬂl
1| 0 ! €©)
Rl 0 J
0
where
—(a+p+oy) B1So BSo 0 E
_ qa —(u+y,1+0) 0 0 7=|C
(1-q« 0 —(p+y,+0+0,) 0 ' 1
0 5 Y1 V2 —(e+u) R
I
[ﬁC + 1+1m1] [So — 51
M(Y,Z) = 0 )
0
| 0 |

In model (1), Sy = A#LA is the bound of the total population. We summarize S,E,C,I,R < S,.

Therefore, M(Y,Z) = 0. Thus, the conditions Q; and Q, hold, by Lemma (1), see [17]. Then, the
disease-free equilibrium point is globally asymptotically stable.

Theorem (5): The pandemic equilibrium point e; is globally asymptotically stable, provided that
Ry > 1.
Proof:let Sy, E,, C1,1; and R satisfy equations

_ _ _ BaSt _C —
A+(1—p)A—PSC -+ cR—puS =0

BSC+L5L (@ +pu+a)E=0

1+ml
10
pA+qaE—(u+y,+60)C =0 (10
A-q@QakE—-—(pu+y,+0+0,)I=0
1C+vl—(e+WR=0
By applying (7) and denoting
S E c I R
a_x' E_l_y; C_l_Z:Z_u:R_l—U (11)
we have
1 [A+@-p)A) (1 L\ Ay B1 1+ml €Ry (Vv
=X 51 (x 1) pGiz-D -1 (1+m11)(1+m1u 1) + S1 (x 1)]
1 [BSiC1 (xz B1S111 1+ml; xu
Y =Yg (y 1) (1+m11)E1(1+m1 Ty 1)]
r— L [PA(L_ 9%k (v
v a (o) ez
u =u _(1 —qQa (% — 1)]
Gz _ raly (u
U_U_Rl (U 1)+R1(17 1)]
...... (12)
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We define the Lyapunov function as
Vi=S5i(x—1-Inx)+E,(y—1-Iny)+C;(z—1—1nz)

+LH(u—1-Inu)+R;(v—1—1nv) (13)
The derivative of V] is given by
A =sle‘lx'+Ely7‘1y’+clz;—1z'+11“7‘1u'+Rl”7‘1v' (14)
V=@-D[U+0-pa)(G-1)- Sz —1) —%(%u —1)+eR; (2 —1)]
+(y - D[S,y (’;—Z— 1)+ %(%% - 1)]

+z -1 [pA(G 1) +qak (2= 1)]+ - DA - gart, (2 -1)

Z u
0D (1 1) 154 (2 )
Furthermore, by simplifying the resulting terms, we get that
Vi=WU+A-pA)(2-x-2)+ pA(2-2-2)+ 5,0 (x +z -y - Z)
B1S11; [1+mly

v
(1+miy) L1+mi (u—%)+x—y]+eR1(v—x—§+1)
+an1(y—z—§+1)+(1—q)a11(y—u—%+1)
+y1C1(z—v—§+1)+y211(u—v—%+1)

Since the arithmetical mean is greater than, or equal to, the geometrical mean, then
2—x—%£ Ofor x>0 and2—x—%= Oifand only ifx = 1; 2—Z—§S 0

for z>0 and 2—Z—§=0 if and only if Z=1;x+z—y—%S0 for x,y,z >0 and

. . 1+ml
x+z—y—%=0 ifand only if x =y =2z=1; 1_:;11

1+mliy
1+ml
v—x—£+1=0ifandonlyifx=v=1;y—z—jz—/+1SO fory,z>0andy—z—§+1=0

(u—y;—u)+x—ySOf0rx,y,u > 0 and

(u—’;—u)+x—y=0 if and only if x=u=1;v—x—£+1£0 for x,v >0 and

if and only if y=2z=1;y~u—2+1<0for yu>0and y—u—>+1=0 if and only if
y=u=1; z—v—§+1 <0 forz,v>0andz—v—§+1=Oifandonlyifz=v= 1, u—v-—
%+ 1<O0foru,v> Oandu—v—%+1 =(Oifandonlyifu =v = 1.
Therefore, V| <0 for x,y,z,u,v >0 and V{ =0ifand onlyif x =y =1,z=u=v = 1. The
maximum invariant set of model (1) on the set {(x,y,z,u,v): V] = 0} is the singleton (1,1,1,1,1).
Thus, for model (1), the pandemic equilibrium e, is globally asymptotically stable if R, > 1, by
LaSalle Principle [18].
6. Local bifurcation analysis

In this section, the effect of varying the parameter values on the dynamical behavior of model
(1) near the equilibrium points is studied. It is well known that the existence of non-hyperbolic
equilibrium point of the system is a necessary but not sufficient condition for bifurcation to
occur. Therefore, in the following, the parameter that makes the equilibrium point of model (1)
as a non-hyperbolic equilibrium point is considered as a candidate bifurcation parameter for the
system. Now, we rewrite model (1) in the form:

Z—f = F(X), where X = (S,E,C,I,R)T and F = (fi, >, f5 fa. fs)T, with fi;i = 1,2,3,4,5 represent

the interaction function in the right hand side of model (1). Then, straightforward computation
on the Jacobian matrix of model (1), with any non-zero vector V = (vy,v,, V3,4, vs)7, gives the
following second directional derivative
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[ Bivivy  BimS o)
2{3171173 + (1+mD2  (1+mD)3 v4}

Bivivy  BimS 5

2 {ﬁv1v3 + (1+mD2  (1+mI)3 174}
0
0

0

D?F(S,E,C,I,R)(V,V) = (15)

6.1 The Local Bifurcation Analysis Near e
Theorem (6): Under the sufficient condition Ry = 1, the model (1) undergoes a transcritical
bifurcation, but neither saddle node bifurcation nor pitchfork bifurcation can occurs at disease-
free equilibrium point e, when the following condition holds

(@+pu+0)(u+y,+60+0,)#(1—qQapS, (16a)

€ my * B*Somz + ﬁ150m3 (16b)

Proof: According to the Jacobian matrix of model (1) at ey, has zero eigenvalue (say Ay = 0)
when R, = 1 and hence, by substituting the value of R, and simplifying the resulting terms, we

obtain the following positive quantity at
_ o _ (uty1+0)[(a+pu+oy) (u+y,+0+05)—(1-q)aB1So]
p=F= qaSo(u+y2+6+03) a7)
Hence, ¢, is a nonhyperbolic point at § = *. Recall that the Jacobian matrix of model (1) at e,

and f = f” can be represented by

—U 0 —B*So —B*So €

0 —(a+pu+oay) B*So B*So 0
J(e) =] 0 qa —(u+71+0) 0 o |

0 1-9q)« 0 —(u+y,+06+0y) 0 /

0 0 Y1 Y2 —(e+w

T
Now, let VIO = (vl[o]’vz[o]’v?go]’vio],véo]) be the eigenvector corresponding to the eigenvalue

T
A5 = 0. Thus (J§ — A5V = 0, gives that V[°] = (ﬁlvz[o], 2[0],ﬁ2v2[0],ﬁ3v2[0],ﬁ4v2[0]) )
where

T, = Emy—(B*Somy+p1Soms) — qa = (1-qa
! u PR (uan+0) " 3 T (utypt+ay)
_ a +y,+0+03)+(1-q)a +y,+6 0
Ny = laays (it DAy, (Utys 6)] g 4)l0] represents any nonzero real number.

(e+1) (uty1+0) (u+y2+6+07) , 2
Also, let w0l = [1,[)1[0], go]’ go]' £0], éo]] be the eigenvector associated with the eigenvalue

¢ =0 of the matrix J3T. Then from (JiT — A5)W!% = 0, by solving this equation for W[%, we
obtain

T
(V] 0] - 0
wiol = [o,l, 7yl 7yl o]

where
_ _ B'S - B1So [o] .
"= e 2= Giatotey and ¥ ' is any nonzero real number.
Now, consider
Z_; = Fz(X, ) = [-SC,SC,0,0,0]" (18)
Thus,
Fg(eo, B*) = [0,0,0,0,0]" which gives [‘P[O]]TFﬁ(eo,ﬁ*) =0 (19)

So, according to Sotomayor's theorem [19], for local bifurcation, model (1) has no saddle-node
bifurcation at § = B*. Furthermore, because we have
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[—C 0 -S 0 O]
|C 0 S 0 0]
DFﬁ(X,ﬁ)=| 0 0 0 O 0|
0 0 O 0 O
l0 0O 0 O 0J
we can show that
[—Soﬁzvz[o]]
g “ylol (01 - [0 101 7| Soizvs”
[Lp ] [DFB(eOJﬁ )% ]: [0,1.02 T, L T, ,0] 0 +0 (20)
0
0

Moreover, by substituting ey, 8* and V1% in (12), we get

[ 01\ o = - 2]
—2 (Vz ) {B; + 1y iz — fymSony}
01\ o = - 2
DZF(eO,ﬁ*)(V[O],V[O]) i (vz ) By 1, +(,)81n1n3 — P1mSong} (21)
0
0

Hence, we obtain
[w191]" [D2F (eo, B) (VI VION)] % 0 (22)

Thus, according to Sotomayor's theorem, model (1) at disease-free equilibrium point has a
transcritical bifurcation as the parameter £ passes through the bifurcation value 8*, provided
that R, = 1, while pitchfork bifurcation cannot occur. ]
7. Numerical simulation

In this section, we illustrate some numerical solutions of model (1) for different values of the
parameters. We use the following different initial points. We use the parameter values from real
data available from February 24, 2020, to September 26, 2020, and present some numerical
simulation of model (1) to illustrate our results in Table-1.

Table 1-Definitions and values of model (1) parameters

Parameter Definition Value
N Total population 40 x 10°
A Birth rate 1541.8
A Number of immigrants 100
p Fraction rate [0,1]

B Contact rate between S and C 5x 1077
B1 Contact rate between S and / 2x1077
m Saturated rate 10

U Natural death rate 3.8545 x 107°
€ Loss of immunity 0.1429
a Transmission rate 0.2

01 Quarantine rate of exposed subjects 0.2

lop Quarantine rate of infected subjects 0.38

q Fraction rate [0,1]

0 Death rate due to disease 0.034
Y1 Recovery rate of carriers 0.033
Y2 Recovery rate of infected subjects 0.71
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Case 1: When we take the parameters in Table 1, we have the dynamical behavior of model (1)
approaching the disease-free equilibrium point ey. This theoretical result is illustrated by Figure
2 which shows the solutions of model (1) with different initial points.

Case 2: When we take p = 0.8 and = 5 x 10~ with keeping the other parameters in Table 1,
we have the dynamical behavior of model (1) approaching the pandemic equilibrium point e;.
Figure 3 confirms that the disease-free equilibrium point became unstable and the solution of
model (1) approaches the endemic equilibrium e;. Also, the value of R, = 0.79 implies that the
backward bifurcation occurs.

Case 3: When we take f =5x1073, f; =2x 1073, and p = 0.1, with keeping the other
parameters in table 1, we have the dynamical behavior of model (1) still approaching the
pandemic equilibrium point e; with R, = 1.3. The result is illustrated by Figure-4.
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Figure 2-Global stability of disease-free equilibrium point of model (1) with Ry, = 0.754.
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Figure 3-Global stability of pandemic equilibrium point of model (1) with R, = 0.79.
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Figure 4-Global stability of pandemic equilibrium point of model (1) with R, = 1.3.

8. Discussion and Conclusions

In this work, a mathematical model of COVID-19 pandemic with immigrants was studied by
dividing the total population into five classes, namely susceptible S(t), exposed E(t), carrier
C(t), infected I(t) and recovered R(t). The model incorporates the impact of infective
immigrants, but without symptoms, with quarantine strategy. It has been noticed that the
disease can spread if the number of immigrants increases. Thus, the dynamical behavior of the
disease changes from the disease-free point to pandemic point. The model mainly accounts for
the reduction in disease class due to social isolation or social spacing. While, we can say that the
disease vanishes due to the proper application of quarantine measures. Our model has two
biological equilibrium points, namely the disease-free and pandemic. If R, < 1, we get that the
disease-free equilibrium point is stable. Otherwise, this point becomes unstable when R, > 1
and the solution of the model approaches the pandemic equilibrium point. The model does not
have periodic dynamics but, instead, it approaches either the disease-free equilibrium point or
pandemic equilibrium point. But model (1) near the disease-free equilibrium point has a
transcritical bifurcation as the parameter  passes through the bifurcation value §*, provided
that R, = 1, while pitchfork bifurcation cannot occur.
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