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Abstract 
   ‎  Since the first outbreak in Wuhan, China, in December 31, 2019, COVID-19    

pandemic  ‎has been spreading to many countries in the world. The ongoing COVID-

19 pandemic has caused a ‎major global crisis, with 554,767 total confirmed cases, 

484,570 total recovered cases, and ‎‎12,306 deaths in Iraq as of February 2, 2020. In 

the absence of any effective therapeutics or drugs ‎and with an unknown 

epidemiological life cycle, predictive mathematical models can aid in ‎the 

understanding of both control and management of coronavirus disease. Among the 

important ‎factors that helped the rapid spread of the epidemic are immigration, 

travelers, foreign workers, and foreign students. In this work, we develop a 

mathematical model to study the dynamical ‎behavior of COVID-19 pandemic, 

involving immigrants' effects with the possibility of re-infection. ‎Firstly, we studied 

the positivity and roundedness of the solution of the proposed model. The 

stability ‎results of the model at the disease-free equilibrium point were presented 

when     . Further, it was proven that the pandemic equilibrium point will 

persist uniformly when     . Moreover, we ‎confirmed the occurrence of the local 

bifurcation (saddle-node, pitchfork, and transcritical). Finally, ‎theoretical analysis 

and numerical results were shown to be consistent.  

Keywords: COVID-19, Coronavirus, Immigrants, Mathematical model, Stability, 
Local bifurcation. 
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  الخلاصة:
في مدينة ووهان في الصين , وبعد ذلك انتشر إلى  COVID-19 تفشى جائحة 2215ديسمبر  31منذ      

المستمر في حدوث أزمة عالمية كبيرة , حيث بلغ إجمالي  COVID-19 العديد من دول العالم. تسبب جائحة
حالة وفاة في العراق اعتبارًا  12,326حالة, و  474,552حالة, وتعافي إجمالي  554,565المؤكدة الحالات 

. في غياب أي علاجات أو عقاقير فعالة. مع وجود دورة حياة وبائية غير معروفة, يمكن 2222فبراير  2من 
دارته. لذا, فإن احد للنماذج الرياضية التنبؤية أن تساعد في فهم كل من السيطرة على وباء فيروس كو  رونا وا 

العوامل المهمة التي ساعدت على الانتشار السريع للوباء هي الهجرة والمسافرين والعمال والطلاب الأجانب. 
الذي يتضمن تأثير  COVID-19 في هذا العمل, قمنا بتطوير إنموذج رياضي لدراسة السلوك الدينامي لوباء

ى. أولًا , قمنا بدراسة الإيجابية والقيود لحل الإنموذج المقترح.  ناقشنا المهاجرين مع إمكانية الإصابة مرة أخر 
, وعلاوة على ذلك ثبت أن      نتائج الاستقرار للإنموذج عند نقطة التوازن الخالية من المرض عندما

علاوة على ذلك, ناقشنا حدوث التفرعات المحلية .      نقطة توازن الجائحة ستستمر بشكل موحد عندما
 .ايضاً. وأخيرًا, يظهر التحليل النظري والنتائج العددية متسقة

1. Introduction 
      In December 2019, the spread of nCoV-19 disease commenced in Wuhan, China. The World 

Health Organization (WHO) has classified the new disease as pandemic on March 11, 2020. Recently, 

COVID-19 has spread fast to many countries in all continents, such as United States, Brazil, India, 

Russia and South Africa. The outbreak of COVID-19 has become a globally public health concern the 

in medical community, as the virus is spreading around the world [1, 2]. Initially, the Iraqi government 

adopted a social distancing strategy and lockdown in all provinces after the discovery of the first 

infection to a traveling student on February 2, 2020 [3]. 

     The migration factor is one of the reasons that help the spread of the epidemic, especially if the 

immigrant is infected but without symptoms. This case is considered a dangerous source of spreading 

the epidemic. For example, Naji and Mohsen performed a stability analysis on an SVIR epidemic 

model, involving immigrants   [4]. Kiran et al. suggested the modeling of SARS-CoV2 with effects of 

population migration and punctuated lockdown [5].  

     A COVID‑19 is a new disease; it spreads between people more easily than influenza. People are 

most infectious when they show symptoms (even mild or non-specific symptoms), but may be 

infectious for up to two days before symptoms appear (pre-symptomatic transmission). They remain 

infectious for an estimated 7 to 12 days in moderate cases and an average of two weeks in severe 

cases. People can also transmit the virus without showing any symptom (asymptomatic transmission); 

some studies found that 40–45% of infected people are asymptomatic [6-8].    

   Also, sputum and saliva carry large amounts of virus. Thus, the direct contact routes such as kissing, 

intimate contact, and speaking are sources to transmit the virus (Figure-1). The virus may occur in 

breast milk, but whether it is transmittable to the baby is unknown [9]. 
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Figure 1-Spread of coronavirus by saliva due to speaking and coughing 

 
    Obviously, COVID-19 has become a global disease. Thus, several researchers suggested 

epidemiological mathematical models to understand the dynamics of the spread of the epidemic, as in 

the study of Mohsen at el. [10]. They proposed and analyzed a modeling of COVID-19 with media 

coverage effects and quarantine strategy to control the spread of the disease. Mamo [11] developed a 

mathematical model for transmission dynamics of COVID-19 propagation with public health 

intervention. Yang and Wang [12] suggested a mathematical model for the novel coronavirus 

epidemic in Wuhan, China. Samui et al. [13] proposed a mathematical model for COVID-19 in India. 

Garba et al. [14] studied a model of  COVID-19 pandemic outbreak in South Africa.  

In this paper, a mathematical model that describes the dynamics of COVID-19 pandemic, involving 

immigrants' effects with the possibility of re-infection, is proposed and studied. The order of this paper 

is as follows; the mathematical modeling of the novel coronavirus is shown in Section 2. Some basic 

properties of the model (positivity, boundedness of solution, calculated basic reproduction number, 

and existence equilibrium points) are discussed in Section 3. The local stability analysis is studied by 

using Gersgorin’s theorem in Section 4. By using Castillo-Chavez method and Lyapunov function, the 

global stability of the proposed model at all equilibrium points was analyzed in Section 5. The 

occurrence of local bifurcation near the disease-free equilibrium point is discussed in Section 6. 

Finally, in Section 7, the effects of varying all the system parameters are investigated using numerical 

simulation.         

 2. The Model Formulation 
      At the beginning of Coronavirus outbreak, there were many countries that did not record  any 

infection with the epidemic. However, as their citizens, travelers, or immigrants returned, 

the  infections began to increase. Accordingly, one of the main reasons for the spread of the epidemic 

is the  migration factor. For example, in Iraq, the first infection case appeared was that of a  foreign 

student who was carrying the virus, but without symptoms. On the other hand, most of 

the  mathematical models that have studied the spread of Coronavirus depended on the basic model  of 

SIR- type of disease, which implies that the patient acquires permanent immunity against the virus 

after  recovery. Meanwhile, there are many reports that prove the opposite, meaning that a  person 

infected with the virus acquires temporary immunity against the virus. Therefore, in this paper, 

a  mathematical model that simulates the dynamics of coronavirus pandemic is proposed. It is assumed 

that the model taking into account the effect of immigrants. In addition, loss of immunity to 

coronavirus after recovery is also included. In this work, we create  a mathematical model that 
describes COVID-19 transmission. The model considers a total population of   on time   such 
that  ( )   ( )   ( )   ( )   ( )   . We assume that the total population is divided into to 
five compartments, which are:  ( ) individuals are susceptible for being exposed,  ( ) 
susceptibility due to direct contact with asymptomatic individuals (Carriers) and symptomatic 
individuals (Infected), denoted by  ( ) and  ( )  respectively. The number of individuals  ( ) 
represents those carriers and infected people, respectively, who have recovered , and can be 
reinfected. Thus, the assumption can be written by the following set of differential equations,  
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     under the initial point condition  ( )     ( )     ( )     ( )     ( )   . The 
recruitment rate of the population in model (1) is represented by  , while   is the number of 

immigrants with fraction rate        , and   is the infection rate. 
    

    
 (with      and    ) 

denotes the saturated contact rate.   is the natural death rate of the population, and   is the 
death rate from carrier and infected individuals due to disease.   is the transmission rate 
between the number of exposed people and the number of all carriers and infected people, with 
a fraction rate of                   are quarantine rates of exposed and infected subjects, 
respectively.          are recovery rates of carrier and infected subjects, respectively.     is 
the rate of immunity loss and return to susceptibility. 
3. Basic analysis of the model (1) 
3.1 Positivity and boundedness 
   In this section, we discuss the case when the solution of model (1) is non-negative, as in the 
following theorem. 
Theorem 1: All solutions  ( )  ( )  ( )  ( )  ( ) of model (1), starting from positive initial 
conditions, remain positive for all      
Proof: We have 
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Since all the above rates are non-negative, then,  clearly, it is easy to show that the region is 
positive.                                                                                                                   
 
For the boundedness of solutions, we consider the following function 
 ( )   ( )   ( )   ( )   ( )   ( ). 
Then, taking the time derivative of  ( ) along the solution of model (1) gives 
 

  

  
               

  

  
          

where 
                                 
Now, it is easy to verify that the solution of the above linear differential inequalities can be 
written as 

 ( )   
   

 
 (   

   

 
 )       

where    ( ( )  ( )  ( )  ( )  ( )), so that 

   
   

    ( )  
   

 
          ( )    

   

 
               

Thus, all solutions are uniformly bounded and the proof is complete.                                                      
3.2 Basic reproduction number 
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    The infection components in this model are         . The new infection matrix  ℱ and the 
transition matrix 𝑣 are given by 
 

ℱ  |

         
    
    
    

|  𝑣   |

         
           

 (   )            
          

|. 

 
     The basic reproduction number of model (1) is then defined as the spectral radius of the next 
generation matrix      [15], as follows 
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(      )(         )
                                                (2) 

 
Clearly, by results in theorem 2 [15], we have that the model (1) always exhibits a disease-free 

equilibrium    (          ) where    
   

 
 , if     . Hence, we get the following summaries. 

 
Theorem (2): The disease-free equilibrium point    of model (1) is locally asymptotically stable 
when     , and vice versa.                                                                                                                                 
 
     Otherwise, the existence of the pandemic equilibrium point of the model (1) is investigated by 
equating the right hand of model (1) to zero and by solving the following set of algebraic 
equations simultaneously 
   

 

  (   )      
    

    
         

    
    

    
 (      )                       

       (      )                           
(   )   (         )                

        (   )                                     

                                               (3) 

 
   The simultaneous solution of equation (3) gives the pandemic equilibrium point, denoted by  
   (              ),  where 
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while (     )  represents a positive intersection point of the following two isoclines:  
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Clearly, as      the first isocline (4a) intersects the    axis at zero.  
However, when      the second isocline (4b) will intersect the    axis at a unique positive 
point, say    . 
     Consequently, these two isoclines (4a) and (4b) have an intersection point in the interior of 
the positive quadrant of     – plane, namely (     )  provided that the following conditions are 
satisfied   
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     Therefore, the pandemic equilibrium point     (              ) exists uniquely in the 
interior of   

   if      and condition (4c) holds.  
4. Local stability analysis 
      In this section, the local stability conditions of the pandemic equilibrium point    of model 
(1) are established in the following theorem. 
Theorem (3): The pandemic equilibrium point    of the model (1) is locally asymptotically stable 
when       with the following condition holds: 
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Proof: The Jacobian matrix of model (1) at     can be written as 
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Now, according to Gersgorin’s theorem [16], if the following condition holds: 
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                                                                                       (6) 

then all the eigenvalues of  (  ) exist in the region: 
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     Then, all the eigenvalues of  (  ) exists in the disc centered at     with radius   . Thus, if the 
diagonal elements are negative and the condition (5) holds, all the eigenvalues will exist in the 
left half plane and the    of model (1) is locally asymptotically stable with     .  
5. Global stability analysis 
     In this section, the region of global stability (basin of attraction) of all equilibrium points of 
model (1) is presented as shown in the following theorems.                                                                                                       
Theorem (4): The disease-free equilibrium point    is globally asymptotically stable in the sub 
region of   

  that satisfies       
Proof: Let    ,   (       ) and    (    )  (                                                                                                      
,0). Then,  
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In model (1),    
   

 
 is the bound of the total population. We summarize             . 

Therefore,  ̅(   )   . Thus, the conditions    and    hold, by Lemma (1), see [17]. Then,  the 
disease-free equilibrium point is globally asymptotically stable.     
 Theorem (5): The pandemic equilibrium point    is globally asymptotically stable, provided that  
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Proof: Let                    satisfy equations  
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We define the Lyapunov function as 
     (       )    (       )    (       )
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Furthermore, by simplifying the resulting terms, we get that 
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Since the arithmetical mean is greater than, or equal to, the geometrical mean, then 
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Therefore,   
     for         𝑣     and    

    if and only if            𝑣     The 
maximum invariant set of model (1)  on the set  (        𝑣)   

     is the singleton (1,1,1,1,1). 
Thus, for model (1),  the pandemic equilibrium    is globally asymptotically stable if        by 
LaSalle Principle [18]. 
6. Local bifurcation analysis 
       In this section, the effect of varying the parameter values on the dynamical behavior of model 
(1) near the equilibrium points is studied. It is well known that the existence of non-hyperbolic 
equilibrium point of the system is a necessary but not sufficient condition for bifurcation to 
occur. Therefore, in the following, the parameter that makes the equilibrium point of model (1) 
as a non-hyperbolic equilibrium point is considered as a candidate bifurcation parameter for the 
system. Now, we rewrite model (1) in the form: 
  

  
  ( ), where   (         )   and   (              )

 ,  with                represent 

the interaction function in the right hand side of model (1). Then, straightforward computation 
on the Jacobian matrix of model (1), with any non-zero vector     (𝑣  𝑣  𝑣  𝑣  𝑣 )

 , gives the 
following second directional derivative 
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6.1 The Local Bifurcation Analysis Near    
Theorem (6): Under the sufficient condition     , the model (1) undergoes a transcritical 
bifurcation, but neither saddle node bifurcation nor pitchfork bifurcation can occurs at disease-
free equilibrium point    when the following condition holds           
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                                      (16a) 

                                                                                          (16b) 
Proof: According to the Jacobian matrix of model (1) at   , has zero eigenvalue (say   
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when      and hence, by substituting the value of    and simplifying the resulting terms, we 
obtain the following positive quantity at  
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Hence,    is a nonhyperbolic point at     . Recall that the Jacobian matrix of model (1) at     
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Now, consider 

  

  
   (   )                                                      (18) 

Thus,  
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 )                which gives  [    ]
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So, according to Sotomayor's theorem  [19], for local bifurcation, model (1) has no saddle-node 
bifurcation at     . Furthermore, because we have 
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Moreover, by substituting     
  and      in (12), we get 
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Hence, we obtain 
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     Thus, according to Sotomayor's theorem, model (1) at disease-free equilibrium point has a 
transcritical bifurcation as the parameter   passes through the bifurcation value     provided 
that     , while pitchfork bifurcation cannot occur.                                                                                 
7. Numerical simulation 
     In this section, we illustrate some numerical solutions of model (1) for different values of the 
parameters. We use the following different initial points. We use the parameter values from real 
data available from February 24, 2020, to September 26, 2020, and present some numerical 
simulation of model (1) to illustrate our results in Table-1. 
 
Table 1-Definitions and values of model (1) parameters 

Parameter Definition Value 

  
  
  
  
  
   
  
  
  
  
   
   
  
  
   
   

Total population 
Birth rate 

Number of immigrants 
Fraction rate 

Contact rate between   and   
Contact rate between   and   

Saturated rate 
Natural death rate 
Loss of immunity 
Transmission rate 

Quarantine rate of exposed subjects 
Quarantine rate of infected subjects 

Fraction rate 
Death rate due to disease 
Recovery rate of carriers 

Recovery rate of infected subjects 
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 Case 1: When we take the parameters in Table 1, we have the dynamical behavior of model (1) 
approaching the disease-free equilibrium point   . This theoretical result is illustrated by Figure 
2 which shows the solutions of model (1) with different initial points. 
Case 2: When we take       and          with keeping the other parameters in Table 1, 
we have the dynamical behavior of model (1) approaching  the pandemic equilibrium point   . 
Figure 3 confirms that the disease-free equilibrium point became unstable and the solution of 
model (1) approaches the endemic equilibrium   . Also, the value of          implies that the 
backward bifurcation occurs. 
Case 3: When we take                     and        with keeping the other 
parameters in table 1, we have the dynamical behavior of model (1) still approaching  the 
pandemic equilibrium point    with       . The result is illustrated by Figure-4. 

 
Figure 2-Global stability of disease-free equilibrium point of model (1) with         . 

 
Figure 3-Global stability of pandemic equilibrium point of model (1) with        . 
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Figure 4-Global stability of pandemic equilibrium point of model (1) with       . 

 
8. Discussion and Conclusions  
     In this work, a mathematical model of COVID-19 pandemic with immigrants was studied by 
dividing the total population into five classes, namely susceptible  ( ), exposed  ( ), carrier 
 ( ), infected  ( ) and recovered  ( ). The model incorporates the impact of infective 
immigrants, but without symptoms, with quarantine strategy. It has been noticed that the 
disease can spread if the number of immigrants increases. Thus, the dynamical behavior of the 
disease changes from the disease-free point to pandemic point. The model mainly accounts for 
the reduction in disease class due to social isolation or social spacing. While, we can say that the 
disease vanishes due to the proper application of quarantine measures. Our model has two 
biological equilibrium points, namely the disease-free and pandemic. If     , we get that the 
disease-free equilibrium point is stable. Otherwise, this point becomes unstable when      
and the solution of the model approaches the pandemic equilibrium point. The model does not 
have periodic dynamics but, instead, it approaches either the disease-free equilibrium point or 
pandemic equilibrium point. But model (1) near the disease-free equilibrium point has a 
transcritical bifurcation as the parameter   passes through the bifurcation value     provided 
that     , while pitchfork bifurcation cannot occur. 
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