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Abstract

The paired sample t-test is a type of classical test statistics that is used to test the
difference between two means in paired data, but it is not robust against the
violation of the normality assumption. In this paper, some alternative robust tests are
suggested by combining the Jackknife resampling with each of the Wilcoxon
signed-rank test for small sample size and Wilcoxon signed-rank test for large
sample size, using normal approximation. The Monte Carlo simulation experiments
were employed to study the performance of the test statistics of each of these tests
depending on the type one error rates and the power rates of the test statistics. All
these tests were applied on different sample sizes generated from three distributions,
represented by Bivariate normal distribution, contaminated Bivariate normal
distribution, and Bivariate exponential distribution.

Keywords: Paired t-test, Robust, Jackknife, Wilcoxon signhed-rank test,
Contaminated Bivariate normal, Bivariate Exponential.
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1. Introduction
Comparing two means of correlated variables is often of interest to researchers in various fields,

especially medical and biological. The paired t-test is one of the most important tests that are widely
used for this purpose. However, the paired t-test is not robust against the departure of the normality
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assumption. The robustness concept was introduced initially by Box in 1953. There are many
definitions of the concept of robustness, perhaps the most important of which is that stipulated in the
Huber definition (1981) [1]. That definition implies that the robustness has many meanings and
implications that may be inconsistent with each other, but robustness can be expressed as referring to
insensitivity to slight departures from the assumptions of the test statistics.
Bradley (1978) defined the Robust test and stipulated that the test is called robust against the violation
of one or more of the test's assumptions, if that violation has no effect on the distribution of the test
statistic, due to tending the true probability of a Type | error to differ from the nominal a. He
suggested the liberal criterion to represent the robustness; the test could be regarded as robust only if
its Type 1 error rate @ falls in the following interval: [2]
09a< @<lla
ie.,

A [24

@—al < 5 )
On the other hand, Salter and Fawcett (1985) proposed another criterion for the robustness of the test,
which does require the Type | error values to lie within the following interval [3]

a +2./[a(1-a)/R] (2)

where R represents the replicated times.
This research aims to investigate the effects of the violation of some assumptions of the hypothesis test
equality of means of two correlated variables on the distribution of test statistics.
These violations are represented by the following points:
1. Violation of the normality assumption due to the existence of outliers.
2. The smallness of the sample size.
3. The paired data follow a distribution other than the normal distribution.
4. Heterogeneity of the variances of the two dependent variables.
The main goal of this research is to find a robust test that achieves the highest power of the test when
the set of paired data violates the assumptions of the normality and the homogeneity of variances of
the correlated variables. Therefore, a number of robust tests are suggested, represented by Wilcoxon—
matched pairs signed-ranks using Jackknife (JWS), Wilcoxon—-matched pairs signed-ranks when
sample size n > 25 using Jackknife (JWL), in addition to Jackknifing paired t-test (JT).
2. Test statistics
2.1 Paired t-test

The paired t-test is one of the widely applied statistical procedures that is used to determine the
difference in the mean values between two sets of observations (before and after the treatment). The
paired t-test is based on the differences between the values of a single pair, whose variations are
almost normally distributed. It sometimes called the correlated pairs t-test, also known as the repeated
measurements. In general, the test can be performed through 4 steps.
Suppose that the two-dimensional random variables (X,Y) have a bivariate normal distribution with
parameters uy, Uy ,0 x,0 y and p, if their joint pdf is defined as: [4, 5]

_ 1 -1 X—MUx N2 X —Ux \ Y~ Wy Y~ Uy\2 _
fX'Y(x'y)_ZnaXcry 1—pzexp{2(1—p2)[( ox ) 2p( ox )( oy )+ ( oy )]}' ©<XY <
00 ®)
where, iy, by € R,0x,0y € +Rand p € (—1,1) and

—c YV = Cov(X,Y)
p=_Corr(X,Y) = oe0y

The test has two hypotheses; the null hypothesis assumes that the true mean difference between the
paired samples is zero:

Ho:px = py (4)
Whereas the alternative hypothesis is: Hy: uy # py
Let

D;=X,—Y ,i=1,2,..,n (5)
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Then, D ~ Normal( pp, 63), where up = uy — py is the mean of D; , and o is the variance of D;.
Therefore, the significance of the difference between uy and uy can be tested using paired t-test by
testing the following hypothesis:

Ho:pp =0 (6)
against the alternative hypothesis: Hy: pp # 0.

The formula for the paired t-test is given by [4, 6, 7]:

T = % ~tn-1) (7)
where D and S, are, respectively, the mean and the standard deviation of D; in a matched sample.
Notice that the statistical t-test represents the one sample t-test applied on the difference between two
dependent variables D.

2.2 Wilcoxon —matched pairs signed-ranks (W.M)

The Wilcoxon —matched pairs signed-ranks is a popular, nonparametric test that is often an
alternative test to t-test for matched Pairs, but it is used when the data violate the assumption of a
bivariate normal distribution or for ordinal data [8]. This test is an extension of the Wilcoxon signed-
rank test, proposed by Frank Wilcoxon in 1945. In fact, this test requires that paired samples should be
random and independent. It is used to compare the means of two dependent samples and it is very
appropriate for a repeated measure design where the same subjects are evaluated under two different
conditions. The W.M is used to test whether the matched random sample is drawn from a population
in which the median of the differences is equal to a specific value; in other words, it tests the following
two-sided null hypothesis:

HO: GD = 0 (8)
against the alternative hypothesis: Hy:0p # 0
where m is the median of the differences (D;) between the two populations.
The W.M-test can be carried out using the following steps:
1. Compute the difference scores D, (i=1, 2, ..., n) for each pair of data.
2.  Rank the absolute value of difference scores |D;|, from 1 through n. If two or more difference
scores are the same, the mean of the ranks of these scores is given to each of the tied ranks.
3. When D; = 0, the pair is not assigned a rank, with reducing n by the number of cases in which the
difference score = 0.
4. Calculate the sum of the ranks of each of the positive signs (R*) and negative signs (R7), as
follows:
R* = ¥yp;>osign (D;j)Rank|D;| , R™ = Yyp,<o sign (D;)Rank|D;]
Notice that,

R +R-= n(n+1)

5. The test statistic, say W is given by:
W= min (R*,R7) 9)
6. Compare the test statistic W with the critical value W™ at a specific significant level, then reject
If the sample size is relatively large, the normal approximation of the W.M statistic can be used for
testing the null hypothesis (7), by using the following test statistics:
W‘w
i e (10)
24
n*: the number of difference scores with non-zero rank.
W: the calculated value of W.M statistic defined in (9). If we use the continuity coefficient, the test
statistic becomes:

n*(n*+1)
4 1

n*(n*+1)(2n*+1)
24

When a repeating state appears in the different observations, it is appropriate to use the following
statistics:

|W— -0.5

Z= (11)
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w _n*(n"+1)
Z= 2 (12)

3
n*(n*+1)(2n*+1) Xt -2
24 48

For all cases, the null hypothesis will be rejected if z > z*, where z* represents the tabled critical
value of the test at a specific level of significance.

3. Contaminated bivariate normal distribution

The contaminated bivariate normal distribution is a simple but useful distribution that can be used to
simulate outliers. It was originally studied by John Tukey in the 1990s and 1950s. In order to study the
robustness of the test's statistics against the departure of normality assumption, the bivariate normal
distribution has been contaminated by outliers. The latter process was done by generating the random
sample from the original distribution, denoted by F, with a specific proportion, say A, and allowing a
few of these sample observations to be coming from other distributions G, G,,---, G that differ in
their parameters from the original distribution. These observations are known as (Contaminated).
Usually, they can be expressed as follows:

A=A =2 — = N)F + A4,Gy + -+ A, Gy,

where

A;: contamination rate by the distribution G; wherei =1, -,k

There are two types of contaminants: the first type is known as symmetric contaminant. The
symmetric contaminant is obtained when generating a symmetric contaminated distribution G, around
the original distribution center F, equal in the u of both distributions and difference in o to make the
variance of G bigger than the variance of F. If both of the distributions G and F are normal
distribution, where

F:N~(u,0%),G:N~(u, o%b) ,b>1,

the continuous random variable X resulting from the mixture distribution will have a symmetric
contaminated normal distribution in the rate of 1, i.e. X~(1 — A)F + AG.

The other type is known as the asymmetric contamination. It is obtained when generating the
contaminated distribution G, symmetrically about any point within the distribution F, if the center is
not equal. That is, when G, is equal to the distribution F in variance and different from it in location,
i.e.G,~N(u+a,o?) , a>0,

in this case, the distribution of the random variable X can be expressed as follows:

X~ - A)F + AG,

4. Bivariate exponential distribution

There are several formulas for the bivariate exponential distributions. The Downton’s bivariate
exponential distribution is the most important of these distributions, which has the density: [9]

Pxly _ HxXHUyY) oo [PHxByX\ 1
fey(ty) =10 € { 1-p }Z"=°{ (1-p)? } ez XYy>0 (13)
0 , o.w
where py, iy € +R and p € (—1,1), with
1 1
E(x) =— ,var(x) = —
e Hyx
E(y)=— ,var(y) = —;
y i y 07

5. The Jackknife resampling technique

In statistics, the Jackknife is a resampling technique used when it is not viable to evaluate data with
the parametric methods and is particularly well-suited for complex and non-parametric designs
applications. The Jackknife method was first introduced by Maurice Henry Quinn in 1949 to reduce
statistical biases. In 1958, John Wilder Tuckey expanded its use to include variance estimation.
Quenouille used the Jackknife method to correct and estimate the bias of estimation its application,
based on the deletion of some of the original observations of the sample. Next, Tukey used the method
to create confidence intervals for data that have large variations of an estimator. It is similar to the
bootstrap method, but with no replacement [10]. The Jackknife statistic (JT) is given by:
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Djack

op

Vn
This method is computer-based for estimating biased standard error with the least possible bias. it is
developed to minimize the sampling error and obtaining narrow confidence intervals in estimating
population parameters. It is also called a pocket - knife method and is a hand tool that is to use on
various problems.

In general, Jackknife samples can be obtained by accepting a random sample of size n of observations
and through it, the estimate is calculated. The mean of these calculations is then found by deleting one
observation at a time without returning, to make the number of statistics computed n of times. When
the application is achieved, the Jackknife estimate appears by aggregating each estimate in the sample
[11].
The method of Jackknife application has the following steps:

D .
1- By using the Jackknife method, D = %
2- Estimation of the variance by the Jackknife resampling technique, as follows:
., 2i_,(0i=D)

JT =

Op =
nn—1)
3- Application of the paired t-test for data under the Jackknife resampling technique:
JT = =g
%

Similarly, we are jackknifing the W.M test and the approximation of W.M to normal distribution,
respectively, as follows:

n
> ws,
JWS = —1=r11
where WS; is j™ Wilcoxon—matched pairs signed-ranks for small samples:
n
S,
JWL ==—=L
n

where WL, is j™ Wilcoxon—matched pairs signed-ranks for large samples.

6. Simulation Study

1. A Monte-Carlo simulation study was conducted to examine and compare the behavior of different
test statistics represented by Paired t-test (T), Paired t-test using Jackknife resampling (JT), W.M-test
for small sample sizes (n < 30) (WS), W.M-test (WL) when n > 30, jackknifing W.M-test for
small samples (JWS), and jackknifing W.M-test when sample size n > 30 (JWL). The distribution of
matched pairs was generated from the following joint PDFs: bivariate normal distribution,
contaminated bivariate normal distribution, and bivariate exponential distribution.

Different sample sizes (n = 10, 20, 30, 50, 100) generated to represent small, moderate and large
sample sizes with different values if correlation coefficient p = 0,0.4,0.8. The experiment was
replicated (10000) times.

Based on the Bradley’s liberal criterion, the test will be regarded robust if it’s Type | error rate & falls
within the interval: 09 a < @ < 1.1 a.

In this paper, we use nominal @ = 0.05. Therefore, Bradley’s liberal criterion is 0.045 < & < 0.055.
According to the Salter and Fawcett criterion, the test will be regarded as robust if it’s Type | error rate

@ satisfies: 0.05 + 2,/0.05 (1 — 0.05)/10000,

i.e., the test is robust if @ falls within the interval 0.0456 — 0.0543. Notice that, in this article, the two
criterions of robustness are quite closed, Bradley’s liberal criterion will be used because it is more
popular.

The setting values of experiments of simulation experiments can be summarizing by the following
table:
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Table 1-The Algorithm of Simulation Experiments

Bivariate Normal Contaminated Bivariate Bivariate Exponential
n p distribution Normal distribution distribution
X~N(p,d Y~N(u, 61 X~N(p,0*) |Y~N(u04 X~EXP(2) |Y~EXP(]
] 80%X~N(1,1)
X~N(1,1] Y~N(1,1) T 20%X~N(L25 Y~N(1,1)
X~EXP(1) | Y~EXP(1
80%X~N(1.5,1)
10, 20, 0, X~N(1.5| Y~N(1,1) + 20%X~N(1.5,2 Y~N(1,1)
30,50, | 0.4,
0, ~
100 | 08 | ¥ N1 v~N(12s SONX-NLD |y o5
+ 20%X~N(1,25 X~EXP(1
15) Y~EXP(1
80%X~N(1.5,1) .
X~N(1.5] Y~N(1,25 T 20%X~N(1.5.2 Y~N(1,25

7. Simulation Results

To examine and compare the behaviors of test statistics under different cases, the simulation
experiment’s results, represented by Type | error rates and power rates, are summarized in Tables- 2 to
11. In this paper, the behavior of different tests is discussed briefly, according to the distribution of the
population that the matched sample is drown from, as follows.
1. Bivariate normal distribution with equality of variances
i) _Type | Error Rates

The Type I error rates for different tests at (a = 0.05), applied on matched data from a bivariate
normal distribution, are tabulated in the Table-2. Generally, it can be seen that all of the type 1 error
rates of the test statistics were good and within Bradley’s liberal criterion (0.045-0.055), except WS
and JWL tests, when the sample size n < 10 for all the different values of p. The JWS test
performance was not good because the value of the Type | error rate is outside Bradley’s liberal
criterion for all cases with different values of p. It is worth mentioning here that the T and JT tests are
equaled when n=100.

Table 2- Type 1 error rates on different test statistics with bivariate normal distribution,
X ~N(1,1) andY ~N(1,1)

p n T WS WL JT JWS JWL
10 *0.0496 0.0369 *0.0495 *0.0526 0.0628 0.0388
20 *0.0518 *0.0456 *0.0489 *0.0522 0.0758 *0.0509
0.0 30 *0.0559 *0.0518 *0.0547 *0.0559 0.0792 *0.0504
50 *0.0523 - *0.0504 *0.0524 - *0.0501
100 *0.0518 - *0.0536 *0.0518 - *0.0518
10 *0.0508 0.0380 *0.0505 *0.0530 0.0683 0.0388
20 *0.0536 *0.0484 *0.0525 *0.0541 0.0768 *0.0534
0.4 30 *0.0550 *0.0515 *0.0538 *0.0554 0.0805 *0.0512
50 *0.0504 - *0.0499 *0.0504 - *0.0479
100 *0.0525 - *0.0505 *0.0525 - *0.0503
10 *0.0517 0.0383 *0.0516 *0.0548 0.0668 0.0402
20 *0.0528 *0.0477 *0.0517 *0.0532 0.0805 *0.0514
0.8 30 *0.0546 *0.0510 *0.0538 *0.0551 0.0783 *0.0522
50 *0.0504 - *0.0489 *0.0504 - *0.0477
100 *0.0543 - *0.0531 *0.0543 - *0.0530
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*: Type 1 error rate is within the Bradley’s liberal criterion (0.045-0.055).
ii) Power rates

The power rates for different tests at (a. = 0.05), applied on samples from a Bivariate normal
distribution, are summarized in the Table-3.
Generally, it can be seen that the JT-test and T-test are the most powerful, with greater power rates for
all sample sizes with the different values of p. It is clear that, with increasing sample size and the
correlation coefficient, the power rates for all tests are increasing and converged to 1, which
corresponds to the central limit theory.

Table 3-Power rates on different test statistics with bivariate normal distribution, X ~ N(1,1) and

Y ~N(1,1)

p n T WS WL JT JWS JWL
10 *0.1716 0.1375 *0.1680 *0.1766 0.2027 0.1303
20 *0.3244 *0.2955 *0.3105 *0.3256 0.3889 *0.3007
0.0 30 *0.4662 *0.4432 *0.4526 *0.4671 0.5308 *0.4284
50 *0.6881 - *0.6665 *0.6882 - *0.6560
100 *0.9399 - *0.9295 *0.9399 - *0.9279
10 *0.2567 0.2061 *0.2458 *0.2634 0.2901 0.1905
20 *0.4953 *0.4581 *0.4748 *0.4973 0.5623 *0.4568
0.4 30 *0.6769 *0.6513 *0.6580 *0.6777 0.7268 *0.6381
50 *0.8873 - *0.8707 *0.8875 - *0.8638
100 *0.9940 - *0.9923 *0.9940 - *0.9914
10 *0.6035 0.5305 *0.5835 *0.6130 0.6421 0.4811
20 *0.9203 *0.9027 *0.9099 *0.9211 0.9374 0.8949
0.8 30 *0.9857 *0.9805 *0.9819 *0.9859 0.9892 0.9796
50 *0.9998 - *0.9998 *0.9998 - 0.9999
100 *1.0000 - *1.0000 *1.0000 - 1.0000

2. Contaminated bivariate normal distribution with equality of variances

To study the influence of departures from normality on four test statistics, the tests were applied on
different paired samples generated form the contaminated bivariate normal distribution, represented
by: 80%X~N(1,1) + 20%X~N(1,25) and Y~N(1,25).

i) Type 1 Error Rates

Results of Type 1 error rates on different test statistics at 0.05 level of significance with

contaminated data by outliers are summarized in Table-4 and show that:
The T statistic is extremely sensitive (not robust) to the contaminated data when n < 30 with different
values of p, which means that it is not robust against the departure from normality assumption.
However, the JT-test improves the test robustness of the paired t-test but still not robust in all cases,
except with n <20 when p=0, n <30 when p=0, 4, and n < 50 when p=0, 8. In general, the most robust
tests are WL with all cases followed by JWL for large sample sizes with all cases, except one case
when n=10.

Table 4-Type 1 error rates on different test statistics with contaminated bivariate normal distribution,
X ~N1Q1) andY ~N(1,1)

p n T WS WL JT JWS JWL

10 0.0334 0.0384 *0.0503 0.0354 0.0641 0.0386
20 0.0401 0.0429 *0.0470 0.0402 0.0760 *0.0534
0.0 30 *0.0464 *0.0494 *0.0519 *0.0466 0.0788 *0.0504
50 *0.0468 - *0.0500 *0.0468 - *0.0503
100 *0.0481 - *0.0513 *0.0481 - *0.0515

0.4 10 0.0270 0.0377 *0.0506 0.0295 0.0670 0.0396
' 20 0.0368 0.0443 *0.0490 0.0372 0.0760 *0.0527
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30 0.0442 *0.0489 *0.0513 0.0443 0.0802 *0.0497

50 *0.0460 - *0.0493 *0.0458 - *0.0497

100 *0.0470 - *0.0504 *0.0470 - *0.0522

10 0.0154 0.0370 *0.0500 0.0163 0.0634 0.0384

20 0.0267 *0.0446 *0.0491 0.0271 0.0754 *0.0512

0.8 30 0.0384 *0.0484 *0.0512 0.0382 0.0797 *0.0507
50 *0.0448 - *0.0516 *0.0447 - *0.0502

100 *0.0458 - *0.0509 *0.0457 - *0.0511

*: Type 1 error rate is within the Bradley’s liberal criterion (0.045-0.055).

ii) Power rates

The power rates for different tests applied on samples from a contaminated bivariate normal
distribution are tabulated in Table-5. We observed the following important points:

. In general, when n > 20, JWL is more powerful test for all cases compared with the other tests,
while WL is the best test when n=10. The JT-test achieved the best power rate when n > 30, followed
by the t-test, which means that it has a highest type | error. Finally, it is clear that all power rates of
tests are increasing with the increase of sample size and p and they converge to each other.

Table 5-Power rates on different test statistics with contaminated bivariate normal distribution,

X ~N(1,1) andY ~ N(1,1)

p n T WS WL JT JWS JWL
10 0.0882 0.0970 *0.1172 0.0925 0.1451 0.1089
20 0.1487 0.1891 *0.1994 0.1501 0.2624 *0.2126
0.0 30 *0.2036 *0.2876 *0.2952 *0.2049 0.3623 *0.2898
50 *0.2850 - *0.4356 *0.2855 - *0.4509
100 *0.4880 - *0.7499 *0.4882 - *0.7549
10 0.1058 0.1296 *0.1544 0.1134 0.1863 0.1501
20 0.1861 0.2698 *0.2844 0.1880 0.3562 *0.3065
0.4 30 0.2494 *0.4062 *0.4149 0.2506 0.4911 *0.4228
50 *0.3456 - *0.6169 *0.3464 - *0.6345
100 *0.5848 - *0.9068 *0.5853 - *0.9116
10 0.1622 0.2500 *0.2790 0.1747 0.3232 0.3279
20 0.2622 *0.5515 *0.5693 0.2666 0.6498 *0.6225
0.8 30 0.3340 *0.7553 *0.7636 0.3356 0.8265 *0.7903
50 0.4543 - *0.9454 *0.4557 - *0.9532
100 *0.7134 - *0.9991 *0.7140 - *0.9993

3. Bivariate exponential distribution

In this case, the paired samples were drown from the bivariate exponential distribution, i.e.
X ~exp(1l) and Y ~ exp(1) in the case of estimating Type | error rate and X ~ exp(0.6667 ) and
Y ~ exp(1) in the case of estimating power rate for different tests.
i) Type 1 error rates
Table-6 shows the Type 1 error rates for each test, under the Bivariate exponential distribution
assumption.
We noticed that WL has the highest robustness in the different cases, because the Type | error rates are
within Bradley’s liberal criterion (0.045-0.055), followed by JWL, except for one case when n=10.
The type 1 error rates for the WS test lie outside the expectable range, except for one case when n=30
for all values of p. It is clear that the T-test is insensitive to non-normality assumptions when the
sample size n > 30 with the different values of p. When the data violate the normality, the assumption
revealed that the JWL was the most robust test for all sample sizes compared to other tests.
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p n T WS WL JT JWS JWL
10 0.0424 0.0370 *0.0473 0.0434 0.0643 0.0381
20 0.0436 0.0428 *0.0480 0.0439 0.0762 *0.0475
0.0 30 *0.0466 *0.0457 *0.0474 *0.0467 0.0745 *0.0472
50 *0.0526 - *0.0502 *0.0527 - *0.0504
100 *0.0452 - *0.0465 *0.0453 - *0.0470
10 0.0399 0.0364 *0.0497 0.0420 0.0648 0.0396
20 0.0430 0.0407 *0.0451 0.0432 0.0753 *0.0466
0.4 30 *0.0490 *0.0506 *0.0524 *0.0490 0.0788 *0.0521
50 *0.0492 - *0.0484 *0.0494 - *0.0476
100 *0.0500 - *0.0500 *0.0500 - *0.0516
10 0.0419 0.0386 *0.0490 0.0431 0.0642 0.0402
20 *0.0458 0.0438 *0.0481 *0.0461 0.0760 *0.0509
0.8 30 *0.0485 *0.0456 *0.0479 *0.0485 0.0770 *0.0457
50 *0.0453 - *0.0482 *0.0454 - *0.0480
100 *0.0462 - *0.0467 *0.0462 - *0.0491

*: Type 1 error rate is within the Bradley’s liberal criterion (0.045-0.055).

Power rates

The results of the simulation study of the power rates are summarized in the Table-7.
Generally, it can be seen that the power rates of bivariate exponential distribution and bivariate normal
distribution are higher than that of the contaminated bivariate normal distribution. The power rates for
all tests are increasing with the increasing sample size and correlation coefficient; the value may
approach 1 when n=50,100 and p = 0.8. It can be seen that WL, when p=0 and n = 10, 20, has the
higher power rates compared to other tests.

Table 7-Power rates on different test statistics with bivariate exponential distribution,

X ~exp(1) andY ~ exp(1)

p n T WS WL JT JWS JWL
10 0.1529 0.1406 *0.1711 0.1577 0.2080 0.1427
20 0.2623 0.2947 *0.3074 0.2640 0.3798 *0.3026
0.0 30 *0.3476 *0.4305 *0.4385 *0.3488 0.5186 *0.4199
50 *0.5162 - *0.6469 *0.5167 - *0.6391
100 *0.8116 - *0.9177 *0.8119 - *0.9155
10 0.1328 0.1242 *0.1511 0.1363 0.1855 0.1192
20 0.3113 0.2856 *0.2986 0.3120 0.3718 *0.2829
0.4 30 *0.4582 *0.4121 *0.4205 *0.4587 0.5068 *0.3994
50 *0.7072 - *0.6466 *0.7079 - *0.6374
100 *0.9513 - *0.9151 *0.9513 - *0.9161
10 0.3125 0.3045 *0.3519 0.3187 0.4053 0.2740
20 *0.6913 0.6524 *0.6671 *0.6923 0.7415 *0.6438
0.8 30 *0.8850 *0.8418 *0.8482 *0.8853 0.8917 *0.8305
50 *0.9877 - *0.9764 *0.9877 - *0.9746
100 *1.0000 - *0.9999 *1.0000 - 0.9999

8. Conclusions

The Monte-Carlo simulation was employed to study the behavior of different test statistics that are
used for comparing the equality of the means of two paired populations. Based on the Type one error
and the power of the test, it is shown that:
e  The presence of outliers leads to a decrease of the Type | error for the paired t-test statistics.
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e  The power rates for all the tests are increasing with the increase of sample size and the correlation
coefficient.

o  Generally, all Type I error rates and the power of the tests are convergent to each other with the
increasing of sample sizes.

e In case of the existence of outliers, the jackknifing of the Wilcoxon signed rank test for large
sample sizes is the most powerful compared to the others when n = 20, while the Wilcoxon signed
rank test for large sample sizes is the best compared to the others when n = 10.

o  When the paired data follow the exponential distribution, the Wilcoxon signed rank test for large
sample sizes is the most powerful compared to the others when p = 0 with all sample sizes, in
addition to the case of n < 20 with different values of p. The jackknifing paired t-test is the best
compared with other tests whenn > 30and p > 0.
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