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Abstract 

     The paired sample t-test is a type of classical test statistics that is used to test the 

difference between two means in paired data, but it is not robust against the 

violation of the normality assumption. In this paper, some alternative robust tests are 

suggested by combining the Jackknife resampling with each of the Wilcoxon 

signed-rank test for small sample size and Wilcoxon signed-rank test for large 

sample size, using normal approximation. The Monte Carlo simulation experiments 

were employed to study the performance of the test statistics of each of these tests 

depending on the type one error rates and the power rates of the test statistics. All 

these tests were applied on different sample sizes generated from three distributions, 

represented by Bivariate normal distribution, contaminated Bivariate normal 

distribution, and Bivariate exponential distribution. 

 

Keywords: Paired t-test, Robust, Jackknife, Wilcoxon signed-rank test, 

Contaminated Bivariate normal, Bivariate Exponential. 

 

الاختبارات الحصيظة للفرق بين الطتوسطين  في البيانات الطترابطة باأستخدام تقظية اعادة التشكيل 
Jackknife 

 

هدى عبد الله رشيد،  *غفران علي غضبان  
بغجاد، العخاق قدم الخياضيات، كمية العمهم، الجامعة المدتنرخية  

 الخلاصة 
لمعينة المددوجة ىه احج الاختبارات التقميجية التي تدتخجم لاختبار الفخق بين متهسطي  tان اختبار      

متغيخين في البيانات المددوجة، ولكنو ليذ حريناً ضج اختخاق البيانات لذخط التهزيع الطبيعي.  تم في ىحا 
مع كلا من   Jackknifeة البحث اقتخاح بعض الاختبارات الحرينة البجيمة من خلال دمج تقنية اعادة المعاين

الحي  Wilcoxon signed-rank testلمعينات الرغيخة و احتبار  Wilcoxon signed-rank testاختبار 
كارله لجراسة -والحي يدتخجم لمعينات الكبيخة. تم تهظيف المحاكاة بطخيقة مهنتتم تقخيبو الى التهزيع الطبيعي 

ت بالإعتماد عمى معجلات الخطأ من النهع الأول و معجلات قهة أداء احراءة الاختبار لكل من ىحه الإختبارا
الاختبار لإحراءات الإختبار. جميع ىحه الإختبارات تم تطبيقيا عمى عينات باحجام مختمفة تم تهليجىا من 

 .ثلاثة تهزيعات تمثمت بالتهزيع الطبيعي الثنائي، التهزيع الطبيعي الثنائي الممهث، والتهزيع الثنائي الأسي

1. Introduction 

      Comparing two means of correlated variables is often of interest to researchers in various fields, 

especially medical and biological. The paired t-test is one of the most important tests that are widely 

used for this purpose. However, the paired t-test is not robust against the departure of the normality 
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assumption. The robustness concept was introduced initially by Box in 1953. There are many 

definitions of the concept of robustness, perhaps the most important of which is that stipulated in the 

Huber definition (1981) [1]. That definition implies that the robustness has many meanings and 

implications that may be inconsistent with each other, but robustness can be expressed as referring to 

insensitivity to slight departures from the assumptions of the test statistics. 

Bradley (1978) defined the Robust test and stipulated that the test is called robust against the violation 

of one or more of the test's assumptions, if that violation has no effect on the distribution of the test 

statistic, due to tending the true probability of a Type I error to differ from the nominal α. He 

suggested the liberal criterion to represent the robustness; the test could be regarded as robust only if 

its Type 1 error rate   ̂ falls in the following interval: [2] 

        ̂        
i.e., 

| ̂   |      
 

  
      (1) 

 

On the other hand, Salter and Fawcett (1985) proposed another criterion for the robustness of the test, 

which does require the Type I error values to lie within the following interval [3]  

 

     √[         ]                           (2) 

 

where R represents the replicated times.  

This research aims to investigate the effects of the violation of some assumptions of the hypothesis test 

equality of means of two correlated variables on the distribution of test statistics.  

These violations are represented by the following points: 

1. Violation of the normality assumption due to the existence of outliers. 

2. The smallness of the sample size. 

3. The paired data follow a distribution other than the normal distribution. 

4. Heterogeneity of the variances of the two dependent variables. 

The main goal of this research is to find a robust test that achieves the highest power of the test when 

the set of paired data violates the assumptions of the normality and the homogeneity of variances of 

the correlated variables. Therefore, a number of robust tests are suggested, represented by Wilcoxon–

matched pairs signed-ranks using Jackknife (JWS), Wilcoxon–matched pairs signed-ranks when 

sample size n > 25 using Jackknife (JWL), in addition to Jackknifing paired t-test (JT). 

2. Test statistics 

2.1 Paired t-test 

      The paired t-test is one of the widely applied statistical procedures that is used to determine the 

difference in the mean values between two sets of observations (before and after the treatment). The 

paired t-test is based on the differences between the values of a single pair, whose variations are 

almost normally distributed. It sometimes called the correlated pairs t-test, also known as the repeated 

measurements. In general, the test can be performed through 4 steps. 

Suppose that the two-dimensional random variables       have a bivariate normal distribution with 

parameters          
 
    

 
  and  , if their joint pdf is defined as: [4, 5] 

          
 

      √        
   {

  

          
[ 

       

   
      

       

   
  

      

  
   

      

  
  ]},         

  (3) 

where,                     and          and 

                
        

    
 

The test has two hypotheses; the null hypothesis assumes that the true mean difference between the 

paired samples is zero: 

               (4) 

Whereas the alternative hypothesis is:          

Let 

              , i = 1, 2, …, n                (5) 
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Then,                
  , where           is the mean of    , and   

  is the variance of   . 

Therefore, the significance of the difference between    and    can be tested using paired t-test by 

testing the following hypothesis: 

                    (6) 

against the alternative hypothesis:          
The formula for the paired t-test is given by [4, 6, 7]: 

 

  
 ̅  
  
√ 

              (7) 

where  ̅ and    are, respectively, the mean and the standard deviation of    in a matched sample. 

Notice that the statistical t-test represents the one sample t-test applied on the difference between two 

dependent variables D. 

2.2 Wilcoxon –matched pairs signed-ranks (W.M) 

      The Wilcoxon –matched pairs signed-ranks is a popular, nonparametric test that is often an 

alternative test to t-test for matched Pairs, but it is used when the data violate the assumption of a 

bivariate normal distribution or for ordinal data [8]. This test is an extension of the Wilcoxon signed-

rank test, proposed by Frank Wilcoxon in 1945. In fact, this test requires that paired samples should be 

random and independent. It is used to compare the means of two dependent samples and it is very 

appropriate for a repeated measure design where the same subjects are evaluated under two different 

conditions. The W.M is used to test whether the matched random sample is drawn from a population 

in which the median of the differences is equal to a specific value; in other words, it tests the following 

two-sided null hypothesis: 

                     (8) 

against the alternative hypothesis:          

where m is the median of the differences (Di) between the two populations. 

The W.M-test can be carried out using the following steps: 

1. Compute the difference scores   ,  (i=1, 2, …, n) for each  pair of data. 

2.  Rank the absolute value of difference scores |  |, from 1 through n. If two or more difference 

scores are the same, the mean of the ranks of these scores is given to each of the tied ranks. 

3. When       the pair is not assigned a rank, with reducing n by the number of cases in which the 

difference score = 0. 

4. Calculate the sum of the ranks of each of the positive signs (  ) and negative signs (  ), as 

follows: 

   ∑              |  |      ,    ∑               |  |      

Notice that, 

       
      

 
 

5. The test statistic, say W is given by: 

W= min (  ,   )     (9) 

6. Compare the test statistic W with the critical value W
*
 at a specific significant level, then reject 

H0 if:       . 

If the sample size is relatively large, the normal approximation of the W.M statistic can be used for 

testing the null hypothesis (7), by using the following test statistics: 

  
  

        

 

√               

  

     (10) 

    the number of difference scores with non-zero rank. 

W: the calculated value of W.M statistic defined in (9). If we use the continuity coefficient, the test 

statistic becomes: 

  
|   

        

 
|    

√               

  

     (11) 

When a repeating state appears in the different observations, it is appropriate to use the following 

statistics: 
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√               

  
 

∑  
  ∑  
  

                (12) 

For all cases, the null hypothesis will be rejected if        , where     represents the tabled critical 

value of the test at a specific level of significance. 

3. Contaminated bivariate normal distribution 

The contaminated bivariate normal distribution is a simple but useful distribution that can be used to 

simulate outliers. It was originally studied by John Tukey in the 1990s and 1950s. In order to study the 

robustness of the test's statistics against the departure of normality assumption, the bivariate normal 

distribution has been contaminated by outliers. The latter process was done by generating the random 

sample from the original distribution, denoted by    with a specific proportion, say    and allowing a 

few of these sample observations to be coming from other distributions               that differ in 

their parameters from the original distribution. These observations are known as (Contaminated). 

Usually, they can be expressed as follows: 

                            
where  

     contamination rate by the distribution    where         

There are two types of contaminants: the first type is known as symmetric contaminant. The 

symmetric contaminant is obtained when generating a symmetric contaminated distribution G, around 

the original distribution center F, equal in the   of both distributions and difference in    to make the 

variance of G bigger than the variance of F. If both of the distributions G and F are normal 

distribution, where 

                                          , 

the continuous random variable X resulting from the mixture distribution will have a symmetric 

contaminated normal distribution in the rate of   , i.e.              
The other type is known as the asymmetric contamination. It is obtained when generating the 

contaminated distribution     symmetrically about any point within the distribution F, if the center is 

not equal. That is, when    is equal to the distribution F in variance and different from it in location, 

i.e.:                                  
in this case, the distribution of the random variable X can be expressed as follows: 

             

4. Bivariate exponential distribution  

There are several formulas for the bivariate exponential distributions. The Downton’s bivariate 

exponential distribution is the most important of these distributions, which has the density: [9]  

 

          [
    

   
   { 

       

   
}∑ {

       

      
} 

   

  

     
                

                                                                                                
]                    (13) 

where           and         , with 

     
 

  
                                

 

  
 
 

     
 

  
                                 

 

  
 
 

5. The Jackknife resampling technique 

     In statistics, the Jackknife is a resampling technique used when it is not viable to evaluate data with 

the parametric methods and is particularly well-suited for complex and non-parametric designs 

applications. The Jackknife method was first introduced by Maurice Henry Quinn in 1949 to reduce 

statistical biases. In 1958, John Wilder Tuckey expanded its use to include variance estimation. 

Quenouille used the Jackknife method to correct and estimate the bias of estimation its application, 

based on the deletion of some of the original observations of the sample. Next, Tukey used the method 

to create confidence intervals for data that have large variations of an estimator. It is similar to the 

bootstrap method, but with no replacement [10]. The Jackknife statistic (JT) is given by: 
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 ̅    

 ̂ 

√ 

 

This method is computer-based for estimating biased standard error with the least possible bias. it is 

developed to minimize the sampling error and obtaining narrow confidence intervals in estimating 

population parameters. It is also called a pocket - knife method and is a hand tool that is to use on 

various problems. 

In general, Jackknife samples can be obtained by accepting a random sample of size n of observations 

and through it, the estimate is calculated. The mean of these calculations is then found by deleting one 

observation at a time without returning, to make the number of statistics computed n of times. When 

the application is achieved, the Jackknife estimate appears by aggregating each estimate in the sample 

[11]. 

The method of Jackknife application has the following steps: 

1- By using the Jackknife method,  ̅  
∑   

 

   

 
 

2- Estimation of the variance by the Jackknife resampling technique, as follows:  

 ̂ 
  

∑      ̅  
 

   

      
 

3- Application of the paired t-test for data under the Jackknife resampling technique: 

    
 ̅    

 ̂ 
√ 

  

Similarly, we are jackknifing the W.M test and the approximation of W.M to normal distribution, 

respectively, as follows: 

    

∑     
 

   

 
 

where     is j
th
 Wilcoxon–matched pairs signed-ranks for small samples:  

    

∑    
 

   

 
 

where     is j
th
 Wilcoxon–matched pairs signed-ranks for large samples. 

6. Simulation Study 

1. A Monte-Carlo simulation study was conducted to examine and compare the behavior of different 

test statistics represented by Paired t-test (T), Paired t-test using Jackknife resampling (JT), W.M-test 

for small sample sizes (       ) (WS), W.M-test (WL) when      , jackknifing W.M-test for 

small samples (JWS), and jackknifing W.M-test when sample size      (JWL). The distribution of 

matched pairs was generated from the following joint PDFs: bivariate normal distribution, 

contaminated bivariate normal distribution, and bivariate exponential distribution. 

Different sample sizes (n = 10, 20, 30, 50, 100) generated to represent small, moderate and large 

sample sizes with different values if correlation coefficient            . The experiment was 

replicated (01000) times. 

Based on the Bradley’s liberal criterion, the test will be regarded robust if it’s Type I error rate  ̂ falls 

within the interval:         ̂         
In this paper, we use nominal       . Therefore, Bradley’s liberal criterion is          ̂         
According to the Salter and Fawcett criterion, the test will be regarded as robust if it’s Type I error rate 

 ̂ satisfies:         √                      
i.e., the test is robust if  ̂ falls within the interval 0.0456 – 0.0543. Notice that, in this article, the two 

criterions of robustness are quite closed, Bradley’s liberal criterion will be used because it is more 

popular.  

The setting values of experiments of simulation experiments can be summarizing by the following 

table: 

 

 



Ghadhban and Rasheed                           Iraqi Journal of Science, 2021, Vol. 62, No. 9, pp: 3081-3090 
 

3086 

Table 1-The Algorithm of Simulation Experiments 

n   

Bivariate Normal 

distribution 

Contaminated Bivariate 

Normal distribution 

Bivariate Exponential 

distribution 

   (    )    (    )    (    )    (    )                   

 

10, 20, 

30, 50, 

100 

 

0, 

0.4, 

0.8 

                  
           
              

         

                  

                    
             
                

         

                   
           
              

          
       
      

         

                     
             
                

          

 

7. Simulation Results 

     To examine and compare the behaviors of test statistics under different cases, the simulation 

experiment’s results, represented by Type I error rates and power rates, are summarized in Tables- 2 to 

11. In this paper, the behavior of different tests is discussed briefly, according to the distribution of the 

population that the matched sample is drown from, as follows.  

1. Bivariate normal distribution with equality of variances 

i)  Type I Error Rates  

     The Type I error rates for different tests at (α = 0.05), applied on matched data from a bivariate 

normal distribution, are tabulated in the Table-2. Generally, it can be seen that all of the type 1 error 

rates of the test statistics were good and within Bradley’s liberal criterion (0.045-0.055), except WS 

and JWL tests, when the sample size n  ≤ 10 for all the different values of ρ. The JWS test 

performance was not good because the value of the Type I error rate is outside Bradley’s liberal 

criterion for all cases with different values of ρ. It is worth mentioning here that the T and JT tests are 

equaled when n=100. 

 

Table 2- Type 1 error rates on different test statistics with bivariate normal distribution, 

             and            

  n T WS WL JT JWS JWL 

0.0 

10 *0.0496 0.0369 *0.0495 *0.0526 0.0628 0.0388 

20 *0.0518 *0.0456 *0.0489 *0.0522 0.0758 *0.0509 

30 *0.0559 *0.0518 *0.0547 *0.0559 0.0792 *0.0504 

50 *0.0523 - *0.0504 *0.0524 - *0.0501 

100 *0.0518 - *0.0536 *0.0518 - *0.0518 

0.4 

10 *0.0508 0.0380 *0.0505 *0.0530 0.0683 0.0388 

20 *0.0536 *0.0484 *0.0525 *0.0541 0.0768 *0.0534 

30 *0.0550 *0.0515 *0.0538 *0.0554 0.0805 *0.0512 

50 *0.0504 - *0.0499 *0.0504 - *0.0479 

100 *0.0525 - *0.0505 *0.0525 - *0.0503 

0.8 

10 *0.0517 0.0383 *0.0516 *0.0548 0.0668 0.0402 

20 *0.0528 *0.0477 *0.0517 *0.0532 0.0805 *0.0514 

30 *0.0546 *0.0510 *0.0538 *0.0551 0.0783 *0.0522 

50 *0.0504 - *0.0489 *0.0504 - *0.0477 

100 *0.0543 - *0.0531 *0.0543 - *0.0530 
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*: Type 1 error rate is within the Bradley’s liberal criterion (0.045-0.055). 

ii) Power rates 

     The power rates for different tests at (α = 0.05), applied on samples from a Bivariate normal 

distribution, are summarized in the Table-3.  

Generally, it can be seen that the JT-test and T-test are the most powerful, with greater power rates for 

all sample sizes with the different values of ρ. It is clear that, with increasing sample size and the 

correlation coefficient, the power rates for all tests are increasing and converged to 1, which 

corresponds to the central limit theory. 

 

Table 3-Power rates on different test statistics with bivariate normal distribution,             and 

           

  n T WS WL JT JWS JWL 

0.0 

10 *0.1716 0.1375 *0.1680 *0.1766 0.2027 0.1303 

20 *0.3244 *0.2955 *0.3105 *0.3256 0.3889 *0.3007 

30 *0.4662 *0.4432 *0.4526 *0.4671 0.5308 *0.4284 

50 *0.6881 - *0.6665 *0.6882 - *0.6560 

100 *0.9399 - *0.9295 *0.9399 - *0.9279 

0.4 

10 *0.2567 0.2061 *0.2458 *0.2634 0.2901 0.1905 

20 *0.4953 *0.4581 *0.4748 *0.4973 0.5623 *0.4568 

30 *0.6769 *0.6513 *0.6580 *0.6777 0.7268 *0.6381 

50 *0.8873 - *0.8707 *0.8875 - *0.8638 

100 *0.9940 - *0.9923 *0.9940 - *0.9914 

0.8 

10 *0.6035 0.5305 *0.5835 *0.6130 0.6421 0.4811 

20 *0.9203 *0.9027 *0.9099 *0.9211 0.9374 0.8949 

30 *0.9857 *0.9805 *0.9819 *0.9859 0.9892 0.9796 

50 *0.9998 - *0.9998 *0.9998 - 0.9999 

100 *1.0000 - *1.0000 *1.0000 - 1.0000 

2. Contaminated bivariate normal distribution with equality of variances 

     To study the influence of departures from normality on four test statistics, the tests were applied on 

different paired samples generated form the contaminated bivariate normal distribution, represented 

by:                           and          . 
i) Type 1 Error Rates  

     Results of Type 1 error rates on different test statistics at 0.05 level of significance with 

contaminated data by outliers are summarized in Table-4 and show that: 

The T statistic is extremely sensitive (not robust) to the contaminated data when n  ≤ 30 with different 

values of ρ, which means that it is not robust against the departure from normality assumption. 

However, the JT-test improves the test robustness of the paired t-test but still not robust in all cases, 

except with n ≤ 20 when ρ=0, n ≤ 30 when ρ=0, 4, and n ≤ 50 when ρ=0, 8. In general, the most robust 

tests are WL with all cases followed by JWL for large sample sizes with all cases, except one case 

when n=10. 

 

Table 4-Type 1 error rates on different test statistics with contaminated bivariate normal distribution, 

            and            

  n T WS WL JT JWS JWL 

0.0 

10 0.0334 0.0384 *0.0503 0.0354 0.0641 0.0386 

20 0.0401 0.0429 *0.0470 0.0402 0.0760 *0.0534 

30 *0.0464 *0.0494 *0.0519 *0.0466 0.0788 *0.0504 

50 *0.0468 - *0.0500 *0.0468 - *0.0503 

100 *0.0481 - *0.0513 *0.0481 - *0.0515 

0.4 
10 0.0270 0.0377 *0.0506 0.0295 0.0670 0.0396 

20 0.0368 0.0443 *0.0490 0.0372 0.0760 *0.0527 
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30 0.0442 *0.0489 *0.0513 0.0443 0.0802 *0.0497 

50 *0.0460 - *0.0493 *0.0458 - *0.0497 

100 *0.0470 - *0.0504 *0.0470 - *0.0522 

0.8 

10 0.0154 0.0370 *0.0500 0.0163 0.0634 0.0384 

20 0.0267 *0.0446 *0.0491 0.0271 0.0754 *0.0512 

30 0.0384 *0.0484 *0.0512 0.0382 0.0797 *0.0507 

50 *0.0448 - *0.0516 *0.0447 - *0.0502 

100 *0.0458 - *0.0509 *0.0457 - *0.0511 

*: Type 1 error rate is within the Bradley’s liberal criterion (0.045-0.055). 

ii) Power rates 

The power rates for different tests applied on samples from a contaminated bivariate normal  

distribution are tabulated in Table-5. We observed the following important points: 

• In general, when n ≥ 20, JWL is more powerful test for all cases compared with the other tests,  

while WL is the best test when n=10. The JT-test achieved the best power rate when n ≥ 30, followed 

by the t-test, which means that it has a highest type I error. Finally, it is clear that all power rates of 

tests are increasing with the increase of sample size and ρ and they converge to each other. 

 

Table 5-Power rates on different test statistics with contaminated bivariate normal distribution, 

            and            

  n T WS WL JT JWS JWL 

0.0 

10 0.0882 0.0970 *0.1172 0.0925 0.1451 0.1089 

20 0.1487 0.1891 *0.1994 0.1501 0.2624 *0.2126 

30 *0.2036 *0.2876 *0.2952 *0.2049 0.3623 *0.2898 

50 *0.2850 - *0.4356 *0.2855 - *0.4509 

100 *0.4880 - *0.7499 *0.4882 - *0.7549 

0.4 

10 0.1058 0.1296 *0.1544 0.1134 0.1863 0.1501 

20 0.1861 0.2698 *0.2844 0.1880 0.3562 *0.3065 

30 0.2494 *0.4062 *0.4149 0.2506 0.4911 *0.4228 

50 *0.3456 - *0.6169 *0.3464 - *0.6345 

100 *0.5848 - *0.9068 *0.5853 - *0.9116 

0.8 

10 0.1622 0.2500 *0.2790 0.1747 0.3232 0.3279 

20 0.2622 *0.5515 *0.5693 0.2666 0.6498 *0.6225 

30 0.3340 *0.7553 *0.7636 0.3356 0.8265 *0.7903 

50 0.4543 - *0.9454 *0.4557 - *0.9532 

100 *0.7134 - *0.9991 *0.7140 - *0.9993 

 

3. Bivariate exponential distribution 

     In this case, the paired samples were drown from the bivariate exponential distribution, i.e. 

           and           in the case of estimating Type I error rate and                  and 

          in the case of estimating power rate for different tests.   

i) Type 1 error rates  

Table-6 shows the Type 1 error rates for each test, under the Bivariate exponential distribution 

assumption. 

We noticed that WL has the highest robustness in the different cases, because the Type I error rates are 

within Bradley’s liberal criterion (0.045-0.055), followed by JWL, except for one case when n=10. 

The type 1 error rates for the WS test lie outside the expectable range, except for one case when n=30 

for all values of ρ. It is clear that the T-test is insensitive to non-normality assumptions when the 

sample size n ≥ 30 with the different values of ρ. When the data violate the normality, the assumption 

revealed that the JWL was the most robust test for all sample sizes compared to other tests. 
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Table 6-Type 1 error rates on different test statistics with bivariate exponential distribution,    
         and           

  n T WS WL JT JWS JWL 

0.0 

10 0.0424 0.0370 *0.0473 0.0434 0.0643 0.0381 

20 0.0436 0.0428 *0.0480 0.0439 0.0762 *0.0475 

30 *0.0466 *0.0457 *0.0474 *0.0467 0.0745 *0.0472 

50 *0.0526 - *0.0502 *0.0527 - *0.0504 

100 *0.0452 - *0.0465 *0.0453 - *0.0470 

0.4 

10 0.0399 0.0364 *0.0497 0.0420 0.0648 0.0396 

20 0.0430 0.0407 *0.0451 0.0432 0.0753 *0.0466 

30 *0.0490 *0.0506 *0.0524 *0.0490 0.0788 *0.0521 

50 *0.0492 - *0.0484 *0.0494 - *0.0476 

100 *0.0500 - *0.0500 *0.0500 - *0.0516 

0.8 

10 0.0419 0.0386 *0.0490 0.0431 0.0642 0.0402 

20 *0.0458 0.0438 *0.0481 *0.0461 0.0760 *0.0509 

30 *0.0485 *0.0456 *0.0479 *0.0485 0.0770 *0.0457 

50 *0.0453 - *0.0482 *0.0454 - *0.0480 

100 *0.0462 - *0.0467 *0.0462 - *0.0491 

*: Type 1 error rate is within the Bradley’s liberal criterion (0.045-0.055). 

Power rates  

     The results of the simulation study of the power rates are summarized in the Table-7. 

Generally, it can be seen that the power rates of bivariate exponential distribution and bivariate normal 

distribution are higher than that of the contaminated bivariate normal distribution. The power rates for 

all tests are increasing with the increasing sample size and correlation coefficient; the value may 

approach 1 when n=50,100 and ρ = 0.8. It can be seen that WL, when ρ=0 and n = 10, 20, has the 

higher power rates compared to other tests. 

 

Table 7-Power rates on different test statistics with bivariate exponential distribution, 

             and          

  n T WS WL JT JWS JWL 

0.0 

10 0.1529 0.1406 *0.1711 0.1577 0.2080 0.1427 

20 0.2623 0.2947 *0.3074 0.2640 0.3798 *0.3026 

30 *0.3476 *0.4305 *0.4385 *0.3488 0.5186 *0.4199 

50 *0.5162 - *0.6469 *0.5167 - *0.6391 

100 *0.8116 - *0.9177 *0.8119 - *0.9155 

0.4 

10 0.1328 0.1242 *0.1511 0.1363 0.1855 0.1192 

20 0.3113 0.2856 *0.2986 0.3120 0.3718 *0.2829 

30 *0.4582 *0.4121 *0.4205 *0.4587 0.5068 *0.3994 

50 *0.7072 - *0.6466 *0.7079 - *0.6374 

100 *0.9513 - *0.9151 *0.9513 - *0.9161 

0.8 

10 0.3125 0.3045 *0.3519 0.3187 0.4053 0.2740 

20 *0.6913 0.6524 *0.6671 *0.6923 0.7415 *0.6438 

30 *0.8850 *0.8418 *0.8482 *0.8853 0.8917 *0.8305 

50 *0.9877 - *0.9764 *0.9877 - *0.9746 

100 *1.0000 - *0.9999 *1.0000 - 0.9999 

8. Conclusions 
     The Monte-Carlo simulation was employed to study the behavior of different test statistics that are 

used for comparing the equality of the means of two paired populations. Based on the Type one error 

and the power of the test, it is shown that: 

 The presence of outliers leads to a decrease of the Type I error for the paired t-test statistics. 
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 The power rates for all the tests are increasing with the increase of sample size and the correlation 

coefficient. 

 Generally, all Type I error rates and the power of the tests are convergent to each other with the 

increasing of sample sizes. 

 In case of the existence of outliers, the jackknifing of the Wilcoxon signed rank test for large 

sample sizes is the most powerful compared to the others when n      , while the Wilcoxon signed 

rank test for large sample sizes is the best compared to the others when n = 10.  

 When the paired data follow the exponential distribution, the Wilcoxon signed rank test for large 

sample sizes is the most powerful compared to the others when     with all sample sizes, in 

addition to the case of         with different values of  . The jackknifing paired t-test is the best 

compared with other tests when n       and    . 
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