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Abstract

In the year 2018, the concept of St-Polyform modules was introduced and
studied by Ahmed, where a module M is called St-Polyform, if for every submodule
N of M and for any homomorphism f:N—M, kerf is St-closed submodule in N.
The novelty of this paper is that it dualizes this class of modules to a form that we
denote as CSt-Polyform modules. Accordingly, some results that appeared in the
original paper are dualized. For example, we prove that in the class of hollow
modules, every CSt-Polyform module is Coquasi-Dedekind. In addition, several
important properties of CSt-Polyform module are established, while further
characterization of CSt-Polyform is provided. Moreover, many relationships of CSt-
Polyform modules with other related concepts are considered, such as the
copolyform, epiform, CSt-semisimple, x-nonsingular modules, while some others
will be introduced, such as the non-CSt-singular and G. Coquasi-Dedekind modules.

Keywords: St-Polyform modules, CSt-Polyform modules, P-small submodules, St-
closed submodules, CSt-closed submodules.
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1. Introduction
Throughout this paper, all rings are commutative with non-zero identity elements and all
modules are unitary left R-modules. The aim of this paper is to dualize the concept of St-
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Polyform modules which was first studied by Ahmed [1]. For the sake of completeness, we
begin with some definitions and notations that will be followed in this paper. A non-zero
submodule N of M is called essential (semi-essential) if N nP=(0) for each non-zero
submodule (prime submodule) P of M [2, 3]. A submodule P of M is called prime, if
whenever rmeP for reR and meM, then either meP or re(P:M). A submodule N of M is
called closed, if N has no proper essential extensions inside M [2, P.18]. The concept of St-
closed submodules is stronger than that of closed submodules, where a submodule N of M is
said to be St-closed (simply N<g;. M), if N has no proper semi-essential extensions inside M
[4]. A submodule N of M is called small in M (denoted by L<«M), if for every proper
submodule K of M, N+K # M [2, P.20]. A submodule W is called coessential of N in M

(denoted by W<..N in M), if Whenever%« y—vthen N=W [5, P.20]. Hadi and lbrahiem

introduced P-small submodules as an extension to the concept of small submodules, where a
proper submodule N of an R-module M is called P-small (simply N«pM), if N+P£M for
every prime submodule P of M [6]. A generalization of coessential submodules appeared in

another study [7], where a submodule L is called cosemi-essential of N in M, if% <p % A

submodule N is called coclosed in M (simply N<..M), if N has no proper coessential
submodule in M [8]. Ahmed introduced the concept of CSt-closed submodule which is
stronger than coclosed submodules, where a submodule N is called CSt-closed (simply

N<,s: M), if N has no proper cosemi-essential extensions inside M, that is; if% <p %, then

N=A for all submodules A of M contained in N [7]. An R-module M is called St-Polyform , if
for every submodule N of M and for any homomorphism f:N— M, kerf is St-closed
submodule in N. Equivalently, M is an St-Polyform if for every non-zero submodule N of M
and for each non-zero homomorphism f:N—M, kerf is not semi-essential submodule of N
[1].

In this paper, the authors introduce and study the duality of St-Polyform modules, named
here as CSt-Polyform modules. In Section 2, some remarks and supporting examples are
given, which reflect the main properties of CSt-Polyform modules. Other characteristics of
CSt-Polyform modules are established see Theorem (2.10). The conditions under which CSt-
Polyform and copolyform can be equivalent are studied; see the results (2.5) and (2.7).
Several results about St-Polyform modules have corresponding duals for CSt-Polyform
modules; see Propositions (3.4), (3.10) and (3.17). In addition, we determine a commutative
ring having a faithful CSt-Polyform module, see Proposition (2.8). Moreover, the
relationships of CSt-Polyform module with other related concepts are considered; see the
results (3.2), (3.4), (3.8), (3.10), (3.15), (3.16), (3.21) and (3.23).

2. CSt-Polyform Modules

In this section, we dualize the class of St-Polyform and call it CSt-Polyform module.
Definition (2.1): An R-module M is called CSt-Polyform, if for each proper submodule N of
M and for all homomorphism f:M—M/N, f(M) is CSt-closed submodule in M/N. A ring R is
said to be CSt-Polyform if R is CSt-Polyform R-module.

In the following, we give some examples and remarks. Before that, a submodule N of an
R-module M is called corational, if Homg(M,N/K)=0 for all submodule K of N, and an R-
module M is called copolyform, if every small submodule of M is corational [9].

Examples and Remarks (2.2)

1. Every CSt-Polyform module is copolyform, since every CSt-closed submodule is coclosed
[7]; hence, the result follows directly from the definition of CSt-Polyform  module.

2. The converse of (1) is not true in general; for example, the Z-module Z is copolyform. In
fact, the only small submodule of Z is (0), which is corational in Z. On the other hand, Z is
not CSt-Polyform. To show that, consider the submodule (4) of Z. Let f: Z—Z/(4) be a
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homomorphism. Note that Z/(4) = Z, and Homg(Z,Z4)=0. On the other hand, (0) £¢s: Z4 [7],
thus Z is not CSt-Polyform.

3. Every simple module is CSt-Polyform module. In fact, the only proper submodule of any
module M is (0), so for all non-zero homomorphism f:M— M/(0), f(M) is either zero, which
is a contradiction, or M. Since M is not P-small submodule of itself, therefore M is CSt-
Polyform.

4. For each prime number P, Z2 is not CSt-Polyform Z-module, since it is not copolyform,
such as Za, Zg, Zys, Zag. In fact, pZp2is a small submodule of Z,z but not corational in Zpz,
since Homz (Zpz,pZpz /(0))=0.

5. Zgis a CSt-Polyform Z-module; see Example (3.5).

6. Z4 is not CSt-Polyform Z-module, since Z, is not copolyform, so by (2.2)(1), Z4 is not
CSt-Polyform.

Remark (2.3): If a submodule N of M is CSt-Polyform module, and N is essential submodule
of M, then M is not necessarily CSt-Polyform; for example, suppose that M=Z,z and N=
pZpz. Note that pZpz is CSt-Polyform Z-module, because pZpz is simple for each prime
number p, see Remark (2.2)(3). On the other hand, N is essential in Zpz, but Z,zis not CSt-
Polyform Z-module.

Now, we provide conditions under which the converse of Remark (2.2)(1), will be
satisfied. Before that, a module M is called almost finitely generated, if M is not finitely
generated and every proper submodule of M is finitely generated [6].

Lemma (2.4): Let M be an almost finitely generated module and N < M, then:

1. NisaP-small submodule of M if and only if N is small.,

2. N< s Mifandonlyif N<. M.

Proof:

1. See [6].

2. The result follows directly by (1).

Proposition (2.5): Let M be an almost finitely generated R-module. M is a CSt-Polyform
module if and only if M is copolyform.

Proof: The necessity is fulfilled by just Remark (2.2)(1). For sufficiency, suppose that M is
an almost finitely generated module. Let N<M and f: M—M/N be a homomorphism. Since M
is copolyform, then f(M) <.. M/N. By using Lemma (2.4)(2), f(M) <.s; M/N. Hence, M is
CSt-Polyform  module.

Example (2.6): Zp is copolyform module [10]. Also, it is almost finitely generated. Hence,
by Proposition (2.5), Zp« is a CSt-Polyform  module.

Following [11], an R-module M is called multiplication, if for each submodule N of M,
there exists an ideal | if R such that N=IM.

Proposition (2.7): In the class of multiplication (or finitely generated or almost finitely
generated modules), CSt-Polyform coincides with the class of copolyform modules.
Proof: The difference between CSt-Polyform and copolyform concepts are depend on the
difference between CSt-closed and coclosed submodules. Beside that the last two classes are
coincide under multiplication, finitely generated, and almost finitely generated conditions as
we can see in [7] and Lemma (2.4)(2). For that reason CSt-Polyform and copolyform modules
are coincide under the same conditions.

Recall that a ring R is called semiprime, if for each element reR, whenever r’=0, then r=0
[2, P.2]. The CSt-Polyform R-module can be used as a useful condition in the following
proposition.
Proposition (2.8): If a commutative ring R has a faithful CSt-Polyform R-module, then R is
semiprime ring.
Proof: Suppose that R is a commutative ring that has a faithful CSt-Polyform module, say M.
For each non-zero element xeR, define f,;: M—M by f(m)=xm YmeM. We can easily show
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that f,2 (M)cfx(M) We claim that f,(M)/f,2(M) &y M/£E(M). In fact, assume that f,(M)/
% (M)+N/fX (M)=M/f,2 (M) where N is a submodule of M containing f,>(M). That is,
(XMIEM)+ (N/X*M)=(M/x*M), which implies that xM+N=M. We should prove that xMcN;
let xtexM and te M. Since xM+N=M, then t=xy+n, where yeM and neN. By multiplying the
two sides by x, we get xt=x?y+xn. But X*McN, therefore x?yeN, also xneN, thus xteN, that
is XMcN, hence f(M)/fi’(M)<, M/f,Z(M). Since M is CSt-Polyform, then f,(M)= f,°(M), that
is xM=x*M for all non-zero xeR. To prove that R is semiprime, let reR with r*=0. Note that
rPM=rM=0. This implies that reannz M, but M is faithful, thus r=0. This completes the proof.
The following theorem gives another characterization of CSt-Polyform module. Before
that, we need to give the following lemma.
Lemma (2.9): If a submodule N of an R-module M is P-small and CSt-closed, then N=(0).
Proof: Since N<p M, then N/(0) «<p M/(0). But N <¢s: M, hence N=(0).
Theorem (2.10): An R-module M is CSt-Polyform if and only if, for each proper submodule
N of M and for all non-zero homomorphism f: M— M/N, f(M) is not P-small submodule of
M/N.
Proof: Let M be a CSt-Polyform module, and assume that there exists a proper submodule N
of M and a non-zero homomorphism f: N—M/N with f(M) is P-small submodule of M. By
assumption f(M) <cs¢ M/N, hence f(M)=(0), by Lemma (2.9), i.e. f=0. But this is a
contradiction, thus f(M) is not P-small submodule of M. Conversely, suppose that there exists
a submodule K of M and a non-zero homomorphism f:M—M/N such that f(M) is not CSt-
closed in M/K. Put f(M) = K/N, where K is a submodule of M, such that N< K < M. Since

f(M) is not CSt-closed in M/K, so there exists a proper submodule L/K of N/K such that IZ/LII:
<p M//K. By the 3 isomorphism theorem, N/L «p M/L. Define a homomorphism g:
M/K—M/L by g(m+K)=m+L ¥meM. Clearly, g is an epimorphism. Now, (gof)(M) =
g(f(M)) = g(N/K) =N/L. But N/L «p M/L, so we get a contradiction with our assumption,
thus f(M) < cs:M/K, hence the result follows.
By using Theorem (2.10), we can prove the following.
Proposition (2.11): If an R-module M is CSt-Polyform module, then M/N is CSt-Polyform
module for every proper submodule N of M.
M/N .

Proof: Let N and L be submodules of M such that N = L &= M. Assume that f: M/N — 7 is

a non-zero homomorphism with L/N = M/N. We have to show that f(M/N) is not P-small
submodule of // Consider the following sequence of functions:

Mammememm
where 1 is the natural epimorphism and g is the usual isomorphism. Since M is CSt-
Polyform, so by Theorem (2.10), (gofom)(M) is not P-small submodule of M/L. This implies

that (gof)(M/N) is not P-small submodule of hence f(M) is not P-small submodule of

Al . By Theorem (2.10), M/N is CSt-Polyform module

L/N’

The following result can be concluding from Proposition (2.11). Also, it can be proved
as follows, before that we need to give the following lemma.
Lemma (2.12): Let L and N be submodules of an R-module M such that L =N = M. If
L<p N, then L&p M.
Proof: Suppose that there exists a prime submodule P of M with L+P=M. Note that by
assumption, P is a prime submodule of N. According to [12, Prop.(1.7), P.11], PNN is prime
in N. Now, N=MnN=(L+P)nN=L+(PNN). But this is a contradiction since L<p N, therefore
L<p M.
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Corollary (2.13): Every direct summand of CSt-Polyform module is CSt-Polyform.
Proof: Let M be a CSt-Polyform module and N be a direct summand of M. Let f: N—>N/K be
a homomorphism, K=N. Now, consider the following:

M AN L Nk S MK
where p: M— N is a projection homomorphism and i: N/K— M/K is the inclusion
homomorphism. Since M is CSt-Polyform , then by Theorem (2.10), (iofop)(M) is not P-
small submodule of M/K. That is, (iofop)(M) = (iof)(N) = f(N) is not P-small submodule of
N/K. By Lemma (2.12), f(N) is not P-small submodule of M/K. Thus, N is CSt-Polyform
module.
3. CSt-Polyform modules and other related concepts

This section deals with the relationships of CSt-Polyform modules with other related
concepts, such as epiform, CSt-semisimple, non-CSt-singular, x -non-CSt-singular, and
Coquasi-Dedekind modules.

Following [10], a non-zero module M is called epiform, if each non-zero homomorphism
f: M—M/N with N is a proper submodule of M, which is an epimorphism. For example, the
Z-module Zp is epiform [10].
Remark (3.1): It is clear that every epiform module is CSt-Polyform. In fact, f(M)= M/N in
the definition of epiform, which is CSt-closed in itself [7], so it is a CSt-Polyform module.
The converse is not true in general; for example, Zs is CSt-Polyform Z-module, as we showed
in Example (2.2)(5), but not epiform [10].

Under certain conditions, CSt-Polyform module can be epiform; before that, an R-module

M is called prime hollow (simply P, -hollow) if each proper prime submodule of M is small
[13].
Theorem (3.2): Let M be a P, -hollow module. M is a CSt-Polyform module if and only if M
is epiform.
Proof: Assume that M is CSt-Polyform and let f: M—M/N be a non-zero homomorphism
with a proper submodule N of M. Assume that f(M)=M/N. Since M is a CSt-Polyform, then
f(M) is not P-small submodule of M/N. On the other hand, M is P,—hollow, implies M/N is a
P—hollow module [13]. This implies that f(M) is P-small submodule of M/N. But this is a
contradiction, thus f(M)=M/N and, consequently, M is an epiform module. The converse is
clear.
Note that Theorem (3.2) represents an analogue of that appeared in [10] for copolyform
modules.
Recall that a module M is called CSt-semisimple, if every submodule of M is CSt-closed [7].
Before giving the next result, we need the following.
Lemma (3.3): Any factor of a CSt-semisimple module is CSt-semisimple.

Proof: Let M be an R-module and K < L < M with L/IK < M/K. Assume that;/% is P-small

submodule of Z—;’; By the 3™ isomorphism theorem, L/N «p M/N. Since M is CSt-

semisimple, then N <¢g; L in M. This implies that L=N, hence L/K = N/K, and the proof is
complete.

The following result is a dual of that for copolyform modules which appeared in [1, Rem
(33)].

Proposition (3.4): Every CSt-semisimple is CSt-Polyform module.

Proof: The result follows by the definition of CSt-semisimple and Lemma (3.3).

Example (3.5): It is clear that Zg is CSt-semisimple. Since every submodule of Zg is St-colsed
in Zg, thus Zg is CSt-Polyform

Note: We conclude the following implications:

CSt-semisimple module = CSt-Polyform module = Copolyform module
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Following [14], a module M is called noncosingular, if for any non-zero module N and for
every non-zero homomorphism f: M—N, Im (f) is not small submodule of N.
As a stronger of a noncosingular concept, we introduce the following.
Definition (3.6): An R-module M is called non-CSt-singular, if for any non-zero module N
and for every non-zero homomorphism f: M—N, Im (f) is not P-small submodule of N.
Compare the following proposition with [10, Prop.(2.5)].
Proposition (3.7): If M is a P,-hollow and non-CSt-singular module, then M is epiform.
Proof: Let f: M—M/N be a non-zero homomorphism with a proper submodule N of M. Since
M is a non-CSt-singular, then f(M) is not P-small submodule of M/N. Also, by
[6,Rem.(3.2)(6)], M/N is a P, —hollow module. Thus, f(M) = M/N, that is M is an epiform
module.
Proposition (3.8): Every non-CSt-singular module is CSt-Polyform module.
Proof: Let M be a non-CSt-singular module and f:M—M/N be a non-zero homomorphism,
where N is a proper submodule of M. If M=(0), then there is nothing to prove. Otherwise,
clearly, M/N is non-zero module. Since M is non-CSt-singular, then f(M) is not P-small
submodule of M/N. By Theorem (2.10), the result follows.
In [1], the author introduced the concept of x-non St-singular module, where M is called k-
non St-singular, if for any non-zero homomorphism fe Endg (M), ker f <., M.
Dually, we have the following.
Definition (3.9): An R-module M is called k -non-CSt-singular, if for any non-zero
endomorphism f of M, Im f is not P-small submodule of M.
It is clear that every non-CSt-singular module is k-non-CSt-singular.
The following proposition represents a dual of that which is appeared in [1, Prop. (40)].
Proposition (3.10): Every CSt-Polyform module is x-non-CSt-singular.
Proof: Let M be a CSt-Polyform and f: M—M/N with proper submodule N. By assumption,
f(M) is not P-small submodule of M. Put N=(0), then we obtain that f: M—M and f(M) not P-
small submodule of M. That is M is k-non-CSt-singular.
Note (3.11): We can summarize the relations mentioned in the previous results and argument
by the following implications; before that, a module M is called t-noncosingular, if for every
non-zero module N and every non-zero homomorphism f: M—N, Im f is not small submodule
in N [15]. It is clear that every noncosingular module is T-noncosingular.
non-CSt-singular = k-non-CSt-singular = noncosingular = t-noncosingular
non-CSt-singular = CSt-Polyform = non-CSt-singular = Copolyform
CSt-Polyform = k-non-CSt-singular = noncosingular = t-noncosingular

Following [16]; An R-module M is called fully prime module, if every proper submodule
of M is prime. The following theorem gives some relations of CSt-Polyform with other
modules under the class of fully prime modules. Before that, we need the following lemma.
Lemma (3.12): If M is fully prime module, and N<M, then:
1. N&M if and only if N, M.
2. N<.. M ifandonly if N<.5:M.
Proof
1. The necessity follows by [7]. For the converse, let N be a submodule of M such that
N+L=M, where L< M. If L is a proper submodule of M, then by assumption, L is prime. This
implies that N is not P-small submodule, but this is a contradiction, thus N=L, hence N<.. M.
2. The necessity is clear. Conversely, suppose that N <.g; M and let L<N with N/L<« M/L.
Since M is fully prime, then by (1), N/L<,, M/L. By assumption, N=L, that is N<.. M.
Theorem (3.13): Let M be a fully prime R-module, then M is a k-non-CSt-singular module if
and only if M is a T-noncosingular module.
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Proof: Assume that M is a k-non-CSt-singular module and let f be a non-zero endomorphism
of M, then f(M) is not P-small submodule of M. Since M is fully prime, so by Proposition
(3.12)(2), f(M) is not small submodule of M, thus M is T-noncosingular module. The proof of
the sufficiency follows by the direct implication between small and P-small.

Remark (3.14): Note that Theorem (3.13) is also satisfied when the class of "fully prime
module™ is replaced by finitely generated (or almost finitely generated or multiplication)
module. In fact, the proof has a similar argument both by using [6, Prop.(1.4)] and Lemma
(2.4).

Theorem (3.15): Let M be a finitely generated (or multiplication of almost finitely generated)
module. Consider the following statements:

1. M is a copolyform module.

2. M is a CSt-Polyform module.

3. M is a k-non-CSt-singular module.

4. M is a t-noncosingular module.

Then (1) & (2) =(3) & (4).

Proof:

(1) & (2): It is as the proof of Proposition (2.5).

(2) = (3): It is as the proof of Proposition (3.10).

(3) & (4): Itis as the proof of Remark (3.14).

An R-module M is called Noetherian, if every submodule of M is finitely generated [2].
Corollary (3.16): Let M be a Noetherian module. Consider the following statements:

1. M is a copolyform module.

2. M is a CSt-Polyform module.

3. M is a k-non-CSt-singular module.

4. M is a T-noncosingular module.

Then (1) & (2) =) & (4).

Proof: In the Noetherian module, every submodule is finitely generated; in particular, M is
finitely generated of itself, so as a similar proof of Theorem (3.15), the result follows.

Recall that an R-module M is called Coquasi-Dedekind, if for every proper submodule N of
M, Homg(M,N)=0. Equivalently, M is Coquasi-Dedekind if every non-zero endomorphism of
M is epimorphism [17]. We think that there is no direct implication between CSt-Polyform
and Coquasi-Dedekind modules; in fact, we cannot prove that. However, under certain
conditions, we could do that as the following proposition shows.

Proposition (3.17): In the class of hollow modules, every CSt-Polyform module is Coquasi-
Dedekind.

Proof: Suppose that M is a hollow CSt-Polyform module and fe Endg(M), f#0. Let N be a
proper submodule of M. Consider the following:

ML MEMIN

where 7t is the natural epimorphism. Note that o f=0. If it is not epimorphism, it follows that,
since M is CSt-Polyform, then (it °f)(M) is not P-small submodule of M/N. This implies that
(m°f)(M) is not P-small submodule of M [6, Prop.(1.3)]. Hence, (rof)(M) is not small
submodule of M. But this is a contradiction, since M is hollow, therefore f is epimorphism.
That is, M is Coquasi-Dedekind.

Example (3.18): Zg is CSt-Polyform Z-module, see Example (2.2)(5). However, it is not
Coquasi-Dedekind [16, Cor. (2.3.6)]. It is natural to realize that, since Zg is not hollow.

In the following, we introduce a generalization of the Coquasi-Dedekind module.
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Definition (3.19): A non-zero module M is called generalized Coquasi-Dedekind (simply G.
Coquasi-Dedekind), if every non-zero endomorphism of M is not P-small submodule of M.
i.e. V feEndg (M), f£0, f(M) is not P-small submodule of M.

Remark (3.20): It is clear that every Coquasi-Dedekind module is G. Coquasi-Dedekind.
Since if M is Coquasi-Dedekind, then every non-zero endomorphism is epimorphism, this
means that f(M) is not P-small submodule of M, thus M is G. Coquasi-Dedekind. The
converse is not true in general; for example: Zg is G. Coquasi-Dedekind, since every
endomorphism of Zg is not P-small submodule of Zs. On the other hand, Zg is not Coquasi-
Dedekind [16, Cor. (2.3.6)].

Proposition (3.21): Every CSt-Polyform module is G. Coquasi-Dedekind.

Proof: Let M be a CSt-module and f: M — M is a non-zero endomorphism. Since M is CSt-
Polyform and M = M/(0), then f(M) is not P-small submodule of M/(0), hence M is G.
Coquasi-Dedekind.

Remark (3.22): The converse of Proposition (3.21) is not true in general; for example, the Z-
module Z is G. Coquasi-Dedekind. In fact, every non-zero endomorphism of Z is not P-small
submodule of M, while Z is not CSt-Polyform, see Example (2.2)(2).

In the following theorem, we use a condition under which the converse of Proposition
(3.21) is true. Before that, an R-module M is called quasi-projective, if for every submodule
N of M and any homomorphism f:M—M/N, it can be lifted to a homomorphism g:M—M [5,
P.29].

Theorem (3.23): Let M be a quasi-projective module, then M is CSt-Polyform if and only if
M is a G. Coquasi-Dedekind module.
Proof: The proof of the necessity of this theorem is provided by Proposition (3.21). For the
sufficiency, Let N be a proper submodule of M and f: M — M/N, f£0. Consider the following
diagram:

M

h

-
»

M T M/N

where 7 is the natural epimorphism. Since M is quasi projective, then there exists geEnd(M)
such that rog=f. But M is G. Coquasi-Dedekind, then g(M) is not P-small submodule of M.
This implies that (rog)(M) is not P-small submodule of M/N [6, Prop.(1.3)]. But mog-=f,
therefore f(M) is not P-small submodule of M/N, thus M is CSt-Polyform.
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