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Abstract 
     In this paper, a new hybridization of supervised principal component analysis 

(SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-

SPCA, for real large datasets that have a small number of samples in high dimensional 

space. SGD-SPCA is proposed to become an important tool that can be used to diagnose 

and treat cancer accurately. When we have large datasets that require many parameters, 

SGD-SPCA is an excellent method, and it can easily update the parameters when a new 

observation shows up. Two cancer datasets are used, the first is for Leukemia and the 

second is for small round blue cell tumors. Also, simulation datasets are used to compare 

principal component analysis (PCA), SPCA, and SGD-SPCA. The results show that 

SGD-SPCA is more efficient than other existing methods. 

 

Keywords: classification, cancer diagnostic, Hilbert-Schmid, stochastic gradient 

descent, principal component analysis. 

 

 تحدين طريقة تحليل العنصر الرئيدي لتصنيف الدرطان
 

 2، منذر عبد الله خليل1بيداء عطية خلف ،1*غدير جاسم محمد مهدي
 جامعة بغجاد، العخاق ،ابن الهيثم ،كمية التخبية لمعمهم الرخفة  ،قدم الخياضيات 1

جامعة تكخيت، العخاق ،جامعة تكخيت  ،قدم الخياضيات  2 
 الخلاصة:

وتقنيات الانحجار  (SPCA) هحا البحث، تم اقتخاح طخيقة ججيج لتحميل المكهن الخئيدي الخاضع للإشخاففي      
لمجمهعات البيانات الكبيخة الحقيقية التي تحتهي عمى عجد صغيخ من العينات في   SGD-SPCA العذهائي يدمى

أداة مهمة يمكن استخجامها لتذخيص وعلاج الدخطان بجقة. عنجما   SGD-SPCA مداحة عالية الأبعاد. تربح
هي طخيقة رائعة، ويمكنها  SGD-SPCA يكهن لجينا مجمهعات بيانات كبيخة تتطمب العجيج من المعممات، فإن

الأول  بدههلة تحجيث المعممات عنج اضافة عينات ججيجة. تم استخجام مجمهعتين من بيانات لمدخطان: النهع
ا الجم والنهع الثاني أورام الخلايا الدرقاء الرغيخة المدتجيخة. بالإضافة إلى ذلك، تُدتخجم مجمهعات بيانات لهكيمي

-SGD . تظهخ النتائج أن(SGD-SPCA) و SPCA و (PCA) المحاكاة لمقارنة تحميل المكهنات الخئيدية
SPCA أكثخ كفاءة من الطخق الأخخى المهجهدة. 
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1. Introduction 

     Cancer classification is one of the main research areas in the biostatistics field. Usually, cancer datasets 

have a small number of samples and high dimensions. Most variables (genes) are not related to cancer 

classification, so dimension reduction and variable selection are required. The fundamental problems of 

cancer diagnosis and treatment can be explained using gene expression data. Accurate prediction of cancer 

type has a great appreciation in providing a better treatment on patients [1]. Morphological and clinical-

based methods were always used for classification, but the diagnostic ability for these methods was 

reported to have many limitations/constraints [2]. 

     Many statistical classification methods have been applied to cancer classification, but not all of them 

are efficient methods. Some of them have limited diagnostic abilities [3]. Due to some points, cancer 

classification methods are non-trivial tasks. Firstly, the gene expression data has a very high 

dimensionality, and it usually contains thousands of genes. The second point is that the data size is small, 

where some sets have less than one hundred genes. In the third point, most genes are insignificant to 

characterizing cancer. The statistical methods that have been used previously are not designed to deal 

efficiently with this kind of datasets [4]. In the area of statistics and machine learning, classification 

problems have been broadly studied. In the past, many classification algorithms had been proposed, such 

as Naïve Bayes [5], linear decrement analysis [6], neural network [7], Decision Tree [8], support vector 

machine [9], k-nearest neighbor [10], etc. For most of these algorithms, the authors did not pay more 

attention to the time, and they were only concerned with classification accuracy. In reality, due to high 

dimensionality, many classification methods are computationally expensive and not accurate [11]. 

Depending on the dataset structure, an appropriate classification method can be implemented. For 

example, the number of individuals, variables, and the type of data; i.e., whether variables are quantitative 

or qualitative [12]. This work deals with quantitative variables where the number of variables is much 

larger than the number of individuals; hence the PCA is a suitable analysis method for dimensionality 

reduction. 

     In this work, a modified SPCA is presented by using stochastic gradient descent techniques for cancer 

classification. It is applied to two different types of cancer datasets which are small round blue cell tumors 

[13] and leukemia [14] datasets. 

The paper is organized as follows. In sections 2 and 3, PCA and SPCA are explained, respectively. The 

process of using different kernels SPCA is discussed in section 4. Section 5 introduces the enhanced 

SPCA using Stochastic Gradient Descent. Simulation studies and experimental results are given in 

sections 6 and 7, respectively. In section 8, the discriminatory selection feature is discussed. Section 9 

presents the discussion of the results. 

All computations conducted for this article are run in R on a single processor, without any distributed 

computing. 

2. Principal Component Analysis 

    Let   *(     )+   
  be a set of data points with dimensionality      

  and      , and small size  ; 

   . We define the input data points as   ,       -   
    and the observations (labels) as 

  ,       -   
     PCA is a method for transforming the data from high dimensional space,  , to 

low dimensional space, k, where    . In other words, PCA searches out to replace the set of   input 

variables,           , which are unordered and correlated variables (original data space), by a group of 

  linear projections,           , which are ordered and uncorrelated (component space). 

The new variables,           , that form a new coordinate system are called principal components 

(PCs). Usually, there are at most   PCs because they are orthogonal linear transformations of the original 

variables. Still, not all the   PCs have used a subset of   PCs. To approximate the space spanned by the 

actual data points   ,          -
 , a set of   PCs, *          +, are chosen, based on the percentage 

of the variance of the actual data.    is called the first PCs and has the highest variance in the data, and 

hence it is the most significant PCs.    is called the second PCs and has the second-highest variance in the 

data, and so on until    that has the minimum variance in the data [11]. 
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A matrix         can be constructed using a set of principals           , so an observation   can be 

projected onto the column space of   ,          -. The projection of   onto   can be seen as a linear 

system of equations, i.e., 

 ̂     (1) 

where  ̂     and      are unknown parameters. Eq.1 is a linear system, and it has an exact solution, 

    ̂, if   lies in the column space of   (   ( )), or     *          +. Otherwise, there is no 

solution for Eq.1, then it should be solved for projection onto    ( ) or     *          +, and then its 

reconstruction. Let us define the difference between   and  ̂ to be the residual (     ̂). The value of 

  needs to be small, which can be gained when   is orthogonal to    ( ). Hence, 

        ̂                 (    )    
Therefore, 

  (   )           (2) 

Since   is a set of orthonormal vectors, then        and      , so form Eq.1 and 2: 

 ̂   (   )           (3) 

For   projected data points, * ̂+   
 : 

∑‖ ̂ ‖ 
  ∑ ̂  ̂ 

 

 

   

 ∑      
  

 

   

 

 

   

  ∑    
 

 

   

       
(4) 

     where       is a covariance matrix and      is the variance of the projected data points onto the 

PCA subspace. Our goal is to find a projection direction   that maximizes the variance of projection 

(squared length of reconstruction), i.e., 

                                (5) 

Using the Lagrange multiplier conversion, it follows that: 

 (   )        (      ) 
where   is constant. By taking the derivative and setting it to be equal to zero, we get          ; 

Consequently,      , where   is the eigenvalue of the sample covariance matrix   and   is the 

corresponding eigenvector. i.e.,                 , where      . As a result, the total data 

variance can be composed by ∑    (  )  ∑         ( )
 
   

 
   . 

   (  ) is maximized if    is the maximum eigenvalue of  , and the first principal component is the 

corresponding eigenvector. In general,            such that    (  )     (  )    

   (  )  The ratio   
 (   )     

       
 is a goodness-of-fit that measures how            represent the   

original variables lower-dimensional space.   should be small, and a large proportion of the total variation 

in   is explained by the first principal component [7]. 

3. Supervised Principal Component Analysis  

     As stated in the discussion in the previous section, PCA finds the direction of maximum variation of  -

dimensional space; this can be used as a reduction and pre-processing operation for classification. PCA is 

an unsupervised classifier, unlike Fisher Discernment Analysis (FDA) [7]; however, SPCA is a 

generalized method of PCA. SPCA has some advantages over FDA, and it can use label information for 

classification tasks. The sequence of principle components that have the maximum dependency on the 

response variable can be estimated using the SPCA [3]. 

     Suppose that *     +   
 , where     

      
 .    is not restricted to binary classes, therefore it is not 

required that    has only discrete values, and hence the model can be used for regression as well. In 

regular PCA, a lower-dimensional subspace       has been looked at, where matrix   is the covariate 

matrix and   is an orthogonal projection matrix. However, in SPCA, the projection matrix   should be 

determined where  ( | )   ( |   ), which means a subspace that contains approximately the same 

information as the original. Between the original covariate   and    the predictive information must exist. 

If   and   are entirely independent, the regression or classification could not be processed. 
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     Using      
    √  

   , the steps of SPCA can be achieved as follows; first, the standard regression 

coefficients for each   can be computed. Then, corresponding to all the columns, the data matrix    is 

reduced where |  |   , and   can be found by cross-validation [3]. Now, for the reduced data matrix,   , 

compute the first principal component which can be used in a regression model or a classification 

algorithm to produce the outcome. SPCA is consistent, unlike standard PCA; PCA takes different 

directions for the component as the number of data points increases [15]. The modified SPCA can be 

derived using the Hilbert-Schmidt independence criterion that is discussed below. 

3.1. Kernel Supervised PCA 

     The linear projection for PCA might not be completely effective when the data points exist in nonlinear 

space. Two options are applied to handle this problem. First, PCA should be changed to be a nonlinear 

method. Second, the data points should be changed to fall on a linear or close to linear subspace. The 

second solution can be achieved by mapping the data points to space with higher dimensionality, hoping 

that it falls on a linear manifold. 

To find a linear transformation   such that     has maximum dependence of     a linear kernel on     

and a kernel over   (call it  ) can be made. We attempt to find   that maximizes 
 

(   ) 
  (    )  

 

(   ) 
  (         ) which is objective to       ( 

        ). It implies that 

      ( 
        ) adds a constraint      , where   will be the top   eigenvectors of 

      . Notice that, if     is chosen, then              (   ̅)(   ̅) , which is the 

covariance matrix of  , and hence it can be concluded that PCA is a special case from SPCA [16]. The 

possible kernel functions that can be chosen are the linear kernel, polynomial kernel, Gaussian kernel, and 

delta kernel. The following algorithm shows the necessary steps for the SPCA. 

Algorithm 1: SPCA 

Input:                the testing data, data size, kernel matrices of training, testing datasets, and 

target variable, respectively. 

Output: Reduced dimensional datasets. 

1.     Compute     
 

 
    

2.                            

3.     Compute basis:    generalized eigenvectors of (   )  
        corresponding to the top d eigenvalues. 

4.     Evaluate training data:      , ( )  ( )-      

5.     Evaluate test example:     , ( )  ( )          
3.2. Hilbert-Schmidt Independence Criterion (HSIC) 

     HSIC was introduced by Gretton [17]. It is an independent criterion that measures the independence of 

variables   and  . Barshon used it for a supervised PCA technique [3]. If   *(     )   (     )+  
    is a series of   independent observations drawn from  (   )(   ), then we calculate (  

 )    (    ) as an estimator of HSIC, where            , 

     (     )    (     )          
        such that   and   are positive semidefinite function 

and   ,   - . By subtracting the mean of each row, then XH centralized version of  , i.e.    
 (        )            , where each entry in row   of         is the mean of     row of  . The 

idea is based on the useful features that show the maximized independence between two distributions [12]. 

Measuring the independence between two distributions can be performed using different techniques. In 

general, two distributions are different if their means are different, but if the two means are the same, then 

the second moment of these distributions needs to be checked. Now, by calculating the difference between 

 ( ( )) and  ( ( )), we can find out whether the two random variables   and   have the same 

distribution or not, i.e.   and   have the same distribution if ‖ ( ( ))    ( ( ))‖
 
is equal to  . 

 

 



Mahdi et al.                                                    Iraqi Journal of Science, 2021, Vol. 62, No. 4, pp: 1321-1333 

1325 

5. Stochastic Gradient Descent SPCA (SGD-SPCA) 

The goal is to find the directions in which the variance,  (   ), is maximum. Let   be denoted as the unit 

vector direction along which the variance is maximum. The variance along this direction is given by: 

   
   

 

 
∑(    )

   
 

 
(  ) (  )   

 

 
                     

 

 
   

 

   

 

Evaluate the gradients        to  , then it follows that: 

 (   )     
   (     )  

and set it to zero to find the optimum values. 
  

  
         

  

  
         

We solve the optimization problem whose objective function is given in the following equation: 

           ∑ (        )   ‖    
  ‖ 

            

 

   

 (10) 

 

where  ( ) is a loss function,      is data matrix,      are dependent variables,   is the basis for the 

learned subspace,   is learned coefficient for prediction, and     is a trade-off parameter. If we consider 

the case where  (        )  ‖    
    ‖ 

  is the Frobenius error loss, then Eq.10 becomes 

            ‖    
  ‖ 

   ‖      ‖ 
             (11) 

The derivative of the objective function is 
  

  
   (   )     

   
          

(12) 

where  
   
  is the projection matrix onto the orthogonal complement of the span of    . The retraction is 

the key notation for applying the SGD-based optimization method to the manifold optimization [18]. A 

step in the direction of the negative gradient is taken for a retraction. For moving between two points on 

the manifold, if a closed-form expression is available, the updated step can be taken directly, which is 

called the geodesic step [19]. Edelman gave an expression for the geodesic step, as follows: 

       
       (    )   

        (    )  
  (13) 

where Armijo backtracking line search chooses the step size    [20]. The processes of SGD-SPCA at each 

iteration can be summarized as follows: 

i. At the current iteration, calculate the Euclidean gradient. 

ii. Obtain the Riemannian gradient by projecting the negative Euclidean onto the tangent space. 

iii. For the resulting matrix, compute the singular value decomposition. 

vi. With Armijo line search, update   by taking a geodesic step. 

The SGD-SPCA can be summarized in the following algorithm: 

Algorithm 2: SGD-SPCA 

Input:                are initializations that are generated by PCA 

Output:   is a radiused dataset 

1.      

2.       ‖    (  )‖    

3.       Calculate the gradient:     
  

  
]
    

using Eq.12 

4.       Calculate:     (  )
  (     

   )  
  

5.       Compute the SVD:             (     (  )
 ) 

6.       Update   
  using Eq.13 

7.              

8. End       

9. Generate the reduced data:      
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6. Simulation Studies 

     The performance for the methods (PCA, SPCA, and SGD-SPCA) was checked using three simulation 

datasets, generated using the same developed model used in Bair [1]. They considered 500 variables 

(genes) and three different values of individuals (50, 100, 200). The response was designed to have two 

classes. A comparison between PCA, SPCA, and SGD-PCA is presented in Table 1. As can be shown, 

SGD-SPCA performs better than SPCA and PCA. For instance, in the 200 samples dataset, the first 

principal component (PC1) captures 62.56% of the variation using SPCA, whereas it captures only 

48.51% of the variation using PCA. 

 

Table 1- Comparison of PCA, SPCA, and SGD-SPCA based on the percentage of variation for each 

principal component. 

Dataset size Principal 

components 

PCA SPCA SGD-SPCA 

50 

PC1 38.21 40.38 50.56 

PC2 8.34 10.93 12.41 

PC3 7.56 8.21 8.38 

100 

PC1 48.51 55.38 58.56 

PC2 9.74 11.93 15.41 

PC3 5.55 7.21 9.38 

200 

PC1 48.51 54.38 62.56 

PC2 9.73 9.93 11.41 

PC3 7.65 6.21 9.38 

     The sensitivity (also called the true positive rate) and the specificity (also called the true negative rate) 

were checked. The best scenario of the ROC curve exists when the area under the curve (AUC) is equal to 

1. PCA, SPCA, and SGD-PCA were applied to the simulation datasets with 200 samples. Figure-1 shows 

that SGD-SPCA satisfies the best scenario with 82.9% AUC. It indicates that SGD-SPCA provides the 

best classification. 

7. Experimental results 

     SPCA and SGD-SPCA were applied on two real datasets, which are Leukemia and SRBCT datasets, 

downloaded from the UCI Machine Learning repository (https://archive.ics.uci.edu/ml/index.php). In the 

following two sections, a brief description for each dataset is outlined.  

 
Figure 1-ROC curve for PCA, SPCA, and SGD-SPCA. 

7.1 Leukemia datasets 
     Blood and bone marrow cells can be affected by blood cancers, which can change their efficiency and 
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 behavior. The three types of blood cancer, namely leukemia, lymphoma, and myeloma, seriously damage 

the circulatory and lymphatic systems. They are classified into different types which affect different types 

of white blood cells. Part of this work focuses on leukemia, where patients generate high numbers of 

abnormal white blood cells that are not functional and hence cannot fight infections. Based on the impacts 

and growth of white blood cells, leukemia is divided into four types, which are Acute Lymphocytic 

Leukemia (ALL), Acute Myeloid Leukemia (AML), Chronic Lymphocytic Leukemia (CLL), and Chronic 

Myeloid Leukemia (CML) [21]. The gene expression dataset that was analyzed in this paper includes data 

from AML and ALL patients, published by Golub [14]. The data are derived from a proof-of-concept 

study, and it shows how the gene expression monitoring (via a DNA microarray) can classify the new 

cases of cancer, providing a common approach for assigning tumors to known classes and identifying new 

cancer classes. Using this type of dataset, patients were classified into AML and ALL categories. The 

complete leukemia dataset has      genes and    observations. The low number of observations does not 

allow much flexibility for supervised methods, given the need to split the dataset into training and testing 

parts. The raw dataset was processed by following the following steps, based on the original paper  [22];  

(a) thresholding, with floor of     and ceiling of      ; (b) filtering, with exclusion of genes with 

            or max            , where max and min refer to the maximum and minimum 

intensities for a particular gene across the    samples; (c) base    logarithmic transformation; and (d) 

scaling the data observation wise. The dataset was split into    training samples (17 AML, 33 ALL) and 

22 testing samples (8 AML, 14 ALL). 

7.2 SRBCT dataset 

     SRBCT dataset contains the gene expression of 83 observations (patients) with      variables (genes). 

The correct clinical diagnosis is extremely challenging for the four different childhood tumors because of 

the similar appearance on routine histology. The tumor types include the Ewing family (EWS), 

rhabdomyosarcoma (RMS), neuroblastoma (NB), and Burkitt lymphomas (BL). In this paper, the 

distinction between these four tumors is achieved based on gene expression values. The dataset was split 

into 63 training samples (23 EWS, 20 RMS, 12 NB, and 8 BL) and 20 testing samples (6 EWS, 5 RMS, 6 

NB, 3 BL). 

8. Selection of Discriminatory Features 

     Working with large datasets faces many difficulties, such as time consumption and inefficient results. 

To analyze leukemia and SRBCT datasets, we selected the most significant genes for cancer type; in other 

words, the genes that are differentially expressed across classes. The HSIC process (section 3.2) was used 

for leukemia datasets, which demonstrated only     genes as significant. As could be observed from 

Figure-2, only few genes are apparently interesting. The active genes are colored in black and 

supplementary genes are colored in gray. 

 
Figure 2-The most significant genes in leukemia dataset; the significant genes are marked with black and 

the nonsignificant genes are marked with gray. 
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8.1 Modified t-test 

     In this section, a modified t-test is used to select the most significant genes in the SRBCT data set. The 

common t-test was proposed by Welch. It is used to measure the difference between two groups of 

samples. Based on Eq.14, t-test calculates a score,   , that represents gene  . 

   √
( ̅    ̅  )    

[   
 (    )     

 (    )](     )
 

(14) 

     Here,  ̅   and  ̅   are the mean expression values for a gene in two different classes.    and    denote 

the number of samples. There are two limitations to the usage of t-test. First, t-test solves problems with 

only two classes. Second, from Eq.15, if the mean of the two classes is equal, the value of     , and then 

the gene   will be removed as an irrelevant gene, whereas it might be able to provide classification 

information for samples. 

t-test was modified to overcome the abovementioned two problems, as follows: 

       *
 

 
||
 ̅    ̅ 

√
 
  
 
 
    

||  
 

 
  (

   
    

 

      
)           + 

(16) 

where  ̅   ∑
 ̅  

  
    ,  ̅  ∑

   

 
 
   , and    √

 

   
∑ ∑ (     ̅  )

 
     . 

  and   refer to the number of classes and samples, respectively. Class  , that includes    samples, is 

denoted by   .    is the pooled within-class standard deviation for gene  .  ̅  is the mean expression value 

for gene  ,  ̅   is the mean expression value for gene   in class  , and  ̅   is the mean expression value for 

gene   in sample  . Eq.16 is used to calculate   , which is the score for each gene. The genes with high 

scores were selected for further processing because they are more relevant to the classification. 208 genes 

were determined as essential genes in the SRBCT dataset. The most               genes in the SRBTC 

dataset are listed with their descriptions in Table-2. Figure-3 illustrates the correlation between the 

selected genes for training data in Leukemia and SRBCT datasets. As can be seen, some genes are highly 

correlated. 

Table 2-Description of some selected genes for SRBCT dataset 

Gene ID Gene Expression Product 

G 770394 Fc fragment of IgG, receptor, transporter, alpha 

G 377461 caveolin 1, caveolae protein, 22kD 

G 796258 sarcoglycan, alpha 

G 784224 fibroblast growth factor receptor 4 

G 325182 cadherin 2, N-cadherin 

G 812105 transmembrane protein 

G 241412 E74-like factor 1 

 

where    
  

 

  
∑ (     ̅  )

        
  
    (15) 
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Figure 3-Heatmaps of selected genes for training data in leukemia and SRBCT datasets. 

 

9. Results and Discussion 

     The SPCA and SGD-SPCA were applied to two reduced datasets. The top two plots in Figures- 4 and 5 

show the first 10 principal components with their percentage of variation. SGD-SPCA performs better 

than SPCA for leukemia and SRBCT datasets. Now, how well do the principal components separate the 

classes? Graphically, from Figures-4 and 5, it can be agreed the SPCA and SGD-SPCA both performed 

excellently. The individuals in a 2-dimensional plane can be visualized. By looking at the individual plot, 

we can predict the class of the observation. Support Vector Machine (SVM) with Gaussian kernel is used 

to classify classes in leukemia and SRBCT datasets. By testing our two test datasets  using Figure-4.d and 

Figure-5.d, the results are shown in Figure-6. It can be seen that almost all the testing individuals lie in the 

right class. Table-3 summarizes the classification accuracy for training and testing in both datasets. With 

only two principal components, we obtained above     accuracy, while a value of around     could be 

achieved with four principal components. Comparisons among Naive Bayes, KNN, Decision Tree, and 

SGD-PCA for both Leukemia and SRBCT datasets are given in Table-4.        accuracy is gained 

using only 4 principal components, and the total real-time shows that the SGD-SPCA is the fastest 

compared with the other methods. 

 
a. Principal components in SPCA 

 
b. Principal components in SGD-PCA 
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SRBCT Dataset Heatmap
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SPCA: Golub dataset
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SGD−SPCA: Golub dataset
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c. SPCA 

 
d. SGD-SPCA 

Figure 4-SPCA and SGD-PCA for leukemia dataset. 

 

 

 
a. Principal components in SPCA 

 
b. Principal components in SGD-PCA 

 
c. SPCA 

Figure 5-SPCA and SGD-PCA for SRBCT dataset. 

 
d. SGD-SPCA 
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Figure 6-Training and testing individuals for leukemia and SRBCT datasets. 

 

 
a. Leukemia dataset 

 
b. SRBCT dataset 
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  Table 3-Classification accuracy for training and testing in both leukemia and SRBCT datasets 

Method Number of PCs 
Leukemia dataset SRBCT dataset 

Training Testing Training Testing 

SGD-PCA 

2 96.60% 97.34% 95.71% 94.82% 

3 98.34% 96.73% 97.69% 96.53% 

4 99.3% 99.1% 99.2% 99.7% 

  

Table 4- Comparisons among Naive Bayes, KNN, Decision Tree, and SGD-PCA for both Leukemia and        

SRBCT datasets 

Method 
Leukemia dataset SRBCT dataset 

Training Testing Total Time Training Testing Total Time 

Naive Bayes 84.60% 83.42% 3m 42s 83.94% 82.62% 4m 2s 

KNN 86.80% 91.55% 2m 21s 85.33% 84.55% 3m 10s 

Decision Tree 87.10% 90.39% 4m 33s 87.10% 89.39% 5m 43s 

SGD-PCA 95.5% 94.4% 1m 19s 95.2% 94.7% 1m 7s 

 

Conclusions 

     The present work proposed a new SGD-SPCA method for reducing the dimensionality of large real 

cancer datasets. Stochastic gradient descent was used to modify the SPCA techniques. The experimental 

result show accuracy values between 93 and 94 percent using four principal components for both leukemia 

and SRBCT datasets. A comparison between the modified and some other existing methods proves that 

SGD-PCA satisfies the criteria of best accuracy and less time. 
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