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Abstract 
    The problem of non-Darcian-Bènard double diffusive magneto-Marangoni 

convection   is considered in a horizontal infinite two layer system. The system 

consists of a two-component fluid layer placed above a porous layer, saturated with 

the same fluid with a constant heat sources/sink in both the layers, in the presence of 

a vertical magnetic field.   The lower porous layer is bounded by rigid boundary, 

while the upper boundary of the fluid region is free with the presence of Marangoni 

effects.  The system of ordinary differential equations obtained after normal mode 

analysis is solved in a closed form for the eigenvalue and the Thermal Marangoni 

Number (TMN) for two cases of Thermal Boundary Combinations (TBC); these are 

type (i) Adiabatic-Adiabatic and type (ii) Adiabatic-Isothermal.  The corresponding 

two TMNs   are obtained and the impacts of the porous parameter, solute Marangoni 

number, modified internal Rayleigh numbers, viscosity ratio, and the diffusivity 

ratios on the non-Darcian-Bènard double diffusive magneto - Marangoni convection 

are studied in detail. 

 

Keywords: Heat source/sink, Double diffusive convection, Marangoni number, 

modified internal Rayleigh number, thermal ratio. 

 

Introduction 

    Double diffusive convection (DDC) is a type of convection, which consists of double 

density gradients diffusing at varied rates. DDC commonly occurs   in natural processes, like 

those taking place in sea water and the mantle flow in the Earth’s crust, and has lots of 

engineering geothermal applications; for example, contaminant transport in saturated soils, 

food processing, and spread of toxins. It also appears in solar ponds and crystal growth 

industries.  In crystal growth industries, double diffusive Marangoni convection (DDMC) 

plays an important role in the production of pure crystals. Applying magnetic field on DDMC 

can exert outstanding outcomes in crystal growth industries. 

Steady conjugate double-diffusive natural convective heat and mass transfer in a two-

dimensional variable porosity layer sandwiched between two walls was studied numerically 

by Al-Farhany and Turan [1]. The linear and nonlinear stability of double diffusive 

convection in a layer of couple stress fluid–saturated porous medium was theoretically 

investigated by Shivakumara et al. [2]. A numerical study of double-diffusive natural 

convective heat and mass transfer in an inclined rectangular cavity filled with a porous 

medium was conducted by Al-Farhany and Turan [3]. Mehmood et al. [4] explored the 

unsteady flow of viscous nanofluid driven by an inclined stretching sheet for the effect of a 
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non-uniform heat source/sink in a thermally and solutally stratified magnetonanofluid, using 

the RK4 method with the shooting technique. Al-Farhany and Turan [5] experimentally 

investigated the mixed convection in a square enclosure partitioned in two layers. The results 

showed that the effect of cylinder rotation was exerted around the cylinder only. Mixed 

convection heat transfer of nanofluid in a lid-driven porous medium square enclosure with 

several pairs of heat source-sinks was numerically simulated by Munshi et al. [6] using the 

finite element method. Ahmadpour et al. [7] studied the natural convection of a non-

Newtonian ferrofluid in a porous elliptical enclosure in the presence of a non-uniform 

magnetic field. The results showed that, by applying the magnetic field via a wire, the overall 

heat transfer rate increased significantly. The onset of double diffusive magneto Marangoni 

convection in a two-layer system, comprising incompressible two components, was studied 

by Komala and Sumithra [8] using the regular perturbation technique for uniform and 

nonuniform salinity gradients. 

Recently, the effect of heat source/sink on MHD free convection flow in a channel filled with 

nanofluid in the existence of induced magnetic field was studied by Jha and Samaila [9]. 

Kannan and Pullepu [10] studied the effects for chemical reaction, the heat source/sink, 

Schmidt number, and Prandtl number on double diffusion natural convective flow along a 

vertically inclined infinite plate. The governing non-dimensional equations were solved using 

iterative tri-diagonal implicit finite-difference scheme. Anurag et al. [11] studied the influence 

of Newtonian heating/cooling in the presence of heat source/sink on laminar free convective 

flow in a vertical annular permeable region. The closed-form analytical solutions of the 

governing equations were obtained for two different cases of internal heat 

generation/absorption. Sumithra et al. [12, 13] and Manjunatha and Sumithra [14] studied the 

effects of constant heat source / sink and temperature gradients on composite layer with and 

without magnetic field. They obtained the closed form of solution to thermal Marangoni 

number for three different temperature gradients. Sumithra and Venkatraman [15] studied the 

problem of Bènard Marangoni convection in a composite layer, comprised of an 

incompressible couple stress fluid, for adiabatic and isothermal boundaries using an exact 

technique. 

In this paper, the problem of non-Darcy-Bènard double diffusive magneto Marangoni 

convection is investigated in a horizontally infinite two layer system. The system consists of a 

two-component fluid layer above a porous layer, saturated with the same fluid, for Darcy-

Brinkmann model with constant heat sources in both the layers under microgravity condition.  

The lower boundary of the porous region is rigid, while the upper boundary of the fluid region 

is free with the presence of Marangoni effects.  The system of ordinary differential equations 

obtained after normal mode analysis is solved in a closed form for the eigenvalue and TMN 

for two types of TBC; type (i) Adiabatic-Adiabatic and type (ii) Adiabatic-Isothermal. The 

corresponding two thermal Marangoni numbers 1tM  & 2tM  are obtained and the impacts of 

the different parameters are investigated in detail.  

Mathematical formulation of the problem 

Consider a horizontal double component, an electrically conducting fluid saturated isotropic 

sparsely packed porous layer of thickness  md , underlying a two component fluid layer of 

thickness  d , with an imposed magnetic field of intensity 0H   in the vertical z-direction and 

heat sources m  and  , respectively. The lower surface of the porous layer is rigid and the 

upper surface of the fluid layer is free with the presence of surface tension effects, depending 

on temperature and concentration. A  Cartesian coordinate system is chosen that originates at 

the interface between the porous and fluid layers and the z-axis, in the vertically upward 

direction.  The basic equations for the fluid and porous layers, respectively, governing such a 

system are: 
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where for the fluid layer, V  is the velocity vector,  0  is the fluid density, t  is time,   is the 

fluid viscosity, 

2

2

p H
P p


   is the total pressure, H  is the magnetic field,  T  is  the 

temperature,   is the thermal diffusivity of the fluid, 
1

p


 

  is the magnetic viscosity, and 

p  is the magnetic permeability. For the porous layer,     is the porosity, m  is the effective 

viscosity of the fluid in the porous layer,   K   is the permeability of the porous medium, A  is 

the ratio of heat capacities,  m  is the thermal diffusivity, em



  is the effective magnetic 

viscosity, and the subscript  'm'  denotes the quantities in the porous layer. 

The aim of this paper is to investigate the stability of a quiescent state to infinitesimal 

perturbations superposed on the basic state. The basic state of the liquid being quiescent is 

described by 

Fluid layer: 
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The temperature distributions in the basic state are obtained by 

0
0

( )( )
( ) 0

2

u
b

T T zz z d
T z T z d

d

 
     (15)      

0
0

( ) ( )
( ) 0

2

m m m m l m
mb m m m

m m

z z d T T z
T z T d z

d

  
           (16) 



Manjunatha and Sumithra                    Iraqi Journal of Science, 2021, Vol. 62, No. 11, pp: 4039-4055                        
 

4042 

The concentration distributions in the basic state are obtained by 
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temperature and concentration, respectively. 

To investigate the stability of the basic state, infinitesimal disturbances are superimposed, ass 

follows. 

Fluid layer: 
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Porous layer: 
' '
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Following the standard linear stability analysis procedure and assuming that the principle of 

exchange of stability holds (Manjunatha and Sumithra [14]), we arrive at the following 

stability equations: 
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Boundary Conditions 

The suitable velocity boundary conditions are nondimensionalized and then subjected to 

normal mode analysis; they are 
2 2 2(1) (1) (1) 0t sD W M a M a S           (27) 
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    is the  solute  Marangoni number, and t  is the surface tension. 

Method of Solution 

The solutions of ( )W z   and ( )m mW z  are obtained by solving (21) and (24) using the velocity 

boundary condition (28), as follows 
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We solve equations (23) and (26) for the salinity distributions  ( )S z   and ( )m mS z  using the 

following salinity/concentration boundary conditions  
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Thermal Marangoni number 

Type (i): Adiabatic-Adiabatic (A-A) Boundaries 

We solve equations (22) and (25) for the temperature distributions ( )z   and ( )m mz    using 

the following temperature boundary conditions, where both the boundaries are adiabatic and 

the heat and heat flux are continuous at the interface: 

ˆ(1) 0, (0) (0), (0) (0), ( 1) 0m m m m mD T D D D                (34) 

The temperature distributions ( )z and ( )m mz  are obtained by using the temperature 

boundary condition (34), as follows 

   1 1 2 1( ) [ cosh sinh ( )]z A c az c az g z            (35) 

1 3 4 1( ) [ cosh sinh ( )]m m m m m m m mz A c a z c a z g z           (36) 
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  where 

1 1 27 28 29 30 1 1 31 32 33 34( ) [ ], ( ) [ ]m mg z A g z A              
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
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* * * *

1 2 1 21, 2 , ( 1), 2I I m Im m ImE R E R E R E R          
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1ˆ , ( ),mc c T c c a
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9 10
ˆ sinh , cosh ,mTa a a a    11 1 2 3 4 5( )sinh ( )cosha a a          

From the boundary condition (27), we have  
2 2

2

(1) (1)

(1)

s
t

D W M a S
M

a 

 
   

 
 

The TMN is as follows 

1 2
1 2

1 2 3 4

( )

( cosh sinh )
tM

a c a c a

   


    
          (37) 

  where 
2 2

1 1 2 3(cosh sinh ) ( cosh sinh ),a a a         
2
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 
 

 

Type (ii): Adiabatic-Isothermal (A-I) Boundaries 

We solve equations (22) and (25) for the temperature distributions  ( )z   and ( )m mz  using 

the following temperature boundary conditions, where the upper boundary of the fluid layer is 

adiabatic and the lower boundary of the porous layer is isothermal, and at the interface, heat 

and heat flux are continuous:  

ˆ(1) 0, (0) (0), (0) (0), ( 1) 0m m m mD T D D                (38) 

The temperature distributions ( )z   and ( )m mz   are obtained by using the temperature 

boundary conditions (38), as follows 

1 5 6 2( ) [ cosh sinh ( )]z A c az c az g z            (39) 

1 7 8 2( ) [ cosh sinh ( )]m m m m m m m mz A c a z c a z g z           (40) 

where  

2 1 42 43 44 45( ) [ ],g z A         
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* * * *
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From the boundary condition (27), we have  
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The TMN is as follows 
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Where 

4 3 4
5 1 12 2 2 2 2

( ) 2
(cosh sinh ) ( cosh sinh )

( ) ( )

E E E
a a

a a


   

 


    

 

4 3 4
6 2 3 3 22 2 2 2 2

( ) 2
( cosh sinh ) ( cosh sinh )

( ) ( )

E E E
a a a a

a a


   

 


    

 
 

Results and Discussion 

The TMNs of 1tM  and 2tM  for types I and II of TBCs are obtained theoretically in terms of 

* *ˆ ˆ, , , , , ,s I Imd M R R    and Q , which are respectively, the depth ratio, the porous parameter, 

the solute Marangoni number, the modified internal Rayleigh numbers in fluid and porous 

regions, the viscosity ratio,  the solute-diffusivity ratio, and Chandrasekhar number. The 

thermal Marangoni numbers are drawn as a function of thermal ratio for the set of 

parameters 2.5,a  ˆ 0.2,d  *ˆˆ1.0, 2, 1, 0.25, 10, 10, 1pm s IS Q M R           , 

and * 1ImR   etc.   
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Figure 1-Comparison of thermal Marangoni numbers for type (i) Adiabatic-Adiabatic and 

type (ii) Adiabatic-Isothermal. 

 

A comparison of the TMNs for types (i) and (ii) TBC is explained by Figure 1, for 
*ˆ ˆˆ2.5, 0.2, 10, 1.0, 2, 1, 0.25, 10, 1pm s Ia d Q S M R             and * 1ImR   etc., 

where TMN, tM   is the dependent variable and the thermal ratio T̂ is the independent 

variable.  From Figure 1, it is evident that for smaller values of thermal ratio, TMN for 

Adiabatic-Adiabatic is higher than that for Adiabatic-Isothermal, indicating that, for ˆ 2T  , 

the TBC type (i) Adiabatic-Adiabatic is suitable for situations where the convection has to be 

controlled.  Whereas for ˆ 2T  , the type (ii) Adiabatic-Isothermal is suitable for the same 

situations. The other important observation is that in the type (i) Adiabatic-Adiabatic, the 

TMN increases rapidly as the value of thermal ratio T̂  increases, whereas in type (ii) 

Adiabatic-Isothermal, the TMN slowly increases, reaches a peak value, then decreases with 

the thermal ratio. The TBCs play an important role in convection, hence choosing containers 

with appropriate TBC is very important during these processes. 

 

The variation of porous parameter    on   TMN is shown in Figures 2a and 2b for two types 

respectively, for 0.1,1.0,10.0,50.0,100.0  .  From Figure 2a, it is observed that the TMN for 

type (i) Adiabatic-Adiabatic simply increases as the value of thermal ratio is increased. Also, 

for a fixed value of T̂ , increasing the value of the porous parameter beta, increases the TMN.  

Thus, the rise in the porous parameter   is favouring the stability of the system. Hence non-

Darcian-Bènard double diffusive magneto-Marangoni convection can be postponed by 

increasing the porous parameter that is by choosing the size of the pores in the porous layer of 

the two layer system.   
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Figure 2- The effects of porous parameter 0.1,1,10,50,100   on TMN for fixed parameters 
*ˆ ˆˆ2.5, 0.2, 10, 2, 1, 0.25, 10, 1pm s Ia d Q S M R           and * 1ImR   

 

 
 

Figure 3- The effects of solute Marangoni number sM  on TMN for fixed parameters 
*ˆ ˆˆ2.5, 0.2, 10, 1.0, 2, 1, 0.25, 1pm Ia d Q S R            and * 1ImR   

 

Figure 2b depicts the TMN results for type (ii) Adiabatic-Isothermal TBC. The TMN value 

increases slowly, reaches its peak, and falls again as the thermal ratio value increases.  Also, 

for a fixed value of thermal ratio T̂ , as the   value increases from 0.1 to 100, the TMN 

decreases. The T̂  value at which the peak of TMN also shifts towards smaller T̂ . It is very 

important to note that increasing permeability means more space for the fluid to move in the 

porous layer, which is stabilizing for type (i) but destabilizing for the type (ii) TBC. Thus, by 

merely changing the thermal boundary condition at the upper boundary, one can reverse the 

effects on the non-Darcian-Bènard double diffusive magneto-Marangoni convection. 

Figure 3 demonstrates the effects of solute Marangoni number on the TMN, hence on the non-

Darcian-Bènard double diffusive magneto-Marangoni convection. The values of 
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supplementary parameters are fixed and they are        and  , while the values of the solute 

Marangoni number are .  It is quite appealing to note that, for both cases of TBC, the behavior 

of the eigenvalue is qualitatively similar for all thermal ratios as well as upon increasing the 

value of solute Marangoni number.  The diverging curves reveal that the effect of the solute 

Marangoni number is drastic for larger values of thermal ratios. For a fixed value of thermal 

ratio , the increase in the value of solute Marangoni number increases the TMN. Hence, the 

non-Darcian-Bènard double diffusive magneto-Marangoni convection is postponed and hence 

 

stabilize the system. 

 
Figure 4- The effects of viscosity ratio ˆ 0.1,0.5,1.0,1.5,2   on TMN for fixed parameters 

*ˆ ˆ2.5, 0.2, 10, 1.0, 1, 0.25, 10, 1pm s Ia d Q S M R           and * 1ImR   

 

 

 
 

Figure 5- The effects of Chandrasekhar number 1,5,10,50,100Q   on TMN for fixed 

parameters *ˆ ˆˆ2.5, 0.2, 1.0, 2, 1, 0.25, 10, 1pm s Ia d S M R            and * 1ImR   
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The effects of viscosity ratio ̂  on the TMN is shown in Figure 4 for 

ˆ 0.1,0.25,0.50,0.75,1.0   . The values of the other parameters are 

ˆ2.5, 0.2, 1.0, 10,a d Q     
*ˆ 1, 0.25, 10, 1pm s IS M R      , and * 1ImR  .  For both 

types of TBCs, the curves are diverging, which indicates that the impact of ̂  is stronger for 

higher thermal ratios. For a fixed value of thermal ratio, the increase in the ratio of the 

effective viscosity of the fluid in the porous region to that in the fluid region leads to an 

increase in the TMN value. Hence, the non-Darcian-Bènard double diffusive magneto-

Marangoni convection is postponed. That is, as the effective viscosity of the fluid in the 

porous layer is increased, the two layer system is getting stabilized for higher thermal ratio 

values.  

     The effects of Chandrasekhar number Q  on the TMN is shown in Figure 5 for 

1,5,10,50,100Q  . The values of the other parameters are ˆ ˆ2.5, 0.2, 1.0, 2,a d       

ˆ 1,S   0.25,pm     
*10, 1s IM R  , and * 1ImR  .  For both types of TBCs, the curves are 

diverging, which indicates that the impact of magnetic field, i.e. Chandrasekhar number, is 

stronger for higher thermal ratios. For a fixed value of thermal ratio, the increase in the ratio 

of Q  leads to a decrease in the TMN. Hence, the non-Darcian-Bènard double diffusive 

magneto-Marangoni convection is preponed.   The applied magnetic field, which is usually 

thought as stabilizing, is destabilizing in this type. This may be due to the presence of a 

second diffusing component. 

 

 
Figure 6- Effects of modified internal Rayleigh number * 2, 1,0,1,2IR     for the fluid region 

on TMN for fixed parameters ˆ ˆˆ2.5, 0.2, 10, 1.0, 2, 1, 0.25, 10pm sa d Q S M            and 

* 1ImR   

 

The core of heat source/sink in the fluid region reflects the significance of the modified 

internal Rayleigh number
*

IR   =-2, -1, 0, 1, 2 as shown in Figure 6. The values of the other 

parameters are ˆ ˆˆ2.5, 0.2, 10, 1.0, 2, 1, 0.25, 10pm sa d Q S M             and * 1ImR  . 

The negative value of 
*

IR    denotes the sink and the positive value implies the source.  The 

diverging curves for both types of TBCs reveal that the impact of 
*

IR    is stronger for higher 

values of thermal ratio.  For a fixed thermal ratio, the increase in the value of internal 
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Rayleigh number (sink to source) leads to an increase in the TMN value for type (i) TBC, 

whereas it decreases this value for type (ii).  Hence, higher values of 
*

IR    are suitable for the 

situations controlling the non-Darcian-Bènard double diffusive magneto-Marangoni 

convection for type (i) TBC, whereas they augment this convection for type (ii). 

 
Figure 7- Effects of modified internal Rayleigh number *

Im 2, 1,0,1,2R     for the porous region 

on TMN for fixed parameters ˆ ˆˆ2.5, 0.2, 10, 1.0, 2, 1, 0.25, 10pm sa d Q S M            and 

* 1IR   

 

 
 

Figure 8- Effects of solute-diffusivity ratio 0.1,0.25,0.50,0.75,1   on TMN for fixed 

parameters *ˆ ˆˆ2.5, 0.2, 10, 1.0, 2, 1, 0.25, 10, 1pm s Ia d Q S M R           and * 1ImR   

 

     Figure 7 demonstrates the effects of modifying the internal Rayleigh number 
*

ImR  on the 

stability of the two layer system for 
* 2, 1,0,1, 2ImR    .The values of the other parameters are 

2.5,a  ˆ ˆˆ0.2, 10, 1.0, 2, 1,d Q S       0.25,pm   10sM  and
* 1IR  .The diverging 

curves for both the cases of TBCs reveal that the impact of 
*

ImR   is stronger for higher values 
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of thermal ratios.  For a fixed thermal ratio, the increase in the value of modified internal 

Rayleigh number, which occurs from the sink to the source in the porous layer, leads to an 

increase in the TMN.  Hence, larger numbers of 
*

ImR   are suitable for the situations controlling 

the non-Darcian-Bènard double diffusive magneto-Marangoni convection for type (ii) TBC. 

For a fixed thermal ratio, the increase in the value of modified internal Rayleigh number, 

which occurs from the sink to the source in the porous layer, leads to a decrease in the TMN. 

Hence destabilize the system.    

     The effects of the solute-diffusivity ratio   on the non-Darcian-Bènard double diffusive 

Marangoni convection is displayed in Figure 8, for 0.10,0.25,0.50,0.75,1.0  . The fixed 

parameters are *ˆ ˆˆ2.5, 0.2, 10, 1.0, 2, 1, 0.25, 10, 1pm s Ia d Q S M R            

and * 1ImR  . The effect of this parameter is uniform for all thermal ratios for both types of 

TBCs.  For a fixed depth ratio, the increase in the value of diffusivity ratio leads to a decrease 

in the thermal Marangoni number. Hence, it is an important parameter, the high value of 

which can accelerate the non-Darcian-Bènard double diffusive magneto Marangoni 

convection. 

Conclusions 

The present study has reached several findings.  The non-Darcian-Bènard double diffusive 

magneto-Marangoni convection can be controlled or amplified by choosing the appropriate 

TBC at the boundaries. For type (i), i.e. Adiabatic-Adiabatic, TBC, the higher values of  

porous parameter, solute Marangoni number, viscosity ratio, and internal Rayleigh number in 

the fluid layer, along with the lower values of Chandrasekhar number and the modified 

internal Rayleigh number in the porous layer, are conducive to the situations that provide 

more control to the non-Darcian-Bènard double diffusive magneto-Marangoni convection. 

For type (ii), i.e. Adiabatic-Isothermal, TBC, the lower values of  porous parameter, 

Chandrasekhar number, and modified internal Rayleigh number in the fluid layer, as well as 

the higher values of  solute Marangoni number, viscosity ratio, and modified internal 

Rayleigh number in the porous layer are conducive to the situations that provide more control 

to the non-Darcian-Bènard double diffusive magneto-Marangoni convection. Heat source/sink 

plays an important role in the convection; by choosing an appropriate strength of heat source, 

the onset of the non-Darcian-Bènard double diffusive magneto-Marangoni convection can be 

controlled or amplified. 
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