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Abstract  
     In this paper, a differential operator is used to generate a subclass of analytic and 

univalent functions with positive coefficients. The studied class of the functions 

includes:   

 ( )    ∑       (         *     +) 

 

   

 

which is defined in the open unit disk   *    | |   +  satisfying the following 

condition  
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This leads to the study of properties such as coefficient bounds, Hadamard product, 

radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for 

functions belonging to our class. 
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 ( )    ∑       (         *     +) 

 

   

 

| |    *  انمعشفت فً قشص انوحذة انمفتوح   . وانتً تحقق انششط انتبن9ً +  
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، نظف قطش انتحذة انقشٌت ،  Hadamardوهزا ٌقود إنى دساست خظبئض مثم حذود انمعبمم ، منتج 

 .انجواساث نهذوال انتً تنتمً إنى طفنب –( n  ،τانخظبئض انشبمهت و )

  

1. Introduction 

Let   denotes the class of all analytic and univalent functions in the unit disk   *    | |   + of 

the form: 

 ( )    ∑       (         *     +) 

 

   

                           ( )  

Let     has the form  

 ( )    ∑          

 

   

 

and    of the form (1), then the convolution (or Hadamard product) (   ) of   and   is defined by  

(   )( )    ∑        (   )( ) 

 

   

                                              ( ) 

For    ,  Elhaddad et al. [1] introduced the following differential operator: 

    
   (   ) ( )    ∑,  (, -   ) - 

  ( )(    )
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Note that:  

 If     and                            defined in [2]. 

 If    ,                we obtain Al-Oboudi operator, see Ref. [3]. 

 If                          we obtain    ̌  ̌     operator, see Ref. [4]. 

 If                               ( )  see Ref. [5]. 

Using the operator     
   (   ) ( )  we introduce the class of analytic functions with positive 

coefficients as illustrated below. 

Definition 1.  For (                 )   the function f given by Equation 1, is said to be in 

the class  (             ) if and only if the following inequality is satisfied:  

  {
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   (   ) ( ))     (    
   (   ) ( ))  
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Many authors have studied various classes of analytic functions with positive coefficients [4,6, 7, 8, 9, 

10, 11, 12]. In this work, we introduce and study the class  (             ) of analytic functions 

with positive coefficients. Also, several properties, such as coefficient bounds, Hadamard product, 

radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods of functions in our 

class, are obtained. 

2. Main results 

In this section, we prove the geometric properties of functions in the class  (             ).  

Theorem 1. A function  of the form (1) belongs to the class  (             ) if and only if  
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where                 and     
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Proof. Suppose that the inequality (3) holds true. Then we want to prove that    (             )  
By Definition 1, we have  
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On the other hand, we have 
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This is equivalent to  
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Conversely, suppose that (4) holds. Then we must show that   
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By taking the values of   on the positive real axis, where         , we have from the above 

inequality that  
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Since   (    )   |   |    , then from the last inequality, we have:  
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By letting     , we achieve our result.       

    ◻ 

Next, we get the radius of close – to – convexity for functions belonging to the class 

 (             ). 

Theorem 2: Let the function    defined by (1), be in the class  (             )  then   is close – to 

– convex of order  (     ) in | |   (             ), where 
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Then the theorem is following form (8).                                                                                                                  
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After integration, we get  

   .    
   (   ) ( )/  ∫
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This completes the proof.                                                                                                                             

Theorem 4. Let  ( )    ∑           ( )    ∑      
   

 
    belong to  

 (             )  Then the Hadamard product of   and    given by (   )( )    ∑         
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hence, we get the required result.                                                                                                               

◻   

Theorem 5. Let the function    defined by (1), and    given by  ( )    ∑      
   , be in the 

class  (             )  Then, the function    defined  by  ( )    ∑   
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 (             )  where                             and  
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Since   and   are in the class  (             )  we see that  
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The right hand is a decreasing function of   and it is at maximum if    . 
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By simplifying the last inequality, we get  
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This completes the proof of theorem.                                                                                                          

◻ 

Next, we obtain the inclusive properties of the class  (             )  
Theorem 6. Let                           and        Then  

 (             )   (             )  where  
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               (  ) 

      
 Proof. Let    (             )  then in view of Theorem 1, we have  
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We wish to find the value    such that  
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The right-hand side of (16) decreases as n increases and, hence, it is maximum for    .  

So, (16) is satisfied provided that  
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Theorem 7. Let                              . Then,  (              )  
 (              )  
The proof of Theorem 7 follows also from Theorem 6. 

Now, we determine a set of inclusion relations involving (   )   neighborhoods. We define the 
(   )   neighborhoods of a function      by  

    ( )  {     ( )    ∑     
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}                         (  ) 

Also, we need the following definition. 

Definition 2. The function f, defined by (1), is said to be a member of the class 

 (             )                 a function    (             )  such that  
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Also, since    (             )  we have from Theorem 1 that  
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So that  
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Thus, by definition,    (               )  for   given by Equation 18. 

Theorem 9. Let c be a real number such that       If    (             )  then the function     
defined by  

  ( )  
   

  
∫     ( )  

 

 

                                                  (  ) 

also belongs to  (             )  
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Hence,  
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Therefore, 
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Hence,     (             )                                                                                                                                 
 

References 

1. Elhaddad, S., Aldweby, H., & Darus, M. 2018. Neighborhoods of certain classes of analytic 

functions defined by a generalized differential operator involving Mittag-Leffler function. Acta 

Universitatis Apulensis, 18(55): 1-10.  

2. Kassar O. N. and Juma A. R. S. 2020. Analytic functions, Subordination, q-Ruscheweyh 

derivative, Hadamard product, Univalent function. Iraqi Journal of Science, 61(9): 2350-2360. 

3. Aubdulnabi, F. F., & Jassim, K. A. 2020. A Class of Harmonic Univalent Functions Defined by 

Differential Operator and the Generalization. Iraqi Journal of Science, 1440-1445.  

4. Shaba, T. G. and Sambo, B. 2020. A Subclass of Univalent Functions Defined by a Generalized 

Differential Operator. Int. J. Open Problems Complex Analysis, 12(2).  

5. Srivastava, H. M., Frasin, B. A. and Pescar, V. 2017. Univalence of integral operators involving 

Mittag-Leffler functions. Appl. Math. Inf. Sci, 11(3): 635-641.  

6. Al-Khafaji, Aqeel K. 2021. "On Subclass of Meromorphic Analytic Functions Defined by a 

Differential Operator." Journal of Physics: Conference Series. 1818(1). IOP Publishing. 

7. Elhaddad, S., Aldweby, H., & Darus, M. 2018. Neighborhoods of certain classes of analytic 

functions defined by a generalized differential operator involving Mittag-Leffler function. Acta 

Universitatis Apulensis, 18(55): 1-10.  

8. Al-Khafaji, Aqeel Ketab. 2020. "On initial Coefficients Estimates for Certain New Subclasses of 

Bi-Univalent Functions Defined by a Linear Combination." Computer Science, 15(2): 491-500 . 



Al-khafaji                                                  Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2000-2008 

                                                                  

1008 

9. AL-khafaji, Aqeel Ketab, Waggas Galib Atshan, and Salwa Salman Abed. 2019. "Neighborhoods 

and Partial Sums of a New Class of Meromorphic Multivalent Functions Defined by Fractional 

Calculus." Karbala International Journal of Modern Science 5(2): 3 . 

10. Al-khafaji, Aqeel Ketab. 2020. "Extreme Points of a New Class of Harmonic Multivalent 

Functions Defined by Generalized Derivative Operator Involving Mettag-Leffer Function." 

Nonlinear Functional Analysis and Applications, 25(4): 715-726. 

11. Salagean, G. S. 1983. Subclasses of univalent functions. In Complex Analysis—Fifth Romanian-

Finnish Seminar (pp. 362-372). Springer, Berlin, Heidelberg.  

12. Saheb, Audy Hatim, and Aqeel Ketab Al-Khafaji. 2021.  "On the Class of Analytic and Univalent 

Functions Defined by Differential Operator." Journal of Physics: Conference Series. 1818(1). IOP 

Publishing.  


