

Journal of
Science

ISSN: 0067-2904

# On a Subclass of Analytic and Univalent Functions with Positive Coefficients Defined by a Differential Operator 

Aqeel Ketab Al-khafaji<br>Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq

Received: 30/9/2020
Accepted: 28/11/2020

## Abstract

In this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n},\left(a_{n} \geq 0, n \in N=\{1,2, \ldots\}\right),
$$

which is defined in the open unit disk $U=\{z \in C:|z|<1\}$, satisfying the following condition

$$
\begin{array}{r}
\operatorname{Re}\left\{\frac{z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z^{2}\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime \prime}}{(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}}\right\} \\
\geq \beta\left\{\frac{z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z^{2}\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime \prime}}{(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}}-1\right\}+\alpha, \quad(z \in U) .
\end{array}
$$

This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close -to- convexity, inclusive properties, and ( $\mathrm{n}, \tau$ ) -neighborhoods for functions belonging to our class.

Keywords: univalent function; coefficient bounds; inclusive properties; neighborhood; radius of close -to- convexity.
2018 Mathematics Subject Classification: 30C45, 30C50


بواسطة عامل التفاضل


$$
\begin{aligned}
& f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n},\left(a_{n} \geq 0, n \in N=\{1,2, \ldots\}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z^{2}\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime \prime}}{(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}}\right\} \\
& \geq \beta\left\{\frac{z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z^{2}\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime \prime}}{(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}}-1\right\}+\alpha, \quad(z \in U) . \\
& \text { وهذا يقود إلى دراسة خصائص متل حودد المعامل ، متنج Hadamard ، نصف قطر التحدب القريب ، }
\end{aligned}
$$

## 1. Introduction

Let $\mathbb{A}$ denotes the class of all analytic and univalent functions in the unit disk $U=\{z \in C:|z|<1\}$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n},\left(a_{n} \geq 0, n \in N=\{1,2, \ldots\}\right), \tag{1}
\end{equation*}
$$

Let $g \in \mathbb{A}$ has the form

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}, b_{n} \geq 0
$$

and $f$ of the form (1), then the convolution (or Hadamard product) $(f * g)$ of $f$ and $g$ is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) \tag{2}
\end{equation*}
$$

For $f \in \mathbb{A}$, Elhaddad et al. [1] introduced the following differential operator:

$$
D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)=z+\sum_{n=2}^{\infty}\left[1+\left([n]_{q}-1\right) \lambda\right]^{m} \frac{\Gamma_{q}(\delta)\left(q^{\Upsilon} ; q\right)_{n-1}}{\Gamma_{q}(\sigma(n-1)+\delta)(q ; q)_{n-1}} a_{n} z^{n}
$$

where $0<q<1, n, m \in \mathbb{N}, \sigma, \delta, \gamma>0,0 \leq \lambda \leq 1$ and $z \in U$.
Note that:

- If $q \rightarrow 1$ and $\Upsilon=1$, we obtain the operator defined in [2].
- If $q \rightarrow 1, \sigma=0, \Upsilon=0$ and $\delta=1$,we obtain Al-Oboudi operator, see Ref. [3].
- If $q \rightarrow 1, \sigma=0, \Upsilon=1, \delta=1$ and $\lambda=1$, we obtain Sǎlăgean operator, see Ref. [4].
- If $q \rightarrow 1, m=0$ and $\Upsilon=1$, we obtain $\mathbb{E}_{\sigma, \delta}(z)$, see Ref. [5].

Using the operator $D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)$, we introduce the class of analytic functions with positive coefficients as illustrated below.
Definition 1. For ( $\beta \geq 0,0 \leq \rho<1,0 \leq \lambda \leq 1$ ), the function f given by Equation 1, is said to be in the class $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$ if and only if the following inequality is satisfied:

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z^{2}\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime \prime}}{(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}}\right\} \\
& \quad \geq \beta\left\{\frac{z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z^{2}\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime \prime}}{(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}}-1\right\}+\rho, \quad(z \in U) .
\end{aligned}
$$

Many authors have studied various classes of analytic functions with positive coefficients [4,6, 7, 8, 9, $10,11,12]$. In this work, we introduce and study the class $\mathbb{A}(\lambda, \beta, \alpha, \gamma, q, \sigma, \delta)$ of analytic functions with positive coefficients. Also, several properties, such as coefficient bounds, Hadamard product, radius of close -to- convexity, inclusive properties, and ( $\mathrm{n}, \tau$ ) -neighborhoods of functions in our class, are obtained.

## 2. Main results

In this section, we prove the geometric properties of functions in the class $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$.
Theorem 1. A function fof the form (1) belongs to the class $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}(1-\lambda+n \lambda)\left[n(1+\beta)-(\beta+\alpha] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} \leq 1-\rho,\right. \tag{3}
\end{equation*}
$$

where $0 \leq \rho<1,0 \leq \lambda \leq 1, \beta \geq 0$ and $\Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)$ is defined by

$$
\Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)=\left[1+\left([n]_{q}-1\right) \lambda\right]^{m} \frac{\Gamma_{q}(\delta)\left(q^{\gamma} ; q\right)_{n-1}}{\Gamma_{q}(\sigma(n-1)+\delta)(q ; q)_{n-1}} .
$$

Proof. Suppose that the inequality (3) holds true. Then we want to prove that $f \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$. By Definition 1, we have

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z^{2}\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime \prime}}{(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}}\right\} \\
& \quad \geq \beta\left|\frac{z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}}{(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}}-1\right|+\rho,
\end{aligned}
$$

Then, using this fact, we obtain:

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{z\left(D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z^{2}\left(D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)\right)^{\prime \prime}}{(1-\lambda) D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)\right)^{\prime}}\left(1+\beta e^{i \varnothing}\right)-\beta e^{i \varnothing}\right\} \geq \rho, \\
(-\pi<\emptyset \leq \pi)
\end{gathered}
$$

or, equivalently

$$
\begin{align*}
& \operatorname{Re}\left\{\begin{array}{l}
\frac{\left.D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime \prime}\left(1+\beta e^{i \phi}\right)}{(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}} \\
\\
\left.-\frac{\beta e^{i \phi}\left((1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z^{2}\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}\right)}{(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}}\right\} \geq \rho .
\end{array} .\right.
\end{align*}
$$

Let

$$
\begin{aligned}
& C(z)=\left[\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z^{2}\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime \prime}\right]\left(1+\beta e^{i \phi}\right) \\
&-\beta e^{i \phi}\left[(1-\lambda)\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}\right]
\end{aligned}
$$

and

$$
\mathrm{D}(z)=(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}
$$

using the fact that

$$
|C(z)+(1-\rho) D(z)| \geq|C(z)-(1+\rho) D(z)|
$$

$$
(0 \leq \rho<1)
$$

but

$$
|C(z)+(1-\rho) D(z)|=
$$

$$
\mid\left[z-\sum_{n=2}^{\infty} \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n}-\lambda \sum_{n=2}^{\infty} n(n-1) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n}\right]\left(1+\beta e^{i \phi}\right)
$$

$$
-\beta e^{i \phi}\left[(1-\lambda)\left(z-\sum_{n=2}^{\infty} \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n}+\lambda z-\lambda \sum_{n=2}^{\infty} n \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n}\right]+(1\right.
$$

$$
-\rho)\left[z-\sum_{n=2}^{\infty}(1-\lambda+n \lambda) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n}\right] \mid
$$

$$
=\mid(2-\rho) z-\sum_{n=2}^{\infty-2}\left[(n+\lambda n(n-1)+(1-\rho)(1-\lambda+n \lambda)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n}\right.
$$

$$
-\beta e^{i \phi} \sum_{n=2}^{\infty}[n+\lambda n(n-1)-(1-\lambda+n \lambda)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n} \mid
$$

$$
\begin{aligned}
\geq(2-\rho)|z|- & \sum_{n=2}^{\infty}[(n+\lambda n(n-1))+(1-\rho)(1-\lambda+n \lambda)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n}|z|^{n} \\
& -\beta \sum_{n=2}^{\infty}[n+\lambda n(n-2)-1+\lambda] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n}|z|^{n} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& |C(z)-(1+\rho) D(z)| \\
& =\mid\left[z-\sum_{n=2}^{\infty} n \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n}-\lambda \sum_{n=2}^{\infty} n(n-1) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n}\right]\left(1+\beta e^{i \phi}\right) \\
& -\beta e^{i \phi}\left[\begin{array}{l}
\left.z-(1-\lambda) \sum_{n=2}^{\infty} \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n}-\lambda \sum_{n=2}^{\infty} n \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n}\right] \\
-(1+\rho)\left[z-\sum_{n=2}^{\infty}(1-\lambda+n \lambda) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n}\right] \mid \\
=\mid-\rho z-\sum_{n=2}^{\infty}[n+\lambda n(n-1)-(1-\rho)(1-\lambda+n \lambda)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n} \\
\\
\quad-\beta e^{i \phi} \sum_{n=2}^{\infty}\left[n+n \lambda(n-1)-(1-\lambda+n \lambda] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} z^{n} \mid\right. \\
\leq \rho|z|+\sum_{n=2}^{\infty}[(n+n \lambda(n-1))-(1+\rho)(1-\lambda+n \lambda)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n}|z|^{n} \\
\\
\quad+\beta \sum_{n=2}^{\infty}[n+n \lambda(n-1)-(1-\lambda+n \lambda)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n}|z|^{n} .
\end{array}\right.
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& |C(z)+(1-\rho) D(z)|-|C(z)-(1+\rho) D(z)| \geq \\
& 2(1-\rho)|z|-\sum_{n=2}^{\infty}[(2 n+2 n \lambda(n-1))-2 \rho(1+\lambda+n \lambda) \\
& \quad-\beta(2 n+2 n \lambda(n-1)-2(1-\lambda+n \lambda))] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n}|z|^{n} \geq 0 .
\end{aligned}
$$

Or

$$
\sum_{n=2}^{\infty}[n(1+\beta)+n \lambda(n-1)(1+\beta)-(1-\lambda+n \lambda)(\rho+\beta)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} \leq 1-\rho
$$

This is equivalent to

$$
\sum_{n=2}^{\infty}(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\rho)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} \leq 1-\rho
$$

Conversely, suppose that (4) holds. Then we must show that

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{\left.\left[z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}+\lambda z^{2}\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)\right)^{\prime \prime}\right]\left(1+\beta e^{i \phi)}\right.}{(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)^{\prime}}\right. \\
& \left.-\frac{\beta e^{i \phi}\left[(1-\lambda) D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)\right)^{\prime}\right]}{(1-\lambda) D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)+\lambda z\left(D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)\right)^{\prime}}\right\} \geq \rho .
\end{aligned}
$$

By taking the values of $z$ on the positive real axis, where $0 \leq z=r<1$, we have from the above inequality that
$\operatorname{Re}\left\{\frac{(1-\rho)-\sum_{n=2}^{\infty}\left[n\left(1+\beta e^{i \phi}\right)(1-\lambda+n \lambda)-\left(\rho+\beta e^{i \phi}\right)(1-\lambda+n \lambda)\right] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} r^{n-1}}{1-\sum_{n=2}^{\infty}(1-\lambda+n \lambda) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} r^{n-1}}\right\} \geq 0$,
Since $\operatorname{Re}\left(-e^{i \phi}\right) \geq-\left|e^{i \phi}\right|=-1$, then from the last inequality, we have:

$$
\operatorname{Re}\left\{\frac{(1-\rho)-\sum_{n=2}^{\infty}[n(1+\beta)(1-\lambda+n \lambda)-(\rho+\beta)(1-\lambda+n \lambda)] K(n, \mu, \theta) a_{n} r^{n-1}}{1-\sum_{n=2}^{\infty}(1-\lambda+n \lambda) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) a_{n} r^{n-1}}\right\} \geq 0
$$

By letting $r \rightarrow 1^{-}$, we achieve our result.
Next, we get the radius of close - to - convexity for functions belonging to the class $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$.
Theorem 2: Let the function $f$, defined by (1), be in the class $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, then $f$ is close - to - convex of order $\delta(0 \leq \delta<1)$ in $|z|<r(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, where

$$
\begin{equation*}
r(\lambda, \beta, \rho, \gamma, \underset{n}{q}, \sigma, \delta)=\inf \left\{\frac{(1-\delta)(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\rho)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{n(1-\rho)}\right\}^{\frac{1}{n-1}}, n \geq 2 \tag{5}
\end{equation*}
$$

Proof: We must that $\left|f^{\prime}(z)-1\right| \leq 1-\delta$ for $|z|<r(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, then we have

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{n=2}^{\infty} n a_{n}|z|^{n-1}
$$

Thus, $\left|f^{\prime}(z)-1\right| \leq 1-\delta$, if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n}{1-\delta}\right) a_{n}|z|^{n-1} \leq 1 \tag{6}
\end{equation*}
$$

According to Theorem 1, we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\rho)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{(1-\rho)} a_{n} \leq 1 \tag{7}
\end{equation*}
$$

Hence, (7) will be true if

$$
\frac{n|z|^{n-1}}{1-\delta} \leq \frac{(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\rho)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{(1-\rho)}
$$

Equivalently, if

$$
\begin{align*}
& |z| \leq\left\{\frac{(1-\delta)(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\rho)] K(n, \mu, \theta)}{n(1-\rho)}\right\}^{\frac{1}{n-1}}, n \geq 2  \tag{8}\\
& \text { the } \quad \text { is } \quad \text { following } \tag{8}
\end{align*}
$$

Then  $\square$
Theorem 3: Let $f \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$. Then

$$
D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)=\exp \left(\int_{0}^{z} \frac{\beta-\psi(t) \rho}{t(\beta-\psi(t))} d t\right),|\psi(t)|<1, z \in U
$$

Proof: The case $\beta=0$ is obvious. Let $\beta \neq 0$, for $f \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, and

$$
w=\frac{z\left(D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)\right)^{\prime}}{D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)}
$$

We have $\operatorname{Re} w>\beta|w-1|+\rho$,
Therefore,

$$
\left|\frac{w-1}{w-\rho}\right|<\frac{1}{\beta}
$$

Or, equivalently

$$
\frac{w-1}{w-\rho}=\frac{\psi(z)}{\beta}
$$

where, $|\psi(z)|<1, z \in U$.
So, we have

$$
\frac{\left(D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)\right)^{\prime}}{D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)}=\frac{\beta-\psi(z) \rho}{z(\beta-\psi(z)}
$$

After integration, we get

$$
\log \left(D_{\lambda, q}^{\gamma, m}(\sigma, \delta) f(z)\right)=\int_{0}^{z} \frac{\beta-\psi(t) \rho}{t(\beta-\psi(t)} d t
$$

Thus,

$$
\left(D_{\lambda, q}^{\Upsilon, m}(\sigma, \delta) f(z)\right)=\exp \left[\int_{0}^{z} \frac{\beta-\psi(t) \rho}{t(\beta-\psi(t)} d t\right] .
$$

This completes the proof.
Theorem 4. Let $f(z)=z+\sum_{n-2}^{\infty} a_{n} z^{n}, g(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ belong to $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$. Then the Hadamard product of $f$ and $g$, given by $(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}$, belongs to $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$.
Proof: Since $f$ and $g \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, we have

$$
\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)\left[n(1+\beta)-(\rho+\beta] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)\right.}{1-\rho}\right] a_{n} \leq 1
$$

and

$$
\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)\left[n(1+\beta)-(\alpha+\beta] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)\right.}{1-\rho}\right] a_{n} \leq 1
$$

And by applying the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\rho+\beta)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\rho}\right] \sqrt{a_{n}} \\
& \leq\left(\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\rho+\beta)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\rho}\right] a_{n}\right)^{\frac{1}{2}} \\
& \times\left(\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\rho+\beta)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\rho}\right] a_{n}\right)^{\frac{1}{2}}
\end{aligned}
$$

However, we obtain

$$
\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\rho+\beta)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) \sqrt{a_{n}}}{1-\rho}\right] \sqrt{a_{n}} \leq 1
$$

Now, we want to prove that

$$
\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\rho+\beta)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\rho}\right] a_{n} \leq 1
$$

Since

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\rho+\beta)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\rho}\right] a_{n} \\
&=\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\rho+\beta)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta) \sqrt{a_{n}}}{1-\rho}\right] \sqrt{a_{n}}
\end{aligned}
$$

hence,
result.
Theorem 5. Let the function $f$, defined by (1), and $g$, given by $g(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, be in the class $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$. Then, the function $h$, defined by $h(z)=z+\sum_{n=2}^{\infty} a_{n}^{2} b_{n}^{2} z^{n}$, is in the class $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, where $0 \leq \lambda \leq 1,0 \leq \rho<1,0 \leq \Upsilon<1, \beta \geq 0, z \in U$, and

$$
\gamma \leq 1-\frac{(1-\rho)^{2}(1+\beta)}{(1+\lambda)(2+\beta-\rho)^{2}(1-\mu)(1+\theta)-(1-\rho)^{2}}
$$

Proof: We must find the largest $\gamma$, such that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\gamma)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\gamma} a_{n}^{2} \leq 1 \tag{9}
\end{equation*}
$$

Since $f$ and $g$ are in the class $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, we see that

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\rho)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\rho}\right] a_{n}\right\}^{2} \leq 1 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\alpha)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\rho}\right] b_{n}\right\}^{2} \leq 1 \tag{11}
\end{equation*}
$$

Combining the inequalities (10) and (11) gives

$$
\sum_{n=2}^{\infty}\left[\frac{(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\rho)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\rho}\right] a_{n}^{2} b_{n}^{2} \leq 1
$$

But $h \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{\frac{(1-\lambda+n \lambda)\left[n(1+\beta)-(\beta+\gamma] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)\right.}{1-\gamma}\right\} a_{n}^{2} b_{n}^{2} \leq 1 \tag{12}
\end{equation*}
$$

The inequality (12) would obviously imply (9) if

$$
\begin{gathered}
\frac{(1-\lambda+n \lambda)\left[n(1+\beta)-(\beta+\gamma] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)\right.}{1-\gamma} \leq\left[\frac{(1-\lambda+n \lambda)\left[n(1+\beta)-(\beta+\rho \rho] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)\right]^{2}}{1-\rho}\right]^{2} \\
=u^{2},
\end{gathered}
$$

then

$$
\frac{(1-\lambda+n \lambda)\left[n(1+\beta)-(\beta+\gamma] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)\right.}{1-\gamma} \leq u^{2},
$$

Or

$$
\frac{1-\gamma}{1+\beta} \geq \frac{(1-\lambda+n \lambda)\left[n(1+\beta)-(\beta+\rho] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)\right.}{u^{2}-(1-\lambda+n \lambda) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}
$$

The right hand is a decreasing function of $n$ and it is at maximum if $n=2$.
Now

$$
\frac{1-\gamma}{1+\beta} \geq \frac{(1-\lambda+n \lambda)(n-1)(1-\rho)^{2}}{\left[(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\gamma]]^{2} \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)-(1-\lambda+n \lambda)(1-\rho)^{2}\right.}
$$

By simplifying the last inequality, we get

$$
\frac{1-\gamma}{1+\beta} \geq \frac{(1-\rho)^{2}}{(1-\lambda+n \lambda)(2+\beta-\alpha)(1-\mu)(\theta+1)-(1-\rho)^{2}}
$$

or

$$
\gamma \leq 1-\frac{(1-\rho)^{2}(1+\beta)}{(1-\lambda+n \lambda)(2+\beta-\rho)(1-\mu)(\theta+1)-(1-\rho)^{2}}
$$

This completes the proof of theorem.
-
Next, we obtain the inclusive properties of the class $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$.
Theorem 6. Let $\beta \geq 0,0 \leq \rho<1,0 \leq \lambda \leq 1, \gamma \geq 0,0 \leq \mu<1 \quad$ and $\quad 0 \leq \theta \leq 1$. Then $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta) \subseteq \mathbb{A}(0, \beta, \rho, \gamma, q, \sigma, \delta)$, where

$$
\begin{equation*}
\gamma \leq 1-\frac{(n-1)(1-\rho)(1+\beta) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\gamma)](\theta+1) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)-(1-\rho) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}, \tag{13}
\end{equation*}
$$

Proof. Let $f \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, then in view of Theorem 1, we have

$$
\sum_{n=2}^{\infty} \frac{(1-\lambda+n \lambda)[n(1+\beta)-(\rho+\beta)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\rho} a_{n} \leq 1,
$$

We wish to find the value $\gamma$, such that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{[n(1+\beta)-(\beta+\gamma)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\gamma} a_{n} \leq 1 \tag{14}
\end{equation*}
$$

The inequality (13) would obviously imply (14) if

$$
\frac{[n(1+\beta)-(\beta+\gamma)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\gamma} \leq \frac{(1-\lambda+n \lambda)[n(1+\beta)-(\rho+\beta)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\rho}=u .
$$

Therefore,

$$
\begin{equation*}
\frac{[n(1+\beta)-(\beta+\gamma)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{1-\gamma} \leq u, \tag{15}
\end{equation*}
$$

Now, (15) gives the simplification

$$
\begin{equation*}
\frac{1-\gamma}{1+\beta} \geq \frac{(n-1) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{u-\Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}, \quad(n \geq 2) \tag{16}
\end{equation*}
$$

The right-hand side of (16) decreases as $n$ increases and, hence, it is maximum for $n=2$.
So, (16) is satisfied provided that

$$
\frac{1-\gamma}{1+\beta} \geq \frac{(n-1)(1-\rho) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\rho)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)-(1-\rho) K(n, \mu, \theta)}=d
$$

Obviously, $d<1$, and

$$
\gamma \leq 1-\frac{(n-1)(1-\rho)(1+\beta) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)}{(1-\lambda+n \lambda)[n(1+\beta)-(\beta+\rho)] \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)-(1-\rho) \Omega_{\lambda, q}^{\gamma, m}(\sigma, \delta)},
$$

Theorem 7. Let $\beta \geq 0,0 \leq \rho<1, \lambda_{1} \geq \lambda_{2} \geq 0,0 \leq \theta \leq 1,0 \leq \mu \leq 1$. Then, $\mathbb{A}\left(\lambda_{1}, \beta, \rho, \gamma, q, \sigma, \delta\right) \subseteq$ $\mathbb{A}\left(\lambda_{2}, \beta, \rho, \gamma, q, \sigma, \delta\right)$.
The proof of Theorem 7 follows also from Theorem 6.
Now, we determine a set of inclusion relations involving $(n, \tau)$ - neighborhoods. We define the $(n, \tau)$ - neighborhoods of a function $f \in R$ by

$$
\begin{equation*}
N_{n, \tau}(f)=\left\{g \in R: g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \text { and } \sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \tau, 0 \leq \tau<1\right\}, \tag{17}
\end{equation*}
$$

Also, we need the following definition.
Definition 2. The function $f$, defined by (1), is said to be a member of the class $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$ if there exists a function $g \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, such that

$$
\left|\frac{f(z)}{g(z)}-1\right| \leq 1-\ell,(z \in U, 0 \leq \ell<1)
$$

Theorem 8. Let $g \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$ and

$$
\begin{equation*}
\ell=1-\frac{\tau(1+\lambda)(2+\beta-\rho)(1-\mu)(\theta+1) a_{2}}{2\left\{(1+\lambda)(2+\beta-\rho)(1-\mu)(\theta+1) a_{2}-(1-\rho)\right\}} \tag{18}
\end{equation*}
$$

then,

$$
N_{n, \tau}(g) \subset \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta, \ell)
$$

Proof. Let $g \in N_{n, \tau}(g)$. Then, we have from (17) that

$$
\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \frac{\tau}{2}
$$

Also, since $g \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, we have from Theorem 1 that

$$
\sum_{n=2}^{\infty} b_{n} \leq \frac{(1-\rho)}{(1+\lambda)(2+\beta-\lambda)(1-\mu)(\theta+1) a_{2}}
$$

So that

$$
\left|\frac{f(z)}{g(z)}-1\right|<\frac{\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right|}{1-\sum_{n=2}^{\infty} b_{n}} \leq \frac{\tau}{2} \cdot \frac{(1+\lambda)(2+\beta-\lambda)(1-\mu)(\theta+1) a_{2}}{(1+\lambda)(2+\beta-\lambda)(1-\mu)(\theta+1) a_{2}-(1-\rho)}=1-\ell
$$

Thus, by definition, $f \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta, \ell)$, for $\ell$ given by Equation 18 .
Theorem 9. Let $c$ be a real number such that $c>-1$. If $f \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$, then the function $F_{c}$, defined by

$$
\begin{equation*}
F_{c}(z)=\frac{c+1}{z^{c}} \int_{0}^{z} s^{c-1} f(s) d s \tag{19}
\end{equation*}
$$

also belongs to $\mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$.
Proof. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$. Then

$$
\begin{gathered}
F_{c}(z)=\frac{c+1}{z^{c}} \int_{0}^{z} s^{c-1}\left(s+\sum_{n=2}^{\infty} a_{n} s^{n}\right) d s \\
=\frac{c+1}{z^{c}} \int_{0}^{z}\left(s^{c}+\sum_{n=2}^{\infty} s^{c-1+n} a_{n}\right) d s \\
=\frac{c+1}{z^{c}}\left[\frac{s^{c+1}}{c+1}-\sum_{n=2}^{\infty} \frac{s^{c+n}}{c+n} a_{n}\right]_{0}^{z} \\
=z+\sum_{n=2}^{\infty} \frac{c+1}{c+n} a_{n} z^{n}
\end{gathered}
$$

Hence,

$$
F_{c}(z)=z+\sum_{n=2}^{\infty} \frac{c+1}{c+n} a_{n} z^{n}
$$

Therefore,

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{(c+1)(1-\lambda+n \lambda)[n(1+\beta)-(\rho+\beta)] K(n, \mu, \theta)}{(c+n)} a_{n} \\
& \leq(1-\lambda+n \lambda)[n(1+\beta)-(\rho+\beta)] K(n, \mu, \theta) a_{n} \leq 1-\rho
\end{aligned}
$$

Hence, $F_{c} \in \mathbb{A}(\lambda, \beta, \rho, \gamma, q, \sigma, \delta)$.

## References

1. Elhaddad, S., Aldweby, H., \& Darus, M. 2018. Neighborhoods of certain classes of analytic functions defined by a generalized differential operator involving Mittag-Leffler function. Acta Universitatis Apulensis, 18(55): 1-10.
2. Kassar O. N. and Juma A. R. S. 2020. Analytic functions, Subordination, q-Ruscheweyh derivative, Hadamard product, Univalent function. Iraqi Journal of Science, 61(9): 2350-2360.
3. Aubdulnabi, F. F., \& Jassim, K. A. 2020. A Class of Harmonic Univalent Functions Defined by Differential Operator and the Generalization. Iraqi Journal of Science, 1440-1445.
4. Shaba, T. G. and Sambo, B. 2020. A Subclass of Univalent Functions Defined by a Generalized Differential Operator. Int. J. Open Problems Complex Analysis, 12(2).
5. Srivastava, H. M., Frasin, B. A. and Pescar, V. 2017. Univalence of integral operators involving Mittag-Leffler functions. Appl. Math. Inf. Sci, 11(3): 635-641.
6. Al-Khafaji, Aqeel K. 2021. "On Subclass of Meromorphic Analytic Functions Defined by a Differential Operator." Journal of Physics: Conference Series. 1818(1). IOP Publishing.
7. Elhaddad, S., Aldweby, H., \& Darus, M. 2018. Neighborhoods of certain classes of analytic functions defined by a generalized differential operator involving Mittag-Leffler function. Acta Universitatis Apulensis, 18(55): 1-10.
8. Al-Khafaji, Aqeel Ketab. 2020. "On initial Coefficients Estimates for Certain New Subclasses of Bi-Univalent Functions Defined by a Linear Combination." Computer Science, 15(2): 491-500.
9. AL-khafaji, Aqeel Ketab, Waggas Galib Atshan, and Salwa Salman Abed. 2019. "Neighborhoods and Partial Sums of a New Class of Meromorphic Multivalent Functions Defined by Fractional Calculus." Karbala International Journal of Modern Science 5(2): 3.
10. Al-khafaji, Aqeel Ketab. 2020. "Extreme Points of a New Class of Harmonic Multivalent Functions Defined by Generalized Derivative Operator Involving Mettag-Leffer Function." Nonlinear Functional Analysis and Applications, 25(4): 715-726.
11. Salagean, G. S. 1983. Subclasses of univalent functions. In Complex Analysis-Fifth RomanianFinnish Seminar (pp. 362-372). Springer, Berlin, Heidelberg.
12. Saheb, Audy Hatim, and Aqeel Ketab Al-Khafaji. 2021. "On the Class of Analytic and Univalent Functions Defined by Differential Operator." Journal of Physics: Conference Series. 1818(1). IOP Publishing.
