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Abstract

In this paper, a differential operator is used to generate a subclass of analytic and
univalent functions with positive coefficients. The studied class of the functions
includes:

f(2) = Z+Zanzn,(an >0neN={12.1D,

n=2
which is defined in the open unit disk U = {z € C:|z| < 1}, satisfying the following
condition

Re [ 2(D; 7" (0,8)f (2))' + 22*(D; " (0, 8)f (2))" }
(1 =D} (a,8)f (2) + A2(D] " (0,8)f (2))'
2(Dy " (0,8)f (2))' + A2*(D} ;" (d,8)f (2))"
{(1 =D (0, 00f () + 42D} (@, D D) 1} to el
This leads to the study of properties such as coefficient bounds, Hadamard product,

radius of close —to- convexity, inclusive properties, and (n, t) —neighborhoods for
functions belonging to our class.

Keywords: univalent function; coefficient bounds; inclusive properties;
neighborhood; radius of close —to- convexity.
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f(z)=z+Zan " (a,=0,neN={12..1}),

sl da ) (gaas sd‘; U={z€C:|z| <1} il sansll ja B 448 pndl
z2(Dy"(0,8)f (2))' + A2*(D} " (0,8)f (2))"
[(1 - l)Dym(G 8)f (2) + lZ(Dym(G 8)f (2)) }
{ z2(Dy"(0,8)f (2))' + A2*(D} ;" (d,8)f (2))" 1} ta e
1- )Dym(d 8)f (2) +/12(Dym(0 8)f (2)) ' '
¢ cuall Qaaill hd Caas « Hadamard g ¢ debaall 2gas Jie (ailiad dul 50 ) i 1
Lo ) i il ) gall ol sad) — (1 en ) s Alalil) pailadl)

1. Introduction
Let A denotes the class of all analytic and univalent functions in the unit disk U = {z € C: |z| < 1} of
the form:

f(z)=z+ 2 az",(a, =20,neN={12,..}), €Y)
n=2

Let g € A has the form

g(z)=z+ Z b,z", b, =0

n=2

and f of the form (1), then the convolution (or Hadamard product) (f * g) of f and g is defined by
(f @ =2+ 2 anbaz" = (g )(2), @
For f € A, Elhaddad et al. [1] mtroduced the followmg differential operator:
L, (a%aq), ,
DY™(qg,8 z=z+21+ n], — 1)A™ a a,z"
ra (7,01 ) (e = DA =D+ 5) (@ D ™

n=2
where 0 <g<1,n,meN,0,8,y>00<A1<1landzeU.

Note that:

o If g - 1and Y = 1, we obtain the operator defined in [2].

. Ifq - 1,0 =0,Y =0and é = 1,we obtain Al-Oboudi operator, see Ref. [3].

. Ifq—>1,0=0Y=1=1and A1 =1, we obtain Silagean operator, see Ref. [4].
o Ifq > 1,m=0andY = 1, we obtain E, 5(z), see Ref. [5].

Using the operator DYm(a 6)f(z), we introduce the class of analytic functions with positive

coefficients as iIIustrated below.
Definition 1. For(f >0,0<p < 1,0 <1< 1), the function f given by Equation 1, is said to be in
the class A(4, B, p,v,q, 0, 6) if and only if the following inequality is satisfied:
2(D;"(0,8)f (2))' + Az* (D} " (0,8)f (2))"
A= D@, 87 () + 42D 0, ) @)’
z(Dy"(0,8)f(2)) + 22*(Dy 7" (0, 8)f (2))"
¥ o —1:+p, (z € ).
{(1 ND; " (a,8)f (2) + Az(D) " (0,8)f (2))’ }

Many authors have studied varlous classes of analytlc functions with positive coefficients [4,6, 7, 8, 9,
10, 11, 12]. In this work, we introduce and study the class A(4, 3, «,v,q,0,8) of analytic functions
with positive coefficients. Also, several properties, such as coefficient bounds, Hadamard product,
radius of close —to- convexity, inclusive properties, and (n, t) —neighborhoods of functions in our
class, are obtained.
2. Main results

In this section, we prove the geometric properties of functions in the class A(4,B,p, v, q, 0, 5).
Theorem 1. A function fof the form (1) belongs to the class A(4, 8, p, v, q, 0, 6) if and only if
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[oe]

Z(1—A+n,1)[n(1+/3)—(/3+a]rz,{'m(a,6) a,<1-p, 3)
n=2

where 0 < p < 1,0 <2< 1,4 > 0and 2};"(g,6) is defined by
q((s)(qy; q)n—l

Lo(n—1) +6)(@ Dn-1
Proof. Suppose that the inequality (3) holds true. Then we want to prove that f € A4, 8,p,7,q, 7, 6).
By Definition 1, we have

2(D)7 (0, 8)f(2))' + Az (D)2 (0, 8)f (2))"
e {(1 D)7 (0,8)f (2) + 12(D) 7 (0,6)f (2))' }
2(D)a" (0, () +22(D)3" (0, Of () 1‘
(1= DD} (0,8)f (@) + Az(D) 7 (0, )f (2))’

07(0,8) = [1+ ([n]q — 1))

Then, using this fact, we obtain:
re { 2(D;7(0,6)f (2)) + Az2 (D} (0,8)f (2))"
(1 =)D, (0,8)f (2) + 22(D, " (0,6)f (2))'
(—r<@P<m

( + ﬁem) — ,[)’ew)} =p

or, equivalently
Dy (0,8)f(2))' + Az(Dy," (0, 8)f (2))" (1 + pe'?)
(1 =)D} (0,8)f (2) + 22(D} " (0, 8)f (2))'

Bei® (1 = MDY (0,8)f (2) + Az2 (D} (0,6)f (2))')
- ym y.m ’ = p 4)
(1= D)D) (0,6)f (2) + Az(D} (0, 8)f (2)
Let
C@) = (D)3 (0, O)f @) + 222D (0, )f (2))"| (1 + Be'?)
—pei®|(1-2) (DY’”(a 8)f(2)) + Az(DYo (0, 8)f (2))']
and

D(z) = (1 =)D} (0,8)f (2) + A2(D}," (3, 8)f (2))’
using the fact that
IC(z) + (1 = p)D(2)| = |C(2) — (1 + p)D(2)|
0=<p<1)
but
IC(z) + (1 - p)D(2)| =

[Z_Zn 2.(2)’771(0 8) ayz™ —lz:n(n—l).(z ™(0,8) anz"| (1 + Be'®)

— Bel® [(1 —)(z - Z 0y (0,68) anz™ + Az —AZ n 2,7 (0,8) apz™| + (1

) [z — Z(l —A+nd) .Qym(a 6) a,z ]
n=2

=|(2-p)z—- Z[(n+/1n(n— D+ 1 -p)(1—-21+na)] .(Zym(cr 8) apz™

n=2

— Bet® Z[n +Ain(n—1)— (1 — 1+ ni)] Qym(a &) az™

n=2

2002



Al-khafaji Iragi Journal of Science, 2021, Vol. 62, No. 6, pp: 2000-2008

>2-p)lz| - Z[(n + An(n — 1)) +(1-pA-21+ n/l)]ﬂl{';n(a, &) ay|z|™

- BZ[n +n(n —2) — 1+ A1 20" (0,8) anlzI™

Also,
|C(z) — (1 + p)D(2)]

[z— Z ™ (0, 8)anz" —AZ n(n—1) Q1™(0,8) anz"

(1+ pe'®)

n=2

— Be'® [z -(1-2 Z 07 (0,8)an 2" — 2 Z 02y (0,8) anz ]
n=2 n=

-(1+p)

z— 2(1 — 2 +nd) 27™(0,6) anZ"]
n=2

mM+inn-1D)-1-p)(A-21+ nl)]ﬂym(a 8ay, z"

|
M 8

2

S
1l

— Bei® E[n +nln—-1)—-(1-1+ n/l].Qym(a dayz"

n=2

o)

< plzl+ ) [(n+nGe— D) = (L +p)(A = A+ D)7 (0, )ayl2I"

n=2
+BZ[n FrAn—1) — (1= 1+ D] 217 (0,8) anlzI™
n=2

On the other hand, we have
IC(2) + (1 = p)D(2)| — LE(Z) —1+pD@)|=

201 = p)lzl = ) [(2n+2nA(n = 1) = 2p(1 + 1+ nd)
nz—ZB(Zn +2ni(n—-1)-2(1 -1+ n/l))]()ym(a 8)ay|z|™* = 0.
Or

o)

Z[n(l +8) +nin = DA +B) — A = A+ n)(p + P (0,8)an < 1—p
This is eqﬁiz\?alent to

D A =2+nDA+B) B+ 0, 8an < 1-p

Conversely, supposentzhzat (4) holds. Then we must show that
re {[z(DYm(a 8f(2)) + Az%(D (0, 8)f (2)))"](A + pe'P
(1= DD (0,8)f (2) + Az(D, " (0, 8)f ()"
ﬁe“”[(l D)™ (0,8)f (2) + Az(DI;”(a 8f(@)]
(1= DD (0,8)f (2) + Az(D, )" (0,8)f ()" } -

By taking the values of z on the positive real axis, where 0 < z =71 <1, we have from the above
inequality that

a-p - 3% 2[n(1+Be®)(1 =2 +n2) — (p + Be'®)(1 - 2+ nD)]|Q) ) (0,8)a,r™ .
>

1-Yr ,(1—2+ nl)[)ym(a &a,rn1 -
Since Re(—e'?) > —|e'?| = —1, then from the last inequality, we have:
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(1 p) = Yn=a[n(1+ YA =2+ nd) = (p + f)(A = 2+ nD)]K(n, 1, )a,r ! -0
1=y (11— /1+n/1).(zym(a &a,rn-1 -

By letting r — 17, we achieve our result.
O

Next, we get the radius of close — to — convexity for functions belonging to the class

A, B,p,7,9,0,0).
Theorem 2: Let the function f, defined by (1), be in the class A(4, 8, p,v, q,0,8), then f is close — to
—convex of order §(0 < 6 < 1)in|z| <r(4,B8,p,v,q, 0,8), where

—8)(1-21+nk - Y 5T
(LB pr7.0,0,8) = inf 1-6)(@1 +n)[7:l((114;ﬁ/’))) B +pl;, (o )} nz2 (5)

Proof: We must that |f'(z) — 1| <1 -6 for |z| <r(4,B,p,v,q,0,8), then we have

') =112 ) nagla™?

n=2

>

n=2

Thus, [f'(z) — 1] < 1 — 6, if

5) a |z < 1. (6)

According to Theorem 1, we have

2 A-2+n)[n(1+p)— (B + p)]ﬂym(a 5)

a7 w0

Hence, (7) will be true if
nlz" (A =2+ D) +4) ~ B+ )25 (0,0)
1-6 1-p)

Equivalently, if
1

2] < {(1 — 61 -2+n)[n1+p) - (B +p)IKn, u,é’)}" 1’n - ®)
n(1l—p)
Then the theorem is following form (8).

O
Theorem 3: Let f € A(4,B,p,v,q,0,6) . Then

Ym _ “B=yp®)p
Dy (0,8)f(2) = exp( i —t(ﬁ—lp(t))dt>'|lp(t)| <1l,zeU

Proof: The case f = 0 is obvious. Let 8 # 0, for f € A(4,B,p,v,q,0,6), and
_2(Dy;"(0,8)f (2)’
DyM(0,8)f (2)

We have Rew > Blw —1| +p,

Therefore,
w-—1 1
w—pl B
Or, equivalently
w—-1 Y2
w—p B

where, |Y(2)| < 1,z € U.
So, we have

(D170, 8)f (2))' _B—y@p
Dy, 8)f(z) 2B ~Y(@)
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After integration, we get

“B—y®p
log(DAq (o, 6)f(Z)) . mdt,
Thus,
Ym _ z ﬁ - l/)(t)p
(D/Lq (o, 5)f(z)) = exp[ . —t(ﬁ e dt|.

This completes the proof.

Theorem 4. Let f@)=z+Yna,2" g@)=z+Yp-2a,2z" belong to
A, B,p,v,q,0,8). Then the Hadamard product of f and g, given by (f * g)(z2) = z + Yn—p an b, 2",
belongs to A(4,B,p,7,q,0,6).

Proof: Since f and g e Ax(/l B,p,v,q,0,6), we have

z (1= 2+n)[n(1+B) — (p + B10) " (0,8)]
1-p

n=21L
and
o [ =2+ n) (1 + B) = (a + 12} (0,8)]
2 =
And by applylng the Cauchy -Schwarz inequality, we have

[(1 A+nA)[n(1 +ﬂ) — (p + B)] Qym(a 6)

IIM

|

o [ =2+ nD) [+ ) = (o + P17 (0,6)
. Z o

A=-2+n)[nA+pB) - (p+p)] rzym(a 6)] )

oo,

However, we obtain
[(1 — 2+ 0D+ B) — (o + B0}y (0,6)/a,
1-p

IMSL

Now, we want to prove that

i [(1 —1+n)[n(1+B) - (o + P (o, 5)‘ .

n=2 1= p

Since

i [(1 A+nd)[n(1+B) — (p + B (o, 5)] .

n=2 1 B p "

o [ =2+ )1+ B) = (p + 1L (0,8)\/ay
2 =

hence, we ” get the required result.
O

Theorem 5. Let the function f, defined by (1), and g, given by g(z) =z + Y5-, a,z", be in the
class A(4, 8,p,v,q,0,8). Then, the function h, defined by h(z) = z + Y-, a2b2z™, is in the class
A, B,p,v,q,0,8),where0<1<10<p<1,0<Y<1,B=0,z€U, and
y<1o (1=p)*(1+h)
T A+HR+E-pA-wA+) -2 -p)?
Proof: We must find the largest vy, such that
i (1= 2+nD)n(1+ ) - B+ (o, 28

1-vy

2 <1, 9)
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Since f and g are in the class A(4, 8, p, v, q,d,8), we see that

o ([ =2+ n)[n(1 + B) — (B + p)]2) 7" (0, 8)]
Z a,t <1, (10)
= 1 - p
and
i (1 -2 +nd)[n(1 +1,6>: (B + D]} (0,6)] b 2 -1 an
Combining the inequglzi'[zieé (10) and (11) gives
[ -2+ n)[n@+B)— (B + Py (0,6)
Z 1=, a’b? <1,
Buth € A4, 8,0,y Z ,0), if and only if
i {(1 1+ n)[n(1 +1ﬂ_); (B +v12)) (o, 5)} b <1 a2
=2

The inequality (12) would obviously imply (9) if

(1= 2+nD)[n(1+ ) — (B +v12) (0,8) [(1 — A+ 0D +B) — (B + ppl T (0, 8|’

1-y 1-p
= uz,
then
1-2+n)n(1+B)—- B+ y].()ym(a 6)
1—y =u%
Or
1—y _ =2+ +p)— (B +pl 2] (d,6)
>
1+8 uz—(l—/1+n/1).(2;:’;n(a,5)
The right hand is a decreasing function of n and it is at maximum if n = 2.
Now
1-y (1-24+n)(n—1D(1 - p)?

>
L+B 7 [ -2+ 2D +B) - B +v]] 217(0,8) = (1 = A+ nA)(1 - p)?
By simplifying the last inequality, we get
-y (1-p)°
1+8 (1 A+n)QC+p—a) 1 —w@+1)— 1 —-p)?’

or

1o (1-p)*(1+p) |

T (A-2+nH2+ B -p)A-w(O+1) - (1 -p)?

This completes the proof of theorem.
O
Next, we obtain the inclusive properties of the class A(4, 8, p,v,q, 0, 5).
Theorem 6. Let B=200<p<10<1<1y=200<u<1 and 0<6<1. Then
A, B,p,v.q,0,6) € A(0,B,p,7,q,0,8), where

B (n =D -p)A+ B2 (0,6)
A=2+n)[nA+p) - B+ + 1)!2“"(0 ) —(1- p)ﬂym(a &)’
n= 2.
Proof. Let f € A4, B, p,v,q,0,8), then in view of Theorem 1, we have

(13)
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o (1= 2+n)[n(1+B) = (p + B)I2) 7" (o, 28
We wish to find the value y, such that
i [n(1+B) = (B + 112y, (0,8)
1-y
The inequality (13) would obV|oust imply (14) if
[n(1+8) - B+ 11}, (o, 6) (1=2+n)[n1+B) = (p + B (0,6)

a, <1 (14)

1—y 1-5 = U.
Therefore,
[n(1+B) — (B + 112} (a,6)
<u, (15)
1-vy
Now, (15) gives the simplification
1—y _ (n=107"(0,6)
Vs (n = 2). (16)

1+ u- Qym(a 5)
The right-hand side of (16) decreases as n increases and, hence it is maximum for n = 2.
So, (16) is satisfied provided that

1-y (n =11~ )2} (0,6)
1+5° 1-2+nD)[n1+p)— B+ p)m”‘(a 5 —A—pKm o)
Obviously, d < 1, and

(n= 1D -p)(A+ )25 (0,8)
(1=2+n)n +B) — (B + ]2} (a,6) — (1 — p)2} " (0,6)
Theorem 7. Let $ >200<p<1,1,24,200<6<1, 0 <u<1. Then, A(A44,B8,p,7,q,0,6) S
A(AZI B' pYvY,q,0, 5)
The proof of Theorem 7 follows also from Theorem 6.

Now, we determine a set of inclusion relations involving (n,7) — neighborhoods. We define the
(n, ) — neighborhoods of a function f € R by

n,(f)—{gERg(z)—z+2bnz andanan—b|<TO<T<1 17)

Also, we need the following definition.
Definition 2. The function f, defined by (1), is said to be a member of the class
A4, B,p,v,q,0,0) if there exists a function g € A(4, B, p,7,q, 0, §), such that

f(2)
9@
Theorem 8. Let g € A4, B8,p,v,q,0,6) and
oo TA+ D@+ - p)A - WO +Day a8
21+ D2+ -p)A—w)(O + Da; — (1 - p)}
then,  N,.(g9) cAAB,p.v,q9,0,6,7).

y<1-

<1-2,(z€U,0<¢<1).

Proof. Let g € N, (g). Then, we have from (17) that

znlan—b |<§

n=2

Also, since g € A4, B,p,7, g0, &), we have from Theorem 1 that

Z b (1-p)
n = A+DQR+-1VDA—-w(O + Da,
So that
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1-4.

f(2) ’ Yn=alan —bul _ A+DZ+L-DA -+ Da,

9(2) 1-Yn=2bn — 2 A+DC+B-DA-w(E+Da, -1 —p)
Thus, by definition, f € A(4,8,p,v,q,0,6,%), for £ given by Equation 18.

Theorem 9. Let ¢ be a real number such that c > —1.If f € A(4,8,p,v,q,0,8), then the function F,,
defined by

c+1 ‘
@) == [ s s, (19)
0
also belongs to A(4, 8,p,v,q,a,6).

Proof. Let f(z) =z+ Yn-,a,z™ Then

ZC
0 n=2
c+1[sctt © gctn z
= — a
z¢ |c+1 2 c+n "
n=2 0
[ee]
c+1
=z+ Z a,z",
c+n
n=2
Hence,
[ee]
F.(2) 4 Z c+1 n
zZ)=2z a,zm.
¢ c+n "
n=2
Therefore,

i (c+ DA =2+ nm)[n1 +p) — (o + BIK(1.6)
i (c +n) n

SA-2+n)nA+p)—(p+BIKMu0)a, <1-p
Hence, F. € A4, 8,p,7,q,0,9).
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