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Abstract

A dynamical system describes the consequence of the current state of an event or
particle in future. The models expressed by functions in the dynamical systems are
more often deterministic, but these functions might also be stochastic in some cases.
The prediction of the system's behavior in future is studied with the analytical
solution of the implicit relations (Differential, Difference equations) and
simulations. A discrete-time first order system of equations with quadratic
nonlinearity is considered for study in this work. Classical approach of stability
analysis using Jury's condition is employed to analyze the system's stability. The
chaotic nature of the dynamical system is illustrated by the bifurcation theory. The
enhancement of chaos is performed using Cosine Chaotification Technique (CCT).
Simulations are carried out for different parameter values.
Keywords: Discrete Dynamical System, quadratic maps, Cosine Chaotification
Technique, chaos, bifurcation
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1. Introduction
The dynamical systems with a given initial point can be solved with time progressing in small
steps to determine the future position of the event under consideration. Finding a trajectory or orbit

that describes the system required more complicated mathematical techniques before the arrival of
computers and only handful of dynamical systems were dealt with. Emergence of the technological
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advancement played a vital role in simplifying the process of finding orbits. Mathematical formulation
of the tractable events in nature helps in answering various questions that are posed on the dynamics
of the event by carrying out theoretical and numerical analyses. The mathematical modeling of real
life can be classified broadly as continuous time models (differential equations) and discrete time
models (difference equations, maps). The behavior of discrete dynamical systems is very complex to
analyze their behavior. It needs more study to understand how the dynamics of the system can be
working. Many researchers used different methods for analyzing the behavior of discrete dynamical
systems [5, 7, 12, 18 ]. The nature of the dynamical systems can be studied by quantitative or
qualitative approaches. The quantitative approaches give clear understanding of the systems under
consideration. But it is not always possible to follow quantitative approaches. In the case of nonlinear
systems it is more suitable to follow a qualitative approach, since finding the analytical solutions are
not possible for every model constructed. Since most of the real life models are nonlinear in nature, a
qualitative approach proves to confer a crucial study of dynamical behaviors of the system. For this
study, it is necessary, but highly nontrivial, to detect the fixed point of the discrete dynamical systems
and analyze the stability and bifurcation of each fixed point. The discrete dynamical systems have
been studied in several areas of physics, biology, neural networks, and many other [3, 9, 13, 15, 17,
20]. The stability analysis and chaos of the discrete ecological systems were studied by various authors
[8, 10, 11, 17, 14]. The chaotic study on ecological models was of greater interest to mathematicians
and scientists all over the world [1, 6, 14, 19]. Qamar Din et al. established the strategy of establishing
the chaos control for a discrete predator-prey system [4]. In this study, we investigate the qualitative
behavior of this system:

le+1 = Ale + ByTl (1)

Yn+1 = Cxf + Kxpy, + Ey3
where A+ 1,B # 0, C,K,E > 0 are real parameters.
The system was investigated earlier [16], where the authors used an algebraic approach for stability
and bifurcation methods for analyzing bifurcations and chaos. They dealt with the parameter
conditions for establishing the two kinds of bifurcations.
In this study, the analysis of stability of the dynamical system (1) for a non-trivial fixed point is
carried out using the Jury's condition. The chaotic nature of the system is described with the
bifurcation diagrams and the change in the behavior is discussed with the phase portraits. The paper is
formatted with stability conditions in section 2, while examples are provided in section 3. The
bifurcation theory is described in section 4 and the anti-chaos control is implemented in section 5,
followed with conclusions.
2. Stability Conditions of System (1)

This section presents the fixed points of system (1) and the stability conditions

that are obtained from the eigenvalues of the Jacobian matrix at the fixed point.
The fixed points of system (1) are F, = (0,0) and

F o= ( (1-A4)B (4-1)? )
1 A2E— ABK + B2C— 2AE + BK + E' A2E— ABK +B2C—2AE + BK +EJ"’

This fixed point exists only when A?E + B2C + BK + E + ABK+2AE.We use the following
lemma to analyze the stability of fixed points of system (1), which can be evaluated by the relations
between roots and coefficients of a quadratic equation.

Lemma 1.[12]. Let P(1) = A2 — WA+ V . Suppose that P(1) > Oand A, and A, are two

roots of P(1) = 0. Then

(i) [l < 1and |2,] < lifandonlyif P(-1) > OandV < 1,

(i) [A4;] < 1and|A,] > 1 (or[A,] > 1and]|A,| < 1)ifandonlyif P(—1) < O;

(iii) [A;] > 1and |A,| > 1lifandonlyif P(—1) > OandV > 1;

(iv) A, = —land|A,| # lifandonlyif P(—1) = Oand W # 0, 2;

(v) A and A, are complex and [A;] = |1,] =1 ifandonly if W2 —4V <OandV = 1.

The nontrivial fixed point (F;) is considered for the analysis of stability of system (1), which can be
determined by the absolute value of the roots of the equation obtained from the Jacobean matrix at
(F;). Jacobean matrix at F; is

1@=|g ol @
where
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0 - (A— DI[K(A - 1) — 2BC]
V7 A2E — ABK + B2C— 2AE + BK + E

and
_ (A-1)[-KB +2E(A-1)]
‘QZ Y 2
A“E— ABK + B“C— 2AE + BK + E
The characteristic equation of J (x, y) is written as A2 — Trace[] (F;)] + Det[] (F;)] = 0.
Here

(4— D[-KB + 2E(A - 1)]

T F = A +
race[] (F;)] A2E — ABK + B?C — 2AE + BK + E

and
(A— 1)(2A%E — 2ABK + 2B%*C — 2AE + BK)
A?E — ABK + B2C — 2AE + BK + E

Det[] (F})] =
The eigenvalues are given by
_1[(4%E — A?BK + AB?C — 3AE + BK + 2E) /A

Aio = —
1279 A2E — ABK + B2C — 2AE + BK + E

where
A= A®E? — 2ASBEK + 2A*B%CE + A*B?K? — 2A3B3CK + A’B*C? — 8A°E? +
16A*BEK — 16A3B%CE — 8A3B?K? + 16A?B3CK — 8AB*C? + 26A*E? — 44A3BEK +
34A%B2CE + 184%B%?K? — 26AB3CK + 8B*C? — 44A3E? + 56 A*BEK — 28AB*CE —
16AB?K? + 12B3CK + 41A%E? — 34ABEK + 8B?CE + 5B?K? — 20AE? + 8BEK + 4E?.
We recall some definitions of topological kinds for a fixed point F; . F; is called a sink if |1;] < 1 and
[2,] < 1. A sink is locally asymptotic stable. (x,y) is called a source if [A;| > 1and [1,] > 1. A
source is locally unstable. F; is called a saddle if |A;] > 1and|A,] < 1 (or [1;]| < 1and|4,] > 1).
Also, F; is called non-hyperbolic if either [A;] = 1 or |A,] = 1. Using Jury's criterion [5, 12], we
obtain the condition for local stability of the fixed point F;.
Proposition 2. The steady state F; of system (1) is
0] Sink pointif Y <E <,
(i) Saddle if E < min {y,y,}.
(iii)  Sourceif E > max{y,y,}.
(iv) Non-hyperbolic if one of the following conditions holds

(1) E = .

(2 E = ;.

where
_ 3A%’KB — 3AB2C — 2ABK + CB? — KB
- 3A3 — 3A2 — 3A + 3

and

_ 2AZBK — 2AB2C — 4ABK + 3B?C + 2BK
e 2A3 — 5A2 + 4AA— 1
Proof: According to Lemma 1, the characteristic polynomial is given by
P(1) = A% — Trace[] (F,)] + Det[J (F,)]
0] In viewing condition (i) of Lemmal, the fixed point is a sink (J4,] < 1,]|1,| < 1) iff
P(=1) > 0,Det[] (F;)] < 1.
First, we shall derive the condition for stability using P(—1) > 0.
P(—1) = 3[A%E — A’E — A’BK + AB?>C+ E — AE]— B?C + KB + 2ABK >0

yields
£ 3A’KB — 3AB*C — 2ABK + CB* — KB _
343 - 34234 + 3 B

Det[] (F;)] < 1,then
< 2A%BK — 2AB?C — 4ABK + 3B%C + 2BK _

2A3 — 5A2 + 4A— 1 Yu.
By combining both conditions, we have
342KB— 3AB%C— 2ABK + CB*— KB <E< 2A%BK- 2AB2C- 4ABK + 3B2C + 2BK
34A3-3A42-34+3 2A3-5A2+ 4A-1
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Hence, the fixed point F;isasinkif Y < E < ;.

(i) From condition (ii) of Lemma 1, the fixed point is a saddle
(Ml < 1,121 = 1 (or |24] = 1,12,] < 1)) iff P(=1) <0, Detl] (F;)] < 1.

Similar to the above proof, the fixed point F;is a saddle if E < min{y, ¥ }.

(iii)  Utilizing condition (iii) of Lemma 1, the fixed point is a source (|A;] > 1,[A,] > 1) iff
P(=1) > 0, Det[] (F;)] > 1.

Thus, the fixed point F; is a source if E > max{y, y,}.

(iv) From conditions (iv) and (v) of Lemma 1, the fixed point F; is non-hyperbolic if one of the
following holds:

1  E=y
(2) E=1,
3. Numerical Results for Stability

This section exhibits the time line and phase trajectories for (1) around the interior fixed point F; .
Example 1. The phase portrait for system (1) with time plots are given in Figures 1(I — II) for
A =107, B = —-0091,C = 04,E = 01,and K = 2, where the initial position is at x = 0.4
and y = 0.3, the interior point is F, = (0.385071, 0.296208). Thus 1 + Trace[] (F})] +
Det[] (F;)] = 3.8687 = 0and Det[] (F;)] = 0.969383 < 1, which satisfies the Jury's criteria.
Also, |1, 5| = 0984572 < 1. Hence, the system attains stability.

0 (1
0.35
0.45
—x(n)
—y(n)
0.4\ |
Z 03
0.35 =
03
0- 1 I I
025 7 =55 56 o Ba7 0.38 0.39 0.4
Time (n) x(n)

Figure 1 : (1) Time plot showing the stability of system (1), (1) Spiral phase trajectory of system (1)
towards F; .

Example 2. Closed orbits for system (1) are presented in Figures 2(I — II) for the following
parameter values A = 1.07,B = —0.0356,C = 054,F = 0.01,K = 2 with initial position at
(x = 04, y = 0.9). Using the values, we get 1 + Trace[] (F;)] + Det[] (F;)] = 3.987739 > 0
and Det[] (F;)] = 1.028869 > 1. Numerically, Jury's criterion is satisfied. Also, the eigenvalues
are |1, ,| = 1.014332 > 1. Hence, the system is unstable.

(N

(1

x{n)

y(n)

y(n)

oS NATVTYYYVY

0.35 0.4 0.45 0.5 0.55 00 260 4(')0 660
x(n) Time(n)

Figure 2: (1) Oscillatory behavior of system (1), (I1) Phase trajectory of the system showing a periodic
orbit near F;.
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4. Neimark Sacker Bifurcation

Bifurcation is a sudden change in the nature of the equilibrium and periodic states of the system.
The study of the trajectories and their classification is crucial in understanding the behavior of
dynamical systems. The trajectories of any dynamical system may not always be simple and periodic.
The analysis of the different aspects of trajectories leads to the study of qualitative behaviors. In the
case of a simple dynamical system, knowing the trajectories is more often sufficient, but in most
dynamical systems, realization of individual trajectories is very complicated. The parametric influence
on the trajectories is what makes the study interesting and attracting. The change in parameters of the
system may result in abrupt changes of the trajectories from periodical motion to rather erratic and
random movements. Such different states of changes in parameters are captured using the bifurcation
diagrams. The bifurcation analysis of system (1) is using the traditional bifurcation technique. When
the condition (iv.2) of Proposition (2) holds, a pair of conjugate complex eigenvalues of J(F;) are
obtained. The condition (iv.2) can be written as:

NSp, = {(E,A,B,C,K).E =y,,A+# 1,B # 0,C,K > 0}. 3)

By varying E in the neighborhood of NSg,, Neimark-Sacker Bifurcation will appear. The value of the
bifurcation parameter (E) is varied in the range [0.2,0.54] and values of other parameters A =
105 B = —.05C = 06,K = 2 are fixed with the initial state at (x,y) = (0.3,0.3). The
Neimark-Sacker bifurcation emerges from the fixed point (0.343749,0.343749) at E =
0.3090909091. It shows the correctness of Proposition (2). At E = 0.3090909091, the eigenvalues
are [1,,| = 0.9750 + 0.2222i, with |4, ,| = 1. Here the Neimark —Sacker bifurcation for system (1)
in (E —x) plane and (E — y) plane are given in Figure 3(I-11). Lyapunov exponent in Figure 3(I11)
describes chaos in system (1). The negative value of Lyapunov denotes the stable region for the
system, while the positive values represent its chaotic region. The bifurcation point is understood with
the value of Lyapunov exponent being zero. Figures 4 and 5 illustrate the different phase trajectories
obtained from the bifurcation diagrams presented in Figure 3, which clearly portray the transformation
of the system from stability to chaos. Initially, the straight line in the diagram represent the stable
nature of the system. In Figure 4, the first three portraits, (1), (1), (Il11), atE = 0.2, 0.25,
0.3, respectively, and fixed parameter values A = 1.05, B = —0.05, C = 0.6, K = 2, present
spiral trajectories moving inwards to the fixed points. This inward spiral motion confirms the stability
of the system for the values of parameters. A stable closed orbit is formed with the trajectory starting
from the initial state and moving inwards toward the fixed point for E = 0.31, as in portrait (IV) of
Figure 4. For values of E > 0.33, with the other values remaining fixed, the system becomes unstable.
These orbits that are moving inwards become completely closed for some values of E > 0.33, after
which the orbits start moving away from the fixed points. Unstable orbits are very clearly expressed
by portraits in Figure 5. 0 an

0.4 1
N 0.8
0.6
0.2
0.4
..................... it “i
0.1 "!I )
0.2
82 0.3 0.4 0e | : I | N
Bifurcation Parameter- E Bifurcation Parameter- E
(1
0.05
// \

-0-083 0.3 0.4 0.5
E

Figure 3: (1) Bifurcation diagram of the system in E- x; (I) Bifurcation diagram of the system in E -y; (1)
Lyapunov Exponent of the system
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Figure 4: Phase trajectories for various values of E € [0.2,0.33] to illustrate the
complexity in Bifurcation diagrams given in Figure 2.
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Figure 5: Phase trajectories for various values of E € [0.34,0.48] to illustrate the
complexity in Bifurcation diagrams given in Figure 2 .
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5. Enhancing Chaos of Quadratic Map (1)

The CCT [22] is employed in this section to enhance the chaotic behavior of the considered
quadratic map (1). The chaos theory has proved to be a challenging and exciting field till date. Initially,
chaos was considered to damage the systems and affect the efficiency of its performance, which led to
the emergence of the techniques to control chaos. Such technique has an increasing interest due to its
application in engineering, population dynamics, biological systems such as human heart and brain
functioning, mixing problems such as medical drugs, CNN (Cellular Neural Networks), economics,
industries, and military. It was later confirmed that the existence of chaos in systems is equally
important as that of controlling chaos [21, 22]. The anti-control of chaos (chaotifcation) has soon
gained enough attention of the researchers over the years. Like chaos control, anti-chaos control has
also a wide range of applications. For example, in the mixing of fluids, strong chaotic behavior is
expected for better mixing.

Bifurcation Parameter- E

Figure 6: Chaotic behavior of system (4) with § = 1.2 and E € [-3, 3]

The enhanced system of quadratic maps, obtained by applying CCT to (1), is given by

Xn+1 = B (cos(A x,, + B y,))

Yn+1 = B (COS(A x3 + K xp y + E y7)) 4)
where 8> 0,4+ 1B +#0,C,K,E > 0 are real parameters.

We shall now analyze the enhancement of the chaos of quadratic map (1) for different values of £.

Let the parameters value be fixedasA = 1.05, B = —0.06, C =0.65,K = 2 with
initial conditions (x,y) = (0.2, 0.3). The chaotic behavior of (4) is analyzed with varying the
parameter E and 8 = {1,2, 3, 4}.
The bifurcation diagrams of parameter (E) along the x-plane and y-plane, which are obtained using the
parameter values given above and with g = 1.2, E € [-3,3], are presented in Figure (6). The
bifurcation diagrams in Figure-6 explain the presence of the non chaotic regions. The aforementioned
non chaotic region is further reduced for § =2, E € [—1; 1] in Figure (7) and completely eradicated
forp=2,E € [-1,1].
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Figure 8 : Chaotic behavior of system (4) with B =5,E € [-1,1]
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The Lyapunov exponents are used to explain the chaotic dynamics of the systems. Here, a comparison
of Lyapunov exponents in Figures (6), (7), and (8) illustrates the transition of the system from chaos
to hyperchaos. In order to further confirm the transition of system (4), phase portraits are presented in
Figure (9). For the considered parameter values, the quadratic map (1) is stable in the spiral inwards
form, as shown in Figure (9A). Using system (4), the phase portrait occupies a smaller region which
increases with the increase in the value of 8. For § =5, the enhanced map completely occupies the
phase space x,y € [—5,5]. This variance in region is presented in Figure (9B), (9C), and (9D).

(A4)

Figure 9:-Phase trajectories: (A) System (1) (Discrete map), (B) Enhanced Map (4) with g= 1.2, (C)
Enhanced Map (4) with g = 2, (D) Enhanced Map (4) with g=5.

6. Conclusions

The stability and bifurcation analyses of a discrete dynamical system with quadratic
nonlinearities are carried out in this work. The stability conditions for the fixed interior of system (1)
are obtained using the Jury's conditions. The traditional bifurcation technique is employed for
bifurcation analysis. Numerical simulations are carried out for different parameter values,
strengthening the theoretical results. The chaos of the quadratic maps is enhanced using CCT and the
behaviors are studied using bifurcations, Lyapunov exponents, and phase portraits.

References

1. Agiza, H., Elabbasy, E. El-Metwally, H. and Elsadany, A. A. 2009. Chaotic dynamics of a
discrete prey—predator model with Holling type Il. Nonlinear Analysis: Real World
Applications, 10(1): 116-129.

2. Chen, G. and Shi, Y. 2006. Introduction to anti-control of discrete chaos: theory and
applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 364(1846), 2433-2447.

1684



Mikaeel et al. Iragi Journal of Science, 2021, Vol. 62, No. 5, pp: 1675-1685

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Cermak, J. 2015. Stability conditions for linear delay difference equations: a survey and
perspectives. Tatra Mountains Mathematical Publications, 63(1): 1-29.

Din, Q. 2017. Complexity and chaos control in a discrete-time prey-predator
model. Communications in Nonlinear Science and Numerical Simulation, 49: 113-134.

Elaydi, S. 2008. An Introduction to Difference Equations: Third Edition: Springer International
Edition. First Indian Reprint.

Elsadany, A. 2012. Dynamical complexities in a discrete-time food chain. Computational Ecology
and Software, 2(2): 124.

Galor, O. 2007. Discrete dynamical systems. Springer Science & Business Media.

Hamoudi, G. M. and Al-Nassir, S. 2019. Dynamics and an Optimal Policy for A Discrete Time
System with Ricker Growth. Iragi Journal of Science, 60(1), 135-142.

Hristova, S. and Stefanova, K. 2020. Exponential stability of discrete neural network with non-
instantaneous impulses, delays and variable connection weights with computer simulation.
International Journal of Applied Mathematics, 33(2): 187-2009.

Kangalgil, F. 2017. The local stability analysis of a nonlinear discrete-time population model with
delay and Allee effect. Cumhuriyet Science Journal, 38(3): 480-487.

Kafi, E. M. and Majeed, A. A. 2020. The Local Bifurcation of an Eco-Epidemiological Model in
the Presence of Stage-Structured with Refuge. Iragi Journal of Science, 2087-2105.

Liu, X. and Xiao, D. 2007. Complex dynamic behaviors of a discrete-time predator—prey
system. Chaos, Solitons & Fractals, 32(1): 80-94.

Luo, A. C. J. 2015. Periodic flows in nonlinear dynamical systems based on discrete implicit
maps. International Journal of Bifurcation and Chaos, 25(3): 1550044.

May, R. M. 1976. Simple mathematical models with very complicated
dynamics. Nature, 261(5560): 459-467.

McCartney, M. 2011. Lyapunov exponents for multi-parameter tent and logistic maps. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 21(4): 043104.

Mikaeel, S. and Othman, B. 2020. Symbolic Methods for Analysing Bifurcations and Chaos of
Two Five-Parameter Families of Planar Quadratic Maps. Science Journal of University of
Zakho, 8(2), 72-79.

Mohsen, A. A. and Naji, R. K. 2020. Dynamical Analysis Within-Host and Between-Host for
HIVAAIDS with the Application of Optimal Control Strategy. Iraqi Journal of Science, 1173-1189.
Niu, W. and Wang, D. 2008. Algebraic approaches to stability analysis of biological
systems. Mathematics in Computer Science, 1(3): 507-539.

Rana, S. 2015. Chaotic dynamics in a discrete-time predator-prey food chain. Computational
Ecology and software, 5(1): 28.

Song, W. and Liang, J. 2013. Difference equation of Lorenz system. International Journal of
Pure and Applied Mathematics, 83(1): 101-110.

Natig, H., Banerjee, S. and Said, M. 2019. Cosine chactification technigue to enhance chaos and
complexity of discrete systems. The European Physical Journal Special Topics, 228(1), 185-194.
Zhang, H. and Chen, G. 2004. Single-input multi-output state-feedback chaotification of general
discrete systems. Int. J. Bifurc. Chaos, 14(9), 3317-3323.

1685



