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Abstract 

Semantic segmentation is effective in numerous object classification tasks such as 

autonomous vehicles and scene understanding. With the advent in the deep learning 

domain, lots of efforts are seen in applying deep learning algorithms for semantic 

segmentation. Most of the algorithms gain the required accuracy while 

compromising on their storage and computational requirements. The work 

showcases the implementation of Convolutional Neural Network (CNN) using 

Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy 

compaction properties. The proposed Adaptive Weight Wiener Filter 

(AWWF)rearranges the DCT coefficients by truncating the high frequency 

coefficients. AWWF-DCT model reinstate the convolutional layers giving 

modularity in the design using multi scale convolution block. The impact of 

selection of DCT coefficients in the proposed model is validated on the benchmark 

database as City Spaces. The same level of accuracy compared to the conventional 

algorithm is achieved using only 40 % of the DCT coefficients. Extensive 

experiments validate the advantages of adaptive DCT modeling of CNN in semantic 

segmentation and image classification. 

 

Keywords: Semantic Segmentation, Convolutional Neural Network, Discrete 

Cosine Transform, Weiner Filter, Multi scale convolution block. 

 

1. Introduction 

Segmentation is one of the crucial steps in image analysis. Semantic segmentation is one of 

the popular exploitations of segmentation. Performing semantic labeling to partition objects 

present in the images [1]. Pixel level labeling is carried out for set of object categories. Thus, 

making it more reliable solution to the complex problems such as scene understanding, 

autonomous vehicles, and medical image analysis [2]. Over the years, conventional 

segmentation techniques like shape-based segmentation, K Means clustering, contour-based 

techniques, sparsity-based methods were overtaken by deep learning-based approaches. Deep 

learning in semantic labeling has shown remarkable results with extensive performance 

improvements on benchmark datasets such as PASCAL VOC, City space [3, 4]. Deep 

Learning for semantic segmentation is formulated as: Fully Connected Networks [4, 5], 

Encoder-based models, dilated convolution models, Convolutional models with graphical 

models, Multiscale and pyramidal network-based models [4]. Most of the methods listed 

execute the convolutional neural network in spatial domain. The work proposed in this paper, 

uses implementation of CNN in the DCT domain [6]. 

DCT gives higher level of energy compaction; at the same time, sparser representation of the 

features comprehends the diversified objects present in the image. The deep learning network 
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give better feature representation, as higher levels of the neural architecture comprehend the 

major objects as well as layered architecture and achieve similar dimensionality reduction. 

Motivated with these common attributes between DCT and deep neural networks to separate 

the frequencies and energy compaction [7]. The proposed architecture engages an Adaptive 

Wiener Weight Filter (AWWF) for selection of the DCT coefficients. The pretrained network 

as image net is expected to enrich the encoding phase. As the AWWF-DCT results in a 

reduced feature resolution by one eighth of the image, we reinstate down sampling operations 

in Image net. Various Multiscale convolution blocks are tried out to define appropriate feature 

concatenation. Extensive experiments on City Space database validate the proposed model 

compared to the existing frameworks in semantic segmentation.DCT speed up the training of 

fully connected sparse feature extraction, which has resulted in sparser weight matrices 

trained over the data.  

The major contributions of this paper are: 

1. Modular approach of feature extraction and decoding is adopted to keep best formulations 

in practice and improve on the resolution at higher layers. 

2. The DCT operation performed on the images gives sparser representation of the weight 

matrices.  

3. DCT wiener filter is proposed as adaptive weight filter, used to achieve significant 

convergence speedup and case specific accuracy. Improvement is seen at early stage learned 

feature maps. 

4. Multiscale convolution block is developed to perform convolution operation with ‘n’ 

convolution kernels in a parallel mode. The Multiscale feature fusion is achieved by 

combining/averaging results of Multiscale convolution. 

The layout of the paper follows as: Section 2 presents the related work on the semantic 

segmentation and Harmonic Convolutional neural networks. Section 3 presents the DCT used 

to construct Adaptive Weiner Weight Filter for semantic segmentation. Section 4 illustrates 

the proposed Hybrid DCT-AWWF based deep learning approach for image analysis using 

semantic labels. Section 5 validates the proposed model with the help of methodical 

experiment followed by conclusions and list of references. 

2. Related work 

Deep learning is the most contributed to research topic in artificial intelligence field recently. 

These are effectively used to create a model for perceiving and understanding large quantities 

of data, such as images and sound [8, 9]. The contemporary literature with respect to semantic 

segmentation problem, see numerous deep neural network approaches proposed. The 

prevailing discussion tries to find out some of the unique approaches in semantic 

segmentation and their common features to narrow down the literature findings. 

Fully connected networks ;( shown in Figure 1) can be seen as one of the initial efforts in 

applying deep learning for semantic segmentation. The architecture reinstated all the fully 

connected layers by the convolutional layers from the pretrained architectures such as 

VGG16. Thus, enabling it to handle the arbitrary sized input and giving segmentation output 

of the same size [10,11]. Skip connections as shown in Figure 2up sample the features from 

the final layer while combining those with the previous layers. Deep layers represent the 

semantic information, which is combined with contextual information conveyed by the 

shallow layers. Validation of the model is done on PASCAL VOC, NYUDv2 datasets, 

comparable performance is observed on those benchmark datasets. [4]. 
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Figure 1-Image Segmentation Network using Fully Convolution Block. 

Figure 2-Skip connections Network selectively adding the high-low level information 

 

FCN has performed better on variable sized images; it has some constraints when using it in 

real time implementations. FCN has a loophole of underperforming on global context 

information. To overcome these challenges, ParseNet is proposed to handle the global context 

information. FCN are derived by adding global context to FCNs as layer wise averaging the 

feature to enhance features at each location. The context vector is formed by pooling the 

feature map. Similar unpooling method is followed to normalize the context vector and 

generate the new feature space of similar with same aspect ratio. In essence, FCN with added 

global context is the main motive behind forming ParseNet [12, 13, and 14].Figure 3 shows 

these feature maps grouped together. 

 

Figure 3-ParseNet, using extra global context (d) than an FCN (c) results in smoother 

segmentation. 
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Generic application areas of FCN are iris segmentation, brain tumor segmentation, skin lesion 

segmentation [11, 15] 

Encoder –based models: encoder-decoder model based on convolutional neural network is 

one of the popular models for image segmentation. Convolutional layers of VGG-16 model 

will be used as input in the Encoder while feature vector acts as input to the deconvolution 

network. The encoder gives the class probabilities. The deconvolutionalstage of the 

framework has 

Figure 4- Semantic Segmentation using Deconvolutionalmodule. 

 

deconvolution layers and unpooling layers associated with it as shown in Figure 4. It 

determines the pixel-wise class labels and segmentation masking. The efforts done at the 

initial level attracted 72.5 % accuracy on PASCAL VOC 2012 dataset. 

Biomedical Image segmentation using Encoder-Decoder Models: The Unet architecture [16, 

17] proposed for segmenting the biological images. The data augmentation improvised the 

model accuracy. In the Unet architecture the contracting path is used to acquire the context, 

and localization is achieved in the expanding path. The similarity to FCN architecture is 

observed in the contraction phase, as it extracts the features with convolutions. While 

expander phase up sample the results with the deconvolution. Feature maps are maintained 

from decoder to the encoder phase to avoid loss of the pattern information. A stride 

convolution categorizes each pixel to the relevant class. Numerous developments are seen in 

U-Net architecture as shown in Figure 5and can be used to extend its utility to 3D Images up 

to complex problems like road segmentation [17, 18]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-U-net model 

 

V Net modules shown in Figure 6drew attention due to its use for 3D medical image 
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segmentation and new proposed objective function as Dice Coefficient. It enables the model to 

handle the diversified and imbalanced data modeling use cases. The proposition made it effective 

in segmenting the whole data object at one time for challenging problems like MRI image 

segmentations [18, 19, 20].  

Figure 6-V-net model for 3D image segmentation. 

 

Dilated convolution models: This model is based on the dilation rate. As shown in Figure 7, a 

3*3 having dilation rate 2, offers the same receptive field as one generated by kernel 5*5. The 

number of parameters on the other side remains the same. Improvisation in the receptive field 

without compromising on the computational cost. For the input signal x(i), the dilated 

convolution output will be given as       [    ] [ ]; where r is the dilation rate. A lot 

of recent work is identified in dilated convolution as Deep Lab [21], multi scale context 

aggregation [22] Atrous Spatial Pyramid Pooling (DenseASPP) [23]. 

 

Figure 7-Dilated convolutions. A 3 × 3 kernel at different dilation rates. 

 

DeepLabv1 [21] and DeepLabv2 [23] are one of the prominent choices for semantic 

segmentation. The dilated convolution used in that, resolve the issue of decreasing resolution 

generated due to max pooling and stride factor. Spatial Pyramidal pooling based on Atrous 

convolution is used to address the convolutional feature layer. Better object localization is 

achieved using Deep CNNs and locating the object boundaries using probabilistic model. 

ResNet-101 based Deep Lab yields 79.3 % mean Intersection of Union (mIoU) on the 

PASCAL VOC 2012 dataset. 70.4 % mIoU score for City space database.  

Several works considered combining spectral information with CNNs. CNNs especially is 

trained for detection of multiple compressed images. A common practice in various works 
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[23] is to arrange histograms of pre-selected DCT coefficients by 1-dimensional CNN. In 

another work [24] a multi-branch 2-dimensional CNN was trained on feature vector spanned 

by the first 20 AC coefficients (which exhibits nonzero frequencies in DCT) extracted from 

compressed images. Use of spectral representation of the images is popular for object 

recognition.  

Training of shallow fully connected neural networks [25] and fully connected sparse auto 

encoders [7, 26] with DCT on low resolution images and truncation of the coefficients helped 

speed up the performance. Similarly Radial Basis Function with DCT were used in face 

recognition [27, 28]. 

3. DCT- Adaptive Weight Wiener Filter (DCT-AWWF) 

DCT –Weiner filter design to pull the high frequency components are required for 

convolution layer. The proposed Efficient DCT-AWWF model is shown in Figure 8. Spatial 

domain implementation of CNN may miss the manipulating features. Processing the input in 

DCT inherently de-correlate the features using sparse representation.  ̃ represent the DCT 

coefficients. The encoders in semantic segmentation when dealing with large feature maps get 

additional advantage of dimensionality reduction in DCT domain. Wiener filter will be 

employed to adopt the important DCT features to learn importance of each DCT coefficient. 

Multiscale convolution block is used along with a deep convolutional stream to acquire more 

unique and sparse features [29, 30, 36, 37, 38 ]. 

Combination of these features in the encoder gets the optimized features in the context driven 

way. Layered architecture is employed with convolution performed at different scales. The 

concatenation of the convolution here gives sparser representation and further achieves the 

down sampling.  

The architecture is detailed in the next section. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-Efficient DCT-AWW Filter 

 

4. Hybrid DCT-Wiener based deep learning approach for semantic shape 

segmentation 

DCT-AWWF Encoder Framework: 

The encoder for semantic segmentation comprises of Wiener based adaptive weight filter, 

convolution layer and max pooling and BN layer as shown in Figure 8. 

As discussed in section 3, the important DCT coefficients are identified using   weight 

matrix to represent semantic segmentation [31, 40]. The DCT coefficients are given by 

the matrix . The output matrix will be generated as given in Equation [1]. 

 ̃      ------------- (1) 

Here   characterizes array multiplication, while   ̃    holds the output of the first layer. The 

matrix Whave elements 1 and 0, corresponding to the high frequency components related to the 

semantic segmentation. High-frequency band in the image, houses the semantic features of 

animage.As the DCT operation is carried out, the spectral domain of an image is sliced to 

DCT 

 
  

Input Image 

DCT-AWWF 

 Filter output 
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three sub bands as given in Figure 9 (a). b1 and b2 are used as thresholds for the frequencies 

to sort the DCT coefficients (i.e., frequencies). Equation [2] gives the weight matrix  ̇ 

 ̇   ( ̃      )   ( ̃      )------------- (2) 

  ̃is the matrix of DCT indices formed in thecrisscrossmannershowninFigure9(b) and I ( ) 
gives a matrix having the elements 1and0, indicating the element-by-element argument of 

the function if it istrueornot.b1andb2are determined in the context-driven way. 

        
Figure 9 (a)- Frequency domain slicing and Figure 3 (b)-zigzag scan table for the 5 × 5 

block 

Convolutional Layers 

Apart from dimensionality reduction, convolution layers extract deep features. In a 

convolutional stage, the convolution and activation operation are given in the Equation [3]  

 ̃      ∑  ̇     

   
  ̃        

 ------------- (3) 

For ith layer 

Convolution operation is performed by * Activation function is given by    : Sigmoid, ReLU, 

Bounded ReLU can be applied as activation function.  is the channel number of this layer. 

The detailed architecture is shown in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10-Proposed Architecture 

 

Multiscale convolutions are formed with various kernel sizes and concatenated to get a 

high-level feature map [32]. The concatenation layer performs the feature fusion by 

combining the output of multi-scale convolution into an element wise average function 

μ (),given as 

μ(x1,x2 , . .. ,xn)=mean(x1,x2 , .. . ,xn). 
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The concatenation of the features is performed at the fusion level. It helps in 

understanding the high frequency features in the initial layers. To find the best of the 

feature selection module, The Multiscale convolution designs are compared with 

various convolution layer architecture. As a single-scale convolutional layer Figure 

11(a), inception module Figure 11 (b) and proposed convolution module at different 

scales. Figure 11 (c) proposed in the paper. 

Pooling Layers and Batch Normalization 

Batch Normalization will follow each convolutional layer. This design minimizes the 

covariance during the training phase while fastening the training process. Inserting the 

pooling layer after the normalization layer, decreasing the training time and additionally 

reducing dimensionality is achieved in this stage. Over fitting even will be overcome with the 

help of pooling layer [6]. 

  

         

 

   

 

 

 

 

 

 

 

 

 

(a) (b)                                                                   (c) 

Figure 11-(a) Single scale convolution, (b) inception module (c) Proposed Convolution 

module at different scales 

 

Encoder Layer 

Fully-connected layer and layer with softmax function will be part of classification layer. FC 

layer ensures that all the features will be used for the classification. The softmax function will 

take the input towards last stage of semantic encoder [6, 36, 39, 41]. 

Network Architecture 

The CNN architecture with proposed DCT Adaptive weight wiener filter is shown in figure 

4.The design of the architecture is illustrated as given below. Figure 10 depict the output at 

every stage for input image 224*224. 

The Efficient DCT-AWWF filter with relevant operations is mentioned in Equations [1] and 

[2]. Equation [3] is rounded off using constrained convolutions. Constrained convolution 

layers are built up using stride of 1. BReLU is used as activation function, associated with 

element-wise subtraction. The convolutions have kernel size 1*1, bias updated at the time of 

training while a fixed weight of 1 is used [6, 33]. 

Conv1 is generated as multi-scale convolutional block. 32 kernels of different sizes 1*1, 3*3, 

and 5*5 are applied, generating 32 feature maps at different scales with size 32*32. BN layer 

follows the Convolution function. Max-pooling layer with window size 2*2 and step size 2 

will give the input feature map same with the spatial resolution reduced to 25 % of the 

original value [6, 33, 34]. 

In the proposed architecture, the 5
th

 and 8
th

 layer will be convolutional layers Conv2 and 

Conv3. Convolution 2 have 64 kernels with dimension 3*3*32, convolution 3 have 64 kernels 

of size 3*3*64.  To get the normalization of the output features, both convolution layers will 
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be followed by Batch Normalization layers and pooling layers. Fully connected layer 1 and 2, 

FC1 and FC2 are presented after the last pooling layer. FC1 consist of 1024 neurons while 

FC2 has 2 neurons. At the output layer, the output of FC2 is given to the softmax layer, giving 

prediction of the object class and class label [44, 45]. 

5. Experimental Results and Analysis 

The Adam optimization [19, 42] was used in training the network. The optimizer accelerated 

the convergence on every dataset. The code was implemented Google colab environment. The 

implementation was done in two stages: the encoder was trained to categorize down sampled 

section of the input image, the decoder was appended and trained on the network to perform 

up sampling and classification of every pixel at the later stage. Setting the learning rate to 5e -

4 and weight change to 2e- 4 and keeping the batch processing of 10 performed consistently 

well [19, 33,43]. 

A model is evaluated using quantitative accuracy, speed, and storage requirements. Pixel 

Accuracy: it is a ratio of properly classified pixels with total pixels count in the image. When 

K is foreground classes, for k+1 class, is represented in the Equation [4]. 

               
∑    

 
   

∑ ∑    
 
   

 
   

------------- (4) 

 

Intersection of Union (IoU) as given in Equation [5] is popularly used in semantic 

segmentation. It is calculated as intersection between the estimated segmentation vector and 

ground truth proportioned with union between the estimated segmentation vector and ground 

truth. 

    
|   |

|   |
------------- (5) 

The performance of the recent segmentation algorithms is given by Mean –IoU, where it 

states the average IoU over all classes. The performance of DCT-AWWF encoder on city 

space dataset is validated. VGG16 is set as base architecture, as its one of the fastest 

segmentation models. VGG16 has resulted in lesser parameters and memory consumption, 

compared to FCN. The comparison of the results is done based on class average accuracy and 

intersection-over-union (IOU). The dataset has total 5000 annotated images, from which 2975 

images were selected for training. Validation dataset was maintained using 500 images. 

Whereas 1525 image were maintained in the testing dataset. [35,44]. Cityscapes exhibit 

dynamically varying road scenarios, featuring many pedestrians and cyclists. For the model 

training 7 classes were considered. As reported in Table1, the proposed architecture 

outperforms Unet in pixel average accuracy and class IoU DCT-AWWF Model will be an 

outperformer in the City spaces benchmark.  Figure 12 presents prediction examples on 

validation dataset. 
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Figure 12-Semantic Segmentation results: row (1) original Image, row (2) Semantic Images 

row (3) Semantic segmentation images 
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Table 1-Results of U Net Architecture with Proposed DCT-AWWF Architecture 

Object 
Camping 

Car 
Car Road Person Pole 

Side 

walk 
Cyclist 

Class 

Avg 

Class 

IoU 

Model 

UNet 84.6 87.3 92.3 55.0 47.5 74.1 26.0 66.7 55.6 

DCT-

AWWF 
88.8 91.2 95.1 67.2 45.4 86.7 34.1 72.6 52.4 

 

 

Conclusion: 

The work carried out here exploited the semantic segmentation architecture in the DCT 

domain. Feature representation and manipulation in frequency domain become advantageous. 

The article proposes and validates a hybrid DCT-Weiner based deep learning approach for 

semantic shape segmentation. The semantic segmentation layered architecture was used to 

extract features in the encoder stage. The performance was investigated in frequency domain. 

The high frequency information in the image has given better feature representation. The 

hybrid design applies a DCT-Wiener filter to pull the high frequency components required for 

convolution layer. Multi scale convolution model was developed for sparse feature 

representation. The model proposed in the paper achieved remarkable results compared to the 

existing encoders used in semantic segmentation. The class average accuracy achieved more 

than the conventional U Net architecture. The semantic labeling with reduced computational 

complexity can be seen as solution in some of the applications such as autonomous vehicles, 

scene understanding, and augmented reality. 
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