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Abstract  

     In this paper, we model the spread of coronavirus (COVID -19) by introducing 

stochasticity into the deterministic differential equation susceptible  -infected-

recovered (SIR model). The stochastic SIR dynamics are expressed using Itô's 

formula. We then prove that this stochastic SIR has a unique global positive solution 

I(t).The main aim of this article is to study the spread of coronavirus COVID-19 in 

Iraq from 13/8/2020 to 13/9/2020. Our results provide a new insight into this issue, 

showing that the introduction of stochastic noise into the  deterministic model for 

the spread of COVID-19 can cause the disease to die out, in scenarios where 

deterministic models predict disease persistence. These results were also clearly 

illustrated by Computer simulation.  

                                                                                                                                           .  
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1- INTRODUCTION  

      Comprehension and prediction of the novel COVID-19 has become very important owing to the 

huge global health burden. Until 18/9/2020, almost 30356725 persons became newly  infected with 

COVID-19, while about 950625 died since the identification of the first cases in Wuhan City, China, 

in December 2019 [1, 2]. The global data indicate that the number of people infected with coronavirus 

continues to rise even though effective prevention strategies exist. No country of the world has been 

spared from coronavirus. The pandemic remains extremely dynamic, increasing and changing 

characters as the virus exploits new opportunities used for transmission [1] . Actually, coronavirus is 

infiltrating almost every aspect of life , damaging global economy, and altering both man- made and 

natural environments .The pandemic varies in impact within regions; some countries are more affected 

than others and within countries there are usually wide variations in infection levels between different 

provinces [1-8]. The large amount of work conducted on modeling the spread of COVID-19 has been 

largely restricted to ordinary differential equations [9-13]. These models do not take into account the 

inherent randomness that is associated with the spread of COVID-19. In this manuscript, we propose 

examining the effects of the introduction of environmental noise into such a system. Thus, we adopt 

the SIR   model assumption for the spread of COVID-19 [7], as follows.                                                                                                                  

{
 
 

 
 

  ( )

  
    ( ) ( )          

  ( )

  
   ( ) ( )    ( ) 

   ( )

  
   ( )                   

                                                                                                               (   )  

     And the introduction of environmental noise into the system (1.1). Hence, we propose a system of 

stochastic differential equations for modeling the spread of coronavirus . The rest of this article is 

structured as follows. Section 2 introduces the mathematical definition of the Stochastic Differential 

Equations (SDEs), including the stochastic process, Brownian motion, Itô's integral, and the theorem 

about Ito's formula. Section 3 describes the SDEs SIR Model for the spread of COVID-19. Also, a 

table of all the parameters used during our work with the basic reproduction number for the stochastic 

model is presented. In section 4, we prove the existence of the unique nonnegative solution [14,15]. In 

section 5, we consider the conditions required for COVID-19  to die out, i.e., for the disease to become 

extinct. The main results are presented in section 6. Finally, Section 7 is devoted to the conclusion part 

(e.g., see[7,8,16 - 19]).  

2- Basic Concept of the Stochastic Differential Equations  

    In this section, mathematical definitions of the SDEs are described. Additionally, we explain some 

theorems that we use in this work. 

Definition (2.1) 

    The stochastic process W(t) is defined as a family of random variables X(t,  ) of two variables t 

    and   Ω  on a common probability space (Ω, A, P).  

Definition (2.2) 

In the stochastic process W(t), t   [ ,  ] is said to be a Brownian motion or Wiener process if the 

following conditions are satisfied: 

1. P(W(0)=0)=1. 

2. For 0            , the increments  (  )   (  )  (  )   (    )  are 

independent. 

3. For arbitrary (t) and (h   )  (   )   ( ) has a Gaussian distribution with a mean value 

of zero and variance h. The Wiener process has the properties that E(w(t))=0 and Var ( ( )  
 ( ))     , for all      . Thus, they have stationary increments.  

Definition (2.3) 

The stochastic differential equations (SDEs) take the form. 

  ( )   ( ( )  )    ( ( )  )  ( )          (  )       ,    -         (2.3) 

where  ( ( )  ) is the drift coefficients function      ( ( )  ) is defined as a diffusion coefficient 

function. The solution to SDEs in equation (2.3) takes the following form in the integral formula. 

 ( )      ∫  ( ( )  )  
 

  
 ∫  ( ( )  )  ( )        ,    -

 

  
   (2.4) 

where the first integral on the right side of equation (2.4) is Riemann integral, and the second is 

stochastic integral. 



Kareem and Al-Azzawi                             Iraqi Journal of Science, 2021, Vol. 62, No. 3, pp: 1025-1035 

 

6204 

Theorem (2.1) (Itô's formula) 

Suppose that    has SDE: 

     (    )    (    )      (2.5) 

for         (     )  assume that         is continuous and has 
  

  
   

  

   
  and 

   

   
  that exist 

and are a continuous set    (    ), then   has the stochastic differential  

   
  

  
   

  

   
    

 

 

   

   
  

     

  (    )  [
  

  
 

  

   
  

 

 

   

   
  

 ]    
  

   
                                                              (   ) 

 

The last equation (2.6), is called Ito's formula or Ito's chain rule. Equation (2.5) is sufficiently general 

to represent an m- dimensional d-wiener process system. In the equation,    (  
    

      
 )   is 

an ad-dimensional vector consists of d independent Wiener processes and g(    ) is an     matrix. 

If we labeled the columns of  (     ) to be as   (    )   (    )     (    ); then, the m-

dimensional d-wiener process system is written as,      (    )   ∑   (    
 
   )   

 
  Here, the 

component-by-component of the Ito’s formula can be K= 1,2,…, m. 

 

   (    )  [ 
   
  

 ∑  
   
  

 

   

 
 

 
∑       

 

     

    
      

 ]    ∑∑   

 

   

   
   

 

   

              (   ) 

 

 

Definition (2.4)  

We can define the stochastic integral or Itô's integral as follows; let g(t) be a stochastic  function 

having a continuous derivative in the region [𝛼  ], and let W(t), t    denote a standard wiener 

process the Ito's integral: 

 

∫ ( )  ( )

 

 

    
   

∑ (    

 

   

), (   )   (    ) -                                                                 (   ) 

 

where                     is an apparition of the region [𝛼  -. By applying the integration 

by parts, we found that: 

∫ ( )  ( )

 

 

  ( ) ( )   ( ) ( )  ∫ ( )  ( ) 

 

 

                                                                  (   ) 

 

3. The stochastic Differential Equations SIR Model for the spread of COVID-19 

In this paper, we let (    *  +     ) to be  a complete probability space with a filtration*  +     

satisfying the normal condition (i.e.it is growing and right continuous whereas    covers all   -null 

sets),  and we let W(t) be a scalar Wiener process or Brownian motion defined on the probability 

space. We use        to denote min(a ,b) and        to denote max(a ,b). The growth of COVID-19 

infections in each region is modeled by  the SDEs  SIR model which is given as follows.                                                                    

                              

{

  ( )     ( ) ( )       ( )                                           

  ( )  .  ( ) ( )  (  𝛾) ( )/      ( ) ( )   

   ( )  (  𝛾) ( )      ( ) ( )                             

    ( )                                                  (   )  

 ( )           ( )   ( )                                                                                      (   )   
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Table 1-Model States and Model parameters 

Description Parameter 

the whole susceptible population at time t S(t) 

the number of active infections at time t I(t) 

the whole number of deaths and recoveries at time t   ( ) 
the daily –time parameter t 

the change in the states at time t dS(t),dI(t)and d  ( ) 
the increment in Weiner process which models the randomness in the 

evolution 
    

disease transmission coefficient a 

per capita death rate   

the rate at which infected individuals become cured 𝛾 

a parameter used to model the stochastic or randomness in the evolution, 

which will cause local deviation from the typical (exponential) trends 
  

the populations of the regions     and    are the initial number of infections 

and susceptible individuals, respectively 
       

The basic reproduction number for the deterministic model    

The basic reproduction number for the stochastic model   
  

Let us now consider the second equation of (3.1). To establish the basic reproduction number for the 

stochastic model                                                                                                                                       

  ( )  .  ( ) ( )  (  𝛾) ( )/      ( ) ( )      ( )                                                          (   ) 

we rewrite equation (3.3) as follows 
  ( )

 ( )
 (  ( )  (  𝛾))     ( )      then we see that the term    ( ) should appear in the 

solution of (3.3).In this case, we set  ( ( )  )     ( ) and when we apply Itô's formula (2.6), we get 

  ( ( )  )  

0  .  ( )  (  𝛾)/  ( ) .
 

 ( )
/        ( )  ( ) .

 

 ( ) 
/1      ( ) ( ) .

 

 ( )
/      

 ,So      ( )  0.  ( )  (  𝛾)/        ( ) 1      ( )    

The integral for both sides gives  

   ( )     ( )  0.  ( )  (  𝛾)/        ( ) 1     ( )(     )           

So the solution of equation (3.3) is 

 ( )       [  ( )  (  𝛾)        ( ) ]     ( )  , so                                                              

  
  

  ( )

(  𝛾)
 

   ( ) 

 (  𝛾)
      

   ( ) 

 (  𝛾)
                                                                                       (   ) 

where  ( ) represents the whole susceptible population at time t. It can be expressed by N which, 

through this paper, will be always changing with the time t. Hence, the basic                                  

reproduction number for the stochastic model can be expressed as follows, 

                                                                                                                         

  
  

  

(  𝛾)
 

    

 (  𝛾)
      

    

 (  𝛾)
   

4.Existence of Unique Nonnegative Solution 

    Before we begin to investigate the dynamical behavior of the SDE SIR model for COVID-19 (3.3), 

it is important to prove that this  module does not only has  a single global solution, but also that the 

solution will remain within (0,N) when it starts from there . The current general existence and 

uniqueness theorem on SDEs (see e.g. [15]) does not apply to this special stochastic differential 

equation. To assure these properties, let us take the following theorem.   

Theorem 4.1 

    For every given initial value ( )     (   ) , the SDE SIR COVID-19 model (3.3) has a unique 

global nonnegative solution  ( )  (   ) for all     with a probability that equals one, i.e. 

 * ( )  (   ) for all    +   . 
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Proof 

     Concerning equation (3.3) as an SDE on R, we see that its coefficients are locally Lipchitz 

continuous. It is well-known that for every given initial value    (   )  there is a unique maximal 

local solution I(t) on   ,    -, where    is the explosion time. Let      be sufficiently large for 
 

  
      .

 

  
/, then for each integer     , we define the stopping time as follows  

      2  ,    -  ( )  (   ⁄     .  ⁄ /)3  

Everywhere during this paper we set     ( )                          . Clearly     is growing 

as    , then we set              whence           . If we can show that      a.s., and 

 ( )  (   ) a.s., for all    . In other words , to complete the proof, all we need to show is 

that      a.s. If this statement is false, then there is a pair of constant    , and 𝜖  (   )  such that 

 *    +  𝜖   Therefore, there is an integer       such that                                                                                    

 *    +  𝜖   for all                                                                    (   ) 
We define a function   (   )      by 

 ( )  
 

 
 

 

   
   

 Via the Itô's formula we have , for any   ,   - and                                                                     

  ( (    ))   (  )   ∫   ( ( ))  

    

 

                                     (   ) 

where    (   )    is defined by 

  ( )   ( 
 

  
 

 

(   ) 
) ,     𝛾    - 

     (   ) (
 

  
 

 

(   ) 
)                                                                        (   ) 

It is easy to show that  

  ( )  
  𝛾

 
 

  

   
     (

 

 
 

 

   
)    ( )                       (   ) 

 where  (  𝛾) (  )       . By substituting this into (4.2), we get  

  ( (    ))   (  )   ∫   ( ( ))  
    
 

  (  )   ∫   ( (    ))
 

 
     

The Gronwall inequality produces that  

  ( (    ))   (  ) 
                                                                          (   ) 

we set    *    +                 (   )         (  )  𝜖  

Note that  for each       (    )              
 

 
       .

 

 
/         ( (    ))      

It then follows from (4.5) that  (  ) 
     ,   ( ) ( (    ))-    (  )  𝜖    

Letting     leads to the contradiction ∞   (  ) 
      so we must therefore have      a.s., 

whence the proof is complete. 

5. Extinction 

     In the study of the dynamical behavior  of population  systems, it is important for us to consider the 

conditions required in order for the COVID-19  to die out , in other words, when the disease will 

become extinct.                                                                                                                                          

Theorem 5.1. If the basic reproduction number for the stochastic model is  

  
  

  

(  𝛾)
 

    

 (  𝛾)
 =    

    

 (  𝛾)
          

 

 
                                                (   ) 

then, for any given initial value  ( )     (   ) , the solution of SDE (3.3) follows  

   
   

   
 

 
   ( ( ))       𝛾                                                                                         (   ) 

That is, I(t) tends to zero exponentially almost surely. In additional words, the disease (COVID-19) 

dies out with a probability of one .                                                                                                               

Proof: By apply Itô's formula, we have 

                                ( ( ))     (  )  ∫  ( ( )  
 

 

 ∫  (   ( ))                                        
 

 

(   ) 



Kareem and Al-Azzawi                             Iraqi Journal of Science, 2021, Vol. 62, No. 3, pp: 1025-1035 

 

6202 

where       is well-defined by  

 ( )                 (   )                                                                                             (   ) 
Though, under condition (5.1), we have  

 ( ( ))       𝛾          (     ) ( )         ( ) 

                                                    𝛾           
For ( )  (   ) . It now follows from (5.3) that   

   ( ( ))     (  )  (     𝛾         )  ∫  (   ( ))                                               (   )
 

 

 

This indicates that  

   
   

   
 

 
   ( ( ))       𝛾             

   
   

 

 
∫  (   ( ))   

 

 

                             (   ) 

But, by the large number theorem for martingales (see e.g. [15]), we have 

   
   

   
 

 
∫  (   ( ))   

 

 

         

We as a result get the desired assertion (5.2) from (5.6). It is useful to note that in the deterministic 

SIR model (1.1), I(t) tends to 0 if and only if       while in the SDE SIR model (3.1), I(t) tends to 0 

if   
     

    

 (  𝛾)
          

 

 
                 ( )                                                    

Theorem 5.2. If the basic reproduction  number for the stochastic model is  

  
  

  

(  𝛾)
 

    

 (  𝛾)
 =    

    

 (  𝛾)
                                                     (   ) 

Then for every given initial value  ( )     (   ) , the solution of the SDE  SIR model (3.3) 

follows                                                                                                                                                   

                                              
   

    ( )                                                                                                       (   ) 

and  

                                              
   

    ( )                                                                                                        (   ) 

where  

                 
 

  
(√      (  𝛾)  (     ))                                                                               (    ) 

which is the unique root in (0,N) of 

     𝛾          (   )                                                         (    ) 
Namely,  ( ) will rise to    or above the level   infinitely, often with the probability of one. 

Proof. Recall the definition (5.4) of function      . By condition (5.7), it is easy to see that 

equation  ( )    has a positive root and a negative root. The positive one is                                       
 

  
(√(     )     (     𝛾         )  (     )) 

 
 

  
(√      (  𝛾)  (     ))     

Noting that  

 ( )       𝛾                 ( )     𝛾     
we see that   (   ) and 

 ( )                                (     ̂)                                                                                     (    ) 
  

 ( )                                (   ̂  )                                                                                 (    )  
While 

             ( )                                (   )                                                                          (    ) 
We now begin to prove assertion (5.8). If it is not true, then there is a sufficiently 

small  ϵ  (   ) such that  

 (  )  𝜖                                                                                                                                                          (    ) 
where    *          ( )     𝜖+                                    ( )     
such that 

 (   )                  ( )                                                                                                           (    ) 
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Obviously, we may choose 𝜖 to be so small (if it is essential to reduce it) that  ( )   (    )  It 
therefore 

follows from (5.12), (5.13), and (5.16) that 

 ( (   ))   (   )           

  ( )                                                                                               (    ) 

Furthermore, by the large number theorem for martingales, there is a       with   (  )    

such that for each        

   
   

 

 
∫  (   (   ))  (   )
 

 

                                                                                                         (    ) 

Now, by fixing any        , it then follows from (5.3) and (5.17) that , for t   ( )  

   ( (   ))     (  )  ∫  (
 ( )

 

 (   ))    (   )(   ( )) 

 ∫  (   (   ))  (   )                                                                                                                    (    )
 

 

 

This produces          
 

 
   ( (   ))   (   )     

whence        (   )     
Nonetheless, this contradicts (5.16). Hence, we necessarily have the desired assertion (5.8). Let us now 

prove the assertion (5.9). If it is not true, then there is a sufficiently small    (   ) such that 

 (  )                                                                (5.20)    

where    *          ( )       +. Hence, for every       there is a    ( )     

such that  

 (   )       whenever     ( )                                                      (    ) 

Now , we fix any         . It then follows from (5.3) and (5.14) that , for     ( )     

   ( (   ))     (  )  ∫  (
 ( )

 

 (   ))    (   )(   ( )) 

 ∫  (   (   ))  (   )                                                                                                        (    )
 

 

   

This, together with (5.18), yields 

      
   

 

 
   ( (   ))   (   )     

whence        (   )     
But this contradicts (5.21). We therefore must have the desired assertion (5.9).  

6. Main results 

     To comprehend the effects of introducing environmental stochasticity into the system (3.1) on the 

stability of the system and the extinction of the disease, we will take an example of the spread of 

coronavirus in Iraq. All data were obtained from the Iraqi Ministry of Health and from another report 

[1].          

Table 2- The spread of Covid-19 in Iraq, finding the basic reproduction number for the  deterministic 

model and the stochastic model when the population is 40397492 [1] and           

  
     

New 

recoveries 

New 

deaths 
Active cases 

New 

cases 
Date 

0.367648235 2.205882353 2667 53 592 3841 13/8/2020 

0.334560053 2.007360321 2921 68 627 4013 14/8/2020 

0.377786172 2.266717038 2571 76 590 4293 15/8/2020 

0.363768643 2.182611859 2674 75 572 4348 16/8/2020 

0.272851295 1.637107776 3571 94 605 3202 17/8/2020 
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0.335908632 2.015451797 2895 82 574 4576 18/8/2020 

0.38255547 2.295332823 2529 85 582 4093 19/8/2020 

0.34270048 2.o56202879 2831 87 614 3995 20/8/2020 

0.301114122 1.806684734 3246 75 587 4288 21/8/2020 

0.331455087 1.988730527 2947 70 637 3965 22/8/2020 

0.323519896 1.941119379 3016 75 661 3291 23/8/2020 

0.245639892 1.473839352 3980 91 538 3644 24/8/2020 

0.289939113 1.739634677 3372 77 574 3962 25/8/2020 

0.283607486 1.701644923 3454 72 595 3837 26/8/2020 

0.258665287 1.551991723 3794 72 566 3651 27/8/2020 

0.253871541 1.523229246 3865 74 582 4177 28/8/2020 

0.236798477 1.4207909007 4146 77 579 3834 29/8/2020 

0.254582484 1.527494908 3860 68 542 3731 30/8/2020 

0.262812089 1.576872536 3722 83 579 3757 31/8/2020 

0.253036436 1.518218623 3871 81 521 3404 1/9/2020 

0.262467192 1.57480315 3732 78 527 3946 2/9/2020 

0.275785989 1.65471594 3552 74 496 4755 3/9/2020 

0.270635995 1.623815968 3611 84 495 5026 4/9/2020 

0.472574151 1.737116387 3891 63 523 4644 5/9/2020 

0.294898826 1.769389561 3301 90 507 3651 6/9/2020 

0.228519195 1.371115174 4299 77 534 4314 7/9/2020 

0.28304557 1.698273422 3465 68 564 4894 8/9/2020 

0.267094017 1.602564103 3669 75 540 4243 9/9/2020 

0.256016384 1.53609831 3824 82 542 4597 10/9/2020 

0.274273177 1.645639057 3579 67 566 4254 11/9/2020 

0.25335698 1.52014188 3887 60 564 4106 12/9/2020 

0.286122032 1.716738197 3422 73 564 3531 13/9/2020 

 

When calculating the average of parameters from 13/8/2020 to 13/9/2020 and substitute it into 

equation (3.3), the equation will be as follows                                                                                       

  ( )  (         ) ( )       ( )        ( )                                                                              (   ) 
Now by Itô's formula ,we have the solution as: 
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 ( )     ,                 -                                                                                                            (   ) 
So, we can therefore conclude, by theorem (5.1), that for any initial value  ( )     (         ) 
the solution (6.2) obeys 

   
   

    
 

 
    ( ( ))                   

This implies that I(t) will tend to zero exponentially with the probability of one. 

But, on the other hand, for the corresponding deterministic SIR model (1.1) , the basic reproduction 

number for the deterministic model is  

                                                                                                                 
The computer simulation in Figure-1, by using Euler Maruyama method (EM), supports these result 

clearly, illustrating the extinction of COVID-19 .                                                                                  

 
 (b) (a)                                                      

Figure 1-Computer simulation of the path I(t) using the EM method with step size              
  ( )     equation (6.1); ( a) Deterministic SIR model (b) Stochastic  SIR model . 

 

Table 3-The spread of COVID-19 in Iraq , finding the basic reproduction number for the deterministic 

model and the stochastic model when the population is 40397492 and              

  
     

New 

recoveries 

New 

Deaths 

Active 

cases 

New 

cases 
Date 

2.205882353 2.205882353 2667 53 592 3841 13/8/2020 

1.990632318 2.007360321 2921 68 627 4013 14/8/2020 

2.247827729 2.266717038 2571 76 590 4293 15/8/2020 

2.164423427 2.182611859 2674 75 572 4348 16/8/2020 

1.623465211 1.637107776 3571 94 605 3202 17/8/2020 

1.998656365 2.015451797 2895 82 574 4576 18/8/2020 

2.276205049 2.295332823 2529 85 582 4093 19/8/2020 

2.039067855 2.o56202879 2831 87 614 3995 20/8/2020 

1.791629028 1.806684734 3246 75 587 4288 21/8/2020 

1.972157773 1.988730527 2947 70 637 3965 22/8/2020 

1.924943384 1.941119379 3016 75 661 3291 23/8/2020 

1.461557357 1.473839352 3980 91 538 3644 24/8/2020 

1.725137721 1.739634677 3372 77 574 3962 25/8/2020 

1.687464549 1.701644923 3454 72 595 3837 26/8/2020 

1.539058459 1.551991723 3794 72 566 3651 27/8/2020 

1.510535669 1.523229246 3865 74 582 4177 28/8/2020 

1.408950976 1.4207909007 4146 77 579 3834 29/8/2020 

1.514765784 1.527494908 3860 68 542 3731 30/8/2020 

1.563731932 1.576872536 3722 83 579 3757 31/8/2020 
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1.505566801 1.518218623 3871 81 521 3404 1/9/2020 

1.56167979 1.57480315 3732 78 527 3946 2/9/2020 

1.64092664 1.65471594 3552 74 496 4755 3/9/2020 

1.610284168 1.623815968 3611 84 495 5026 4/9/2020 

1.724470965 1.737116387 3891 63 523 4644 5/9/2020 

1.754644648 1.769389561 3301 90 507 3651 6/9/2020 

1.359689214 1.371115174 4299 77 534 4314 7/9/2020 

1.684121143 1.698273422 3465 68 564 4894 8/9/2020 

1.589209402 1.602564103 3669 75 540 4243 9/9/2020 

1.523297491 1.53609831 3824 82 542 4597 10/9/2020 

1.631925398 1.645639057 3579 67 566 4254 11/9/2020 

1.507473151 1.52014188 3887 60 564 4106 12/9/2020 

1.702432045 1.716738197 3422 73 564 3531 13/9/2020 

 

When calculating the average of parameters from 13/8/2020 to 13/9/2020 and substitute it into 

equation (3.3), the equation will be, as follows                                                                                       

  ( )  (         ) ( )      ( )         ( )                                                                              (   )  
Now, by Itô's formula , the solution  will be as follows : 
 ( )     ,               -                                                                                                                  (   ) 

  
 

  
(√      (  𝛾)  (     ))             

Then by theorem (5.2), for every given initial value  ( )     (          )  the solution of 

equation (6.3) obeys 

                 
   

     ( )                    
   

 ( )                                                                                        

Which implies that I(t) will not  tend to zero exponentially with the probability of one. The computer 

simulation in Figure-2 supports these results . 

 
(a)                                                                                 (b) 

Figure 2-Computer simulation of the path I(t) using the EM method with                ( )     
equation (6.3); ( a) Stochastic  SIR model, (b) Deterministic SIR model. 

 

7.Conclusions 

    In this article, we introduced environmental stochasticity  into the deterministic SIR model [7]. We 

explored the properties for the resulting stochastic SIR model for the spread  of COVID-19. This was 

achieved by first proving that there exists a unique positive solution  ( ) for any given initial value 

   (   )  Furthermore, we constructed    
 and the condition required for the extinction and the 

persistence for our Solution  ( )  . In general, if   
     , the solution will almost surely extinct, as 

shown in theorem (5.1).The computer simulation shown in Figure-1b supports these result clearly, 

illustrating the extinction of Covid-19. If   
    . This means that the solution will not tend to zero, as 

shown in theorem (5.2). The computer simulation shown in Figure-2a supports these result. Also, we 

conclude through this paper that we can control the stability of the system through environmental 
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stochasticity ( ), if it is large, as shown in Table 2. We find that   
    and the system will be stable. 

Moreover, if     is    small, as in Table 3, we find that   
     which implies that the system is 

unstable.                                                        
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