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Abstract

In this paper, we model the spread of coronavirus (COVID -19) by introducing
stochasticity into the deterministic differential equation susceptible -infected-
recovered (SIR model). The stochastic SIR dynamics are expressed using Itd's
formula. We then prove that this stochastic SIR has a unique global positive solution
I(t).The main aim of this article is to study the spread of coronavirus COVID-19 in
Irag from 13/8/2020 to 13/9/2020. Our results provide a new insight into this issue,
showing that the introduction of stochastic noise into the deterministic model for
the spread of COVID-19 can cause the disease to die out, in scenarios where
deterministic models predict disease persistence. These results were also clearly
illustrated by Computer simulation.

Keywords: Mathematical modeling of COVID-19,basic reproduction number,
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1- INTRODUCTION

Comprehension and prediction of the novel COVID-19 has become very important owing to the
huge global health burden. Until 18/9/2020, almost 30356725 persons became newly infected with
COVID-19, while about 950625 died since the identification of the first cases in Wuhan City, China,
in December 2019 [1, 2]. The global data indicate that the number of people infected with coronavirus
continues to rise even though effective prevention strategies exist. No country of the world has been
spared from coronavirus. The pandemic remains extremely dynamic, increasing and changing
characters as the virus exploits new opportunities used for transmission [1] . Actually, coronavirus is
infiltrating almost every aspect of life , damaging global economy, and altering both man- made and
natural environments .The pandemic varies in impact within regions; some countries are more affected
than others and within countries there are usually wide variations in infection levels between different
provinces [1-8]. The large amount of work conducted on modeling the spread of COVID-19 has been
largely restricted to ordinary differential equations [9-13]. These models do not take into account the
inherent randomness that is associated with the spread of COVID-19. In this manuscript, we propose
examining the effects of the introduction of environmental noise into such a system. Thus, we adopt

the SIR  model assumption for the spread of COVID-19 [7], as follows.
s _

X = —as@I),
4O = as1(t) - bI(D), (1.1)
| 2@ = pie),

And the introduction of environmental noise into the system (1.1). Hence, we propose a system of
stochastic differential equations for modeling the spread of coronavirus . The rest of this article is
structured as follows. Section 2 introduces the mathematical definition of the Stochastic Differential
Equations (SDEs), including the stochastic process, Brownian motion, Itd's integral, and the theorem
about Ito's formula. Section 3 describes the SDEs SIR Model for the spread of COVID-19. Also, a
table of all the parameters used during our work with the basic reproduction number for the stochastic
model is presented. In section 4, we prove the existence of the unique nonnegative solution [14,15]. In
section 5, we consider the conditions required for COVID-19 to die out, i.e., for the disease to become
extinct. The main results are presented in section 6. Finally, Section 7 is devoted to the conclusion part
(e.g., see[7,8,16 - 19]).

2- Basic Concept of the Stochastic Differential Equations

In this section, mathematical definitions of the SDEs are described. Additionally, we explain some
theorems that we use in this work.
Definition (2.1)

The stochastic process W(t) is defined as a family of random variables X(t, w) of two variables t
€T and w € Q on a common probability space (Q, A, P).

Definition (2.2)

In the stochastic process W(t), t € [0, oo] is said to be a Brownian motion or Wiener process if the
following conditions are satisfied:

1. P(W(0)=0)=1.

2. For 0<ty<t; <--<t, the incrementsW(t;)—W(ty), W(t,) —W(,—1), are
independent.
3. For arbitrary (t) and (h > 0), W (t + h) — W (t) has a Gaussian distribution with a mean value

of zero and variance h. The Wiener process has the properties that E(w(t))=0 and Var (W (t) —
W(s)) =t —s, forall 0 < s < t. Thus, they have stationary increments.

Definition (2.3)

The stochastic differential equations (SDESs) take the form.

dX(t) = f(X(0), t)dt + g(X(t), t)dW (t), X(ty) =Xy tE€[ty,T],T>0, (2.3)
where f(X(t),t) is the drift coefficients function and g(X(¢t), t) is defined as a diffusion coefficient
function. The solution to SDEs in equation (2.3) takes the following form in the integral formula.

X(©) = Xo+ [ f(X(),)ds + [ g(X(s),$)dW (s), t € [to,T], (2.4)

where the first integral on the right side of equation (2.4) is Riemann integral, and the second is
stochastic integral.
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Theorem (2.1) (It6's formula)
Suppose that X; has SDE:
dX; = f(X;, t)dt + g(Xg, t)dwy, (2.5)

for f,g € CY2(J X R,R), assume that F:] X R — R is continuous and has ‘;f :—;t and that exist
and are a continuous set F = F(X;,t), then F has the stochastic differential
oF oF 10%F
dF:EdH_a dX; +26X2‘g 2dt,
oF OF 10%F oF
dF (X, t) = ETA +— oX, + Eax,? g?ldt + a—thth , (2.6)

The last equation (2.6), is called Ito's formula or Ito's chain rule. Equation (2.5) is sufficiently general
to represent an m- dimensional d-wiener process system. In the equation, W, = (W2, W2, ..., W7 is
an ad-dimensional vector consists of d independent Wiener processes and g(X;, t) is an m X dmatrix.
If we labeled the columns of g(X;t) to be as g;(X; t), g,(X¢, t), ..., ga(Xs, t); then, the m-
dimensional d-wiener process system is written as, dX; = f(X;, t)dt + Z}i:lgj(Xt,t)dwt’. Here, the
component-by-component of the Ito’s formula can be K=1,2,..., m

AR (X ) = +Zﬁ Zgug]l XK dt+ZZgu o e @7)

i,j=1 i=1i=

Definition (2.4)

We can define the stochastic integral or It6's integral as follows; let g(t) be a stochastic function
having a continuous derivative in the region [a, 8], and let W(t), t = 0 denote a standard wiener
process the Ito's integral:

B n
[ s@aw = lim 3 g W (e) - Wt ), (28)
i=1

<

where x=t, <t; <--<t,=/f Iisanapparition of the region [a, B]. By applying the integration
by parts, we found that:
B

f GOAW () = gBW(B) — g(OW () — f W(t)dg (o), 2.9)

(o4 o

3. The stochastic Differential Equations SIR Model for the spread of COVID-19

In this paper, we let (Q,F,{F;}:»o,P) to be a complete probability space with a filtration{F;};>¢
satisfying the normal condition (i.e.it is growing and right continuous whereas F, covers all P -null
sets), and we let W(t) be a scalar Wiener process or Brownian motion defined on the probability
space. We use a A b to denote min(a ,b) and a v b to denote max(a ,b). The growth of COVID-19
infections in each region is modeled by the SDEs SIR model which is given as follows.

dS(t) = —aS(t)I(t)dt ,5(0) =S,

di(®) = (aSOI®) — (o +NI®)) dt + aSOIOAW, ,1(0) = I, 3.1)
dR,,(t) = (p + YI(t)dt — aS()I(t)dW;
S(0) = Ntotar — Rin(0) — 1(0), (3.2)
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Table 1-Model States and Model parameters

Parameter Description
S(t) the whole susceptible population at time t
I(t) the number of active infections at time t
R, (t) the whole number of deaths and recoveries at time t
t the daily —time parameter
dS(t),dl(t)and dR,, (t) the change in the states at time t
dw the increment in Weiner process which models the randomness in the
: evolution
a disease transmission coefficient
p per capita death rate
y the rate at which infected individuals become cured
a parameter used to model the stochastic or randomness in the evolution,
g which will cause local deviation from the typical (exponential) trends
N the populations of the regions I, and S, are the initial number of infections
total and susceptible individuals, respectively
R, The basic reproduction number for the deterministic model
RS The basic reproduction number for the stochastic model

Let us now consider the second equation of (3.1). To establish the basic reproduction number for the
stochastic model

di(t) = (aSOI(E) - (p + I dt + aSOIR)AW, ,1(0) = I, (3.3)
we rewrite equation (3.3) as follows

4o - (aS(t) — (p +v))dt + aS(t)dW,, then we see that the term InI(t) should appear in the

1(t)
solution of (3.3).In this case, we set F(I(t),t) = InI(t) and when we apply It6's formula (2.6), we get

dF(I(0),t) =
[0+ (as®) = (o +7)) 1) (1(%) — 0.5025(t)2I(¢)? (%)] dt + aS(E)I(¢) (%) dw,,
S0 dIni(t) = [(aS(t) —(p+ y)) - 0.5025(t)2] dt + oS(t)dW,
The integral for both sides gives
Ini(t) —In1(0) = [(aS(t) —(p+ y)) - 0.5025(1:)2] t + aS(t) (W, — Wy), for W, = 0,

So the solution of equation (3.3) is
1(t) = Iyexp[aS(t) — (p +v) — 0.5625()?] t + aS()W,, SO

s as(t) a*5()? o25(t)?

© (p+y) 200+y)  ° 20+y)’
where S(t) represents the whole susceptible population at time t. It can be expressed by N which,

through this paper, will be always changing with the time t. Hence, the basic
reproduction number for the stochastic model can be expressed as follows,

(3.4)

aN oZN? o%N?
Rg = - =R ——F————,
(p+v) 2(p+v) 2(p+7v)

4.Existence of Unique Nonnegative Solution

Before we begin to investigate the dynamical behavior of the SDE SIR model for COVID-19 (3.3),
it is important to prove that this module does not only has a single global solution, but also that the
solution will remain within (O,N) when it starts from there . The current general existence and
uniqueness theorem on SDEs (see e.g. [15]) does not apply to this special stochastic differential
equation. To assure these properties, let us take the following theorem.
Theorem 4.1

For every given initial value (0) = I, € (0,N) , the SDE SIR COVID-19 model (3.3) has a unique
global nonnegative solution I(t) € (0, N) for all T > 0 with a probability that equals one, i.e.

P{I(t) € (O,N) forall t = 0} = 1.
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Proof

Concerning equation (3.3) as an SDE on R, we see that its coefficients are locally Lipchitz
continuous. It is well-known that for every given initial value S, € (0, N) there is a unique maximal
local solution I(t) on t € [0, 7.], Where 7, is the explosion time. Let k, > 0 be sufficiently large for

ki <Ily<N- (ki) then for each integerk > k , we define the stopping time as follows
0 0

o =inf{t e 07110 € (Y N = (1)}

Everywhere during this paper we set inf(@) = oo, where @ = the empty set . Clearly, 7, is growing
as k — oo, then we set 7, = lim_,, T, Whence 7, < 7, a.s . If we can show that 7., = oo a.s., and
I(t) € (O,N)as., for all t = 0. In other words , to complete the proof, all we need to show is
that 7, = oo a.s. If this statement is false, then there is a pair of constant > 0, and € € (0,1), such that

P{r,, < T} > €. Therefore, there is an integer k; > k, such that

P{r, <T}>¢€ forall k >k, 4.1)
We define a function V: (0, N) - R, by
1 1
V(x) =—+ :
x N-—x
Via the 1t0's formula we have , forany t € [0,T] and k > k;4,
tATy
EV(I(tAty)) = V() + E f LV (I(s))ds, (4.2)
0

where LV: (0, N) — R is defined by

1 1
LV (x) =x(—;+m) [aN — p —y — ax]
1 1
+02x2(N —x)2 (x—3+m), (4.3)

It is easy to show that
+ aN 1 1
weo <2 ey (L
X N—x x N

) < V), (4.4)
where = (p + y)v(aN) + ¢2N? . By substituting this into (4.2), we get
EV(I(tAty)) < V(o) +E [, ™ cV(1(s))ds < V(o) + C [ EV(I(sAty)) ds.
The Gronwall inequality produces that

EV(I(TAty)) < V(Ip)eT. (4.5)
we set Q, = {1, < T} for k = k; and, by (4.1), we get P(Q) = €.
Note that for each w € Q, I (1}, w) equals either% or N — (%),hence V(I(Tk,w)) > k.

It then follows from (4.5) that V (I)e" = E[lo, (w)V (I (tx, w))] = kP(Qy) = €k.

Letting k — oo leads to the contradiction oo > V (I5)e‘T = o, so we must therefore have 7., = o a.s.,
whence the proof is complete.
5. Extinction

In the study of the dynamical behavior of population systems, it is important for us to consider the
conditions required in order for the COVID-19 to die out , in other words, when the disease will
become extinct.
Theorem 5.1. If the basic reproduction number for the stochastic model is

__aN o?N? _ o2N? s _a
eS = m — —2(p+y) =R, — —2(p+y) <lando“ < "L (51)

then, for any given initial value 1(0) = I, € (0, N) , the solution of SDE (3.3) follows

1
lim sup?log(l(t)) <aN—-p—y—0.502N? < 0a.s., (5.2)

That is, I(t) tends to zero exponentially almost surely. In additional words, the disease (COVID-19)
dies out with a probability of one .
Proof: By apply 1t6's formula, we have

t t
log(I(t)) = log(ly) +f fU(s)ds +J. U(N — I(s))dWS, (5.3)
0 0
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where f: R — R is well-defined by
f(x)=aN —p—o0 —ax — 0.5¢%(N — x)?. (5.4)
Though, under condition (5.1), we have
fI(s))=aN —p—y —0.502N% — (a — 02N)I(s) — 0.50%1%(s)
<aN —p—y—0.506%N?,
For (s) € (0,N) . It now follows from (5.3) that
t
log(I1(t)) <log(ly) + (aN — p —y — 0.562N?)¢t + f a(N —1(s))dWs, (5.5)
0
This indicates that
: 1 202 4 1 1(°
tllm sup;log(](t)) <aN—-p—-y—050°N*-+ tllmsup?f o(N —I(s))dw;, (5.6)
—00 —00 0
But, by the large number theorem for martingales (see e.g. [15]), we have
1 t
tlimsup?f O'(N — I(s))dWs =0,a.s.
—00 0

We as a result get the desired assertion (5.2) from (5.6). It is useful to note that in the deterministic
SIR model (1.1), I(t) tends to O if and only if R, < 1, while in the SDE SIR model (3.1), I(t) tends to O

02N?

if RS =R, — ) <lando? < % in other words, I(t) tends to zero exponentialy
Theorem 5.2. If the basic reproduction number for the stochastic model is

S__GN__ 0N _p _ o'N?

e =m e Re T3 b G.7)
Then for every given initial value I(0) = I, € (0,N) , the solution of the SDE SIR model (3.3)
follows

tlim supl(t) = ¢ a.s. (5.8)
and
tlim infI(t) <& a.s, (5.9)
where
1
& =?<\/a2 —20%(p+y)— (a—aZN)>, (5.10)
which is the unique root in (0,N) of
aN —p—y —af — 0.50%(N — §)? = 0. (5.11)

Namely, I(t) will rise to & or above the level ¢ infinitely, often with the probability of one.
Proof. Recall the definition (5.4) of function f: R — R. By condition (5.7), it is easy to see that
equation f(x) = 0 has a positive root and a negative root. The positive one is

%(J(a —02N)%2 4+ 202%(aN — p —y — 0.506%2N?) — (a — O'ZN))

1
=;(\/a2 —202%2(p+7y) —(a—UzN)) =<,

Noting that
f(0)=aN—p—y—0502N?>0and f(N) =—p—y <0,
we see that ¢ € (0, N) and

f(x) > 0is strictly increasing on x € (0,0 V %), (5.12)
f(x) > 0 is strictly decreasingon x € (0 V %, §), (5.13)

While
f(x) < 0is strictly decreasing on x € (¢, N), (5.14)

We now begin to prove assertion (5.8). If it is not true, then there is a sufficiently

small € € (0,1) such that

P(Q,) > €, (5.15)
where Q; = {limsup;_ [(t) < & — 2€} .Hence, for every w € Q,,thereisT = T(w) > 0,

such that

I(t,w) < & — ewhenevert = T(w). (5.16)
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Obviously, we may choose € to be so small (if it is essential to reduce it) that £(0) > f(§ —€). It
therefore
follows from (5.12), (5.13), and (5.16) that
f(I(t,w)) = f(§ — €) whenever t
> T(w). (5.17)
Furthermore, by the large number theorem for martingales, there is a Q, € Q with P(Q,) =1
such that for each w € Q,,

1 t
lim — O'(N —I(s,w))dW (s, w) = 0.

(5.18)
tooo t
Now, b;)/ fixing any € Q; N Q, , it then follows from (5.3) and (5.17) that , fort > T(w),
T(w)
log(I(t, w)) = log(ly) + f f(I(s,w))ds + f(& — e)(t - T(w))
0
t
+f O'(N —I(s, a)))dW(s, ). (5.19)
0

This produces liminftﬁoo%log(l(t,w)) >f(&—¢€)>0,

whence lim;_,, I(t, w) = co.

Nonetheless, this contradicts (5.16). Hence, we necessarily have the desired assertion (5.8). Let us now
prove the assertion (5.9). If it is not true, then there is a sufficiently small & € (0,1) such that

P(Q3) > 6, (5.20)

where Q5 = {liminf;_, I(t) > ¢ + 26}. Hence, for every w € Qg, thereisat = t(w) > 0

such that

I(t,w) = & + 6 whenevert > t(w). (5.21)

Now , we fix any w € Q, N Q5 . It then follows from (5.3) and (5.14) that , for t > t(w),

T(w)

log(I(t, w)) <log(ly) + ) f(I(s,w))ds + f(&+ 8)(t — T(w))

+ f ta(N —I(s,w))dW (s, w). (5.22)
0

This, together with (5.18), yields
1
limsup?log(l(t,a))) <f(+98) <0,

t—>oo

whence lim;_,, I(t,w) = 0.
But this contradicts (5.21). We therefore must have the desired assertion (5.9).
6. Main results

To comprehend the effects of introducing environmental stochasticity into the system (3.1) on the
stability of the system and the extinction of the disease, we will take an example of the spread of
coronavirus in Irag. All data were obtained from the Iraqi Ministry of Health and from another report
[1].

Table 2- The spread of Covid-19 in Irag, finding the basic reproduction number for the deterministic
model and the stochastic model when the population is 40397492 [1] and ¢ = 0.0001.

Date (l:\ii\é\; Active cases dlglae'zlr\:s reclc\)l\?t\e,\:ies R, R;
13/8/2020 3841 592 53 2667 2.205882353 | 0.367648235
14/8/2020 4013 627 68 2921 2.007360321 | 0.334560053
15/8/2020 4293 590 76 2571 2.266717038 | 0.377786172
16/8/2020 4348 572 75 2674 2.182611859 | 0.363768643
17/8/2020 3202 605 94 3571 1.637107776 | 0.272851295
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18/8/2020 4576 574 82 2895 2.015451797 | 0.335908632
19/8/2020 4093 582 85 2529 2.295332823 | 0.38255547
20/8/2020 3995 614 87 2831 2.056202879 | 0.34270048
21/8/2020 4288 587 75 3246 1.806684734 | 0.301114122
22/8/2020 3965 637 70 2947 1.988730527 | 0.331455087
23/8/2020 3291 661 75 3016 1.941119379 | 0.323519896
24/8/2020 3644 538 91 3980 1.473839352 | 0.245639892
25/8/2020 3962 574 77 3372 1.739634677 | 0.289939113
26/8/2020 3837 595 72 3454 1.701644923 | 0.283607486
27/8/2020 3651 566 72 3794 1.551991723 | 0.258665287
28/8/2020 4177 582 74 3865 1.523229246 | 0.253871541
29/8/2020 3834 579 77 4146 1.4207909007 | 0.236798477
30/8/2020 3731 542 68 3860 1.527494908 | 0.254582484
31/8/2020 3757 579 83 3722 1.576872536 | 0.262812089
1/9/2020 3404 521 81 3871 1.518218623 | 0.253036436
2/9/2020 3946 527 78 3732 1.57480315 | 0.262467192
3/9/2020 4755 496 74 3552 1.65471594 | 0.275785989
4/9/2020 5026 495 84 3611 1.623815968 | 0.270635995
5/9/2020 4644 523 63 3891 1.737116387 | 0.472574151
6/9/2020 3651 507 90 3301 1.769389561 | 0.294898826
7/9/2020 4314 534 77 4299 1.371115174 | 0.228519195
8/9/2020 4894 564 68 3465 1.698273422 | 0.28304557
9/9/2020 4243 540 75 3669 1.602564103 | 0.267094017
10/9/2020 4597 542 82 3824 1.53609831 | 0.256016384
11/9/2020 4254 566 67 3579 1.645639057 | 0.274273177
12/9/2020 4106 564 60 3887 1.52014188 0.25335698
13/9/2020 3531 564 73 3422 1.716738197 | 0.286122032

When calculating the average of parameters from 13/8/2020 to 13/9/2020 and substitute it into
equation (3.3), the equation will be as follows

dI(t) = (2481.5625)I(t)dt + 100I(t)dW, ,1(0) =1,

Now by It6's formula ,we have the solution as:
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I(t) = exp[—2518.4375t + 100W,], (6.2)
So, we can therefore conclude, by theorem (5.1), that for any initial value 1(0) = I, € (0,1000000)
the solution (6.2) obeys

1
tlimsup ?log(l(t)) < —2518.4375 .a.s,

This implies that I(t) will tend to zero exponentially with the probability of one.

But, on the other hand, for the corresponding deterministic SIR model (1.1) , the basic reproduction
number for the deterministic model is
R, >1.

The computer simulation in Figure-1, by using Euler Maruyama method (EM), supports these result
clearly, illustrating the extinction of COVID-19 .

5 T T T T T T T 1

Stochastic

4=

n
=
=]

o

n .
= = = =2
in =2 ~1 oo

[

o
o
.

=]
= =
[ L

Fraction of Population infected with Covid-19
w
Fraction of Population infected with Covid-19

in
=

_
ra
o
.
o
o
—
=]
[}
[
w
S
a2}
o
e
o

Tirme (days) T Time (days)

(b) (a)
Figure 1-Computer simulation of the path I(t) using the EM method with step size A= 0.00001,
&I(0) = 1, equation (6.1); ( a) Deterministic SIR model (b) Stochastic SIR model .

Table 3-The spread of COVID-19 in Iraq , finding the basic reproduction number for the deterministic
model and the stochastic model when the population is 40397492 and ¢ = 0.00001.

New Active New New s
Date cases cases Deaths recoveries Re Re
13/8/2020 3841 592 53 2667 2.205882353 2.205882353
14/8/2020 4013 627 68 2921 2.007360321 1.990632318
15/8/2020 4293 590 76 2571 2.266717038 2.247827729
16/8/2020 4348 572 75 2674 2.182611859 2.164423427
17/8/2020 3202 605 94 3571 1.637107776 1.623465211
18/8/2020 4576 574 82 2895 2.015451797 1.998656365
19/8/2020 4093 582 85 2529 2.295332823 2.276205049
20/8/2020 3995 614 87 2831 2.056202879 2.039067855
21/8/2020 4288 587 75 3246 1.806684734 1.791629028
22/8/2020 3965 637 70 2947 1.988730527 1.972157773
23/8/2020 3291 661 75 3016 1.941119379 1.924943384
24/8/2020 3644 538 91 3980 1.473839352 1.461557357
25/8/2020 3962 574 77 3372 1.739634677 1.725137721
26/8/2020 3837 595 72 3454 1.701644923 1.687464549
27/8/2020 3651 566 72 3794 1.551991723 1.539058459
28/8/2020 4177 582 74 3865 1.523229246 1.510535669
29/8/2020 3834 579 77 4146 1.4207909007 1.408950976
30/8/2020 3731 542 68 3860 1.527494908 1.514765784
31/8/2020 3757 579 83 3722 1.576872536 1.563731932
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1/9/2020 3404 521 81 3871 1.518218623 1.505566801
2/9/2020 3946 527 78 3732 1.57480315 1.56167979
3/9/2020 4755 496 74 3552 1.65471594 1.64092664
4/9/2020 5026 495 84 3611 1.623815968 1.610284168
5/9/2020 4644 523 63 3891 1.737116387 1.724470965
6/9/2020 3651 507 90 3301 1.769389561 1.754644648
7/9/2020 4314 534 77 4299 1.371115174 1.359689214
8/9/2020 4894 564 68 3465 1.698273422 1.684121143
9/9/2020 4243 540 75 3669 1.602564103 1.589209402
10/9/2020 4597 542 82 3824 1.53609831 1.523297491
11/9/2020 4254 566 67 3579 1.645639057 1.631925398
12/9/2020 4106 564 60 3887 1.52014188 1.507473151
13/9/2020 3531 564 73 3422 1.716738197 1.702432045

When calculating the average of parameters from 13/8/2020 to 13/9/2020 and substitute it into
equation (3.3), the equation will be, as follows

dI(t) = (2481.5625)I(t)dt + 10I1(t)dw, ,1(0) =1, (6.3)
Now, by Itd's formula , the solution will be as follows :
I(t) = exp[2481.5625t + 10W,], (6.4)
1
§ = F(\/aL2 —202(p+y)—(a— JZN)) = 382762.65,

Then by theorem (5.2), for every given initial value 1(0) = I, € (0,1000000), the solution of
equation (6.3) obeys

tlim infI(t) < 382762.65 <limsuplI(t), a.s

—00 t—oo

Which implies that I(t) will not tend to zero exponentially with the probability of one. The computer
simulation in Figure-2 supports these results .
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Figure 2-Computer simulation of the path I(t) using the EM method with A= 0.00001 and I(0) =1,
equation (6.3); ( a) Stochastic SIR model, (b) Deterministic SIR model.

7.Conclusions

In this article, we introduced environmental stochasticity into the deterministic SIR model [7]. We
explored the properties for the resulting stochastic SIR model for the spread of COVID-19. This was
achieved by first proving that there exists a unique positive solution I(t) for any given initial value
Iy € (0, N). Furthermore, we constructed Rjand the condition required for the extinction and the
persistence for our Solution I(t) . In general, if R < 1 , the solution will almost surely extinct, as
shown in theorem (5.1).The computer simulation shown in Figure-1b supports these result clearly,
illustrating the extinction of Covid-19. If RS > 1 . This means that the solution will not tend to zero, as
shown in theorem (5.2). The computer simulation shown in Figure-2a supports these result. Also, we
conclude through this paper that we can control the stability of the system through environmental
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stochasticity (o), if it is large, as shown in Table 2. We find that R < 1 and the system will be stable.

Moreover, if ¢ is  small, as in Table 3, we find that R > 1 which implies that the system is
unstable.
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