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Abstract 

      Some necessary and sufficient conditions are obtained that guarantee the 

oscillation of all solutions of two types of neutral integro-differential equations of 

third order. The integral is used in the sense of Riemann-Stieltjes. Some examples 

were included to illustrate the obtained results 
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 المحايدة من الرتبة الثالثةالتكاملية  -المعادلات التفاضليةالتذبذب لحلول معيار 
 
ناصر كتاب , حدين علي محمد تغريد عبدالحدين عبد , ستار  

كمية عمهم بشات، جامعة بغداد، بغداد، العراق1  
 2كمية التربيه، جامعة الكهفه، الشجف، العراق

 الخلاصة
تم الحرهل عمى بعض الذروط الزرورية والكافية لزسان تذبذب كل الحمهل لشهعين من السعادلات      

بعض ز. قدمشا تكامل ريسان ستيمتج التكامل السدتخدم هه. الثالثةالسحايدة من الرتبة التكاممية -التفاضمية
  ل عميها.ه حرتم الالامثمة لتهضيح الشتائج التي 

 

1.  Introduction  

In this paper, the third order neutral integro differential equations are studied. Consider the 

following integro-differential equations of the form  

[ ( )   ( ) ( ( ))]
   

  ∫  (   )  (   )
 

 

                     (   ) 

where the integral is in the sense of Riemann-Stieltjes, and assume that the following 

hypotheses are fulfilled: 

(  )     [,   )    ]   is increasing and        ( )     
(  )  (   ) is increasing with respect to          ,   -. 
(  ) ( )   (   )   (   )    [,   ) (   )]      

    A function   ( )   is a solution of  eq.(1.1) if   ( )   ( ) ( ( ))  is three times 

continuously differentiable on ,    )       *     (  )  (  )+      and  ( ) satisfies 
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eq.(1.1) on ,    )  A solution  ( ) is said to be oscillatory if it has arbitrarily large zeros on  

,    ),  otherwise  it is said to be nonoscillatory. Eq.(1.1)  is said to be oscillatory if all of its 

solutions are oscillatory. There  has been much research concerning oscillatory and 

nonoscillatory behaviors of solutions to different classes of third order nonlinear neutral 

differential equations; we refer the reader to [1,2,4, 6]. In earlier works [1, 2], the authors 

obtained some necessary and sufficient conditions to ensure the oscillation of the first order 

neutral integrodifferential equations. In others [3-5], the authors studied delay 

integrodifferential equations and established some conditions for oscillation. In this paper, 

some necessary and sufficient conditions have been obtained to ensure the oscillation of 

eq.(1.1), where              . The next lemma is useful in proving the main results of 

the paper. 

Lemma 1. ([6], Lemma 2.2)  

i- In addition to the conditions 

 (a)    (,    ) (   ))  

       (b)    (,    )  )   is strictly increasing and  ( )          
suppose that     ( )    for       Let  ( ) be a continuous nonoscillatory solution of the 

functional inequality  

 ( ), ( )   ( ) ( ( ))-    

defined in a neighborhood of infinity. Then  ( ) is bounded. 

ii- In addition to the conditions 

(a)    (,    ) (   ))  

       (b)    (,    )  )   is strictly increasing and  ( )          
suppose that   ( )    for       Let  ( ) be a continuous nonoscillatory solution of the 

functional inequality  

 ( ), ( )   ( ) ( ( ))-    

defined in a neighborhood of infinity. Then  ( ) is bounded. 

2.  Main Results  

In this section , we present four results for the oscillation of all solutions of eq.(   ). First, we 

begin to study eq.(   ) with     . 

Theorem 2.1. Assume that (  )  (  ) hold,   ( )     ( )    and  

      
   

∫  ( )
 

 

                                                      (   ) 

      
   

∫ ∫
  (   )

 (   (   ))
  

 

 

 

 

                    (   ) 

Then, every solution of eq.(   ) oscillates on  ,    )  
Proof. Suppose that  ( ) is an eventually positive solution of eq (   ) . Let 

 ( )   ( )   ( ) ( ( ))                                    (   ) 

then by eq.(   )  we get  

    ( )  ∫  (   )  (   )
 

 

                         (   ) 

hence    ( )   ( )  ( ) are monotone functions. We claim that    ( )           . 

Otherwise, if       ( )              yields    ( )     ( )             and 

       ( )    implies that         ( )   . On the other side, by lemma 1-ii,  ( ) is 

bounded, which is a contradiction. Hence     ( )             then there are two 

possibilities to consider: 

(1)    ( )           ;  (2)    ( )             
If (1) holds, that is    ( )         then  ( )    and        ( )       
 By (2.3), we obtain  ( )    ( ) ( ( )) 
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 ( )   
 

 (   ( ))
 (   ( ))                            (   ) 

By substituting (2.5) in (   )  we obtain 

    ( )   ∫
 (   (   ))

 (   (   ))

 

 

  (   )                          (   ) 

     (   ( ))∫
 

 (   (   ))

 

  

  (   )                  

By integrating the last inequality from    to    we get  

   ( )     (  )    (   (  ))∫ ∫
  (   )

 (   (   ))

 

  

 

  

                 (   ) 

As      then (2.7) leads to    ( )      which is a contradiction since     ( ) is negatively 

increasing. 

(2)    ( )           In this case, there are two possibilities to investigate: 

(a)   ( )            ; (b)   ( )             
If (a) holds,   ( )     then   ( )   ( )    by (   )  we obtain  

    ( )  ∫  (   )  (   )
 

 

  ( ) ( )                    (   ) 

By integrating (2.8) from    to      it follows that  

   ( )     (  )   (  )∫  ( )  
 

  

  

As      the last inequality implies that          ( )   , which is a contradiction.  

Finally, if (b) holds, then   ( )      ( )       ( )          
In this case, again, (2.6) is fulfilled. It follows from (2.6) that  

    ( )    (   ( ))∫
 

 (   (   ))

 

  

  (   )  (   ( ))    (   (  ))    

Integrating the last inequality from    to   yields  

   ( )     (  )    (   ( ))∫ ∫
 

 (   (   ))

 

  

 

  

  (   )           

As       it follows that          ( )      which is a contradiction. Hence, every solution 

of eq.(   ) oscillates on  ,    )  
Theorem 2.2. Assume that (  )  (  ) hold,    ( )     ( )    and (2.1), (2.2) hold, 

then every bounded solution of eq.(   ) oscillates on ,    )  
Proof.   Suppose that  ( )  is an eventually positive bounded solution of eq.(   ) , then 

    ( )         and    ( )   ( )  ( ) are monotone functions if     ( )             
then   ( )     and   ( )     which implies that        ( )     which is a 

contradiction, since   ( ) is bounded.  If    ( )           , we claim that   ( )     for 

         Otherwise if   ( )              then  ( )    and        ( )     

implies to        ( )      which is a contradiction. 

Hence,   ( )            and there are two possibilities to investigate: 

(a)  ( )      ( )       ( )            ; (b)   ( )      ( )       ( )      
       The proof of the cases (a) and (b) is similar to (2)-(a) and (2)-(b) in theorem 2.1. 

In the following results, we study the eq.(   ) when      . 

Theorem 2.3  Assume that (  )  (  ) hold,    ( )     ( )    and (2.1), (2.2) hold, 

then every solution of eq.(   ) oscillates on ,    )  
Proof. Suppose that  ( ) is an eventually positive solution of eq.(   ). Then by eq.(   )  we 

get  
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    ( )   ∫  (   ) (   )
 

 

                         (   ) 

Hence,    ( )   ( )  ( ) are monotone functions. We claim that    ( )           . 

Otherwise, if       ( )              this yields that    ( )     ( )             and 

       ( )      which implies that         ( )   . On the other side, by lemma 1-i, 

 ( ) is bounded, which is a contradiction. Hence,     ( )             then there are two 

possibilities to consider: 

(1)   ( )            ;  (2)    ( )             
If (1)  holds , then  ( )    and        ( )      
 Then,   ( )   ( )    By eq.(   )  we obtain  

    ( )   ∫  (   )  (   )
 

 

   ( ) ( )                    (    ) 

By integrating (2.10) from    to      it follows that   

   ( )     (  )    (  )∫  ( )   
 

  

 

As      the last inequality implies that          ( )              a contradiction.  

(2)    ( )           In this case, there are two possibilities to investigate: 

(a)   ( )            ;  (b)   ( )            

Let (a) holds, then by (2.3) we obtain  ( )    ( ) ( ( )) and (2.5) holds. 

By substituting (2.5) in eq.(   )  we obtain 

    ( )  ∫
 (   (   ))

 (   (   ))

 

 

  (   )                     (    ) 

    (   ( ))∫
 

 (   (   ))

 

  

  (   )               

By integrating the last inequality from    to    we get  

   ( )     (  )   (   (  ))∫ ∫
  (   )

 (   (   ))

 

  

 

  

              (    )  

As      then (2.12) leads to          ( )      This is a contradiction, since     ( ) is 

positively decreasing. 

If (b) holds, that is   ( )      ( )              , then   ( )   ( )    By (   ) , we 

obtain  

    ( )   ∫  (   )  (   )
 

 

   ( ) ( )    (  ) ( )        

By integrating the last inequality from    to      it follows that   

   ( )     (  )    (  )∫  ( )   
 

  

 

As      the last inequality implies that          ( )      which is a contradiction.  

Finally if (b) holds, then we have   ( )      ( )       ( )          
By substituting (2.5) in eq.(   )  we obtain 

    ( )  ∫
 (   (   ))

 (   (   ))

 

 

  (   )     

                              (   ( ))∫
 

 (   (   ))

 

  

  (   )    

Integrating the last inequality from    to   yields  
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   ( )     (  )   (   (  ))∫ ∫
 

 (   (   ))

 

  

 

  

  (   )           

As       it follows that          ( )      which is a contradiction. 

Theorem 2.4.  Assume that (  )  (  ) hold,  ( )     ( )    and (2.1), (2.2) hold, then 

every bounded solution of eq.(   ) oscillates on ,    )  
Proof.   Suppose that  ( )  is an eventually positive bounded solution of eq.(   ) , then 

    ( )         and    ( )   ( )  ( ) are monotone functions. If     ( )            

then   ( )     ( )    and   ( )      implies that        ( )     This is a 

contradiction, since   ( ) is bounded.  If    ( )           , we claim that   ( )     for 

         Otherwise, if   ( )             then  ( )    and        ( )     
implies        ( )             a contradiction. 

Hence,   ( )              and there are two possibilities to investigate: 

   (a)   ( )      ( )       ( )            ; (b)   ( )      ( )       ( )      
       Proof of cases (a) and (b) is similar to cases (2)-(a) and (2)-(b) in theorem 3. 

3. Applications 

In this section, some examples are given to illustrate the obtained results. 

Example 3.1. Consider the neutral integro-differential equation  

, ( )    (   )-    ∫  (   )
 

 

  (   )                         (   ) 

where  ( )     (   )   (   )  ( )       ( )   (   )        

      
   

∫  ( )
 

 

       
   

∫  
 

 

      

      
   

∫ ∫
  (   )

 (   (   ))

 

 

 

 

   
 

 
   
   

∫ (   )
 

 

            

All conditions of theorem 1 are met. Thus, according to theorem 1, every solution of (3.1) 

oscillates; for instance,  ( )       is such a solution. 

Example 3.2.  Consider the neutral integro-differential equation  

[ ( )  
 

 
 (   )]

   

 ∫  (   )  (   )    
 

 

          ( ) 

where    ( )  
 

 
     (   )  (   )      ( )       To verify that conditions (2.1) and (2.2) 

hold, we have 

      
   

∫  ( )
 

 

      
   

∫  
 

 

      

      
   

∫ ∫
  (   )

 (   (   ))

 

 

 

 

       
   

∫ (   )
 

 

           

According to theorem 2, every solution of (3.2) oscillates; for instance  ( )       is such a 

solution. 

Conclusions 
    In this paper, two types of neutral integrodifferential equations of third order were studied, 

where the integration is in the sense of  Riemann-Stieltjes.  Some necessary and sufficient 

conditions were obtained to ensure the oscillation of all solutions of these equations. The 

results included some illustrative examples.  
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