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Abstract

Some necessary and sufficient conditions are obtained that guarantee the
oscillation of all solutions of two types of neutral integro-differential equations of
third order. The integral is used in the sense of Riemann-Stieltjes. Some examples
were included to illustrate the obtained results
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1. Introduction
In this paper, the third order neutral integro differential equations are studied. Consider the
following integro-differential equations of the form

[x(®) = p(®O)x(z ()] =6 J tx(t —s)dr(t,s), t=20,6=41 (L)
0

where the integral is in the sense of Riemann-Stieltjes, and assume that the following
hypotheses are fulfilled:
(H1) p,7 € [[0,0), R*], 7 isincreasing and lim,_,q, 7(t) = o.
(H2) r(t, s) is increasing with respect to s for s € [0, t].
(H3)g(t) =r(t,t) —r(t0),g9 € C[[O, ), (0, oo)].

A function x(t) is a solution of eq.(1.1) if x(t) —p(O)x(z(t)) is three times
continuously differentiable on [t,, ©),t, = min{t,, ©(t,), 0(ty)} to = 0 and x(t) satisfies
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eq.(1.1) on [t,, ). A solution x(t) is said to be oscillatory if it has arbitrarily large zeros on
[t,, ), otherwise it is said to be nonoscillatory. Eq.(1.1) is said to be oscillatory if all of its
solutions are oscillatory. There has been much research concerning oscillatory and
nonoscillatory behaviors of solutions to different classes of third order nonlinear neutral
differential equations; we refer the reader to [1,2,4, 6]. In earlier works [1, 2], the authors
obtained some necessary and sufficient conditions to ensure the oscillation of the first order
neutral integrodifferential equations. In others [3-5], the authors studied delay
integrodifferential equations and established some conditions for oscillation. In this paper,
some necessary and sufficient conditions have been obtained to ensure the oscillation of
eq.(1.1), where § =1 or § = —1. The next lemma is useful in proving the main results of
the paper.
Lemma 1. ([6], Lemma 2.2)
I- In addition to the conditions
(@) p € C([to, »), (0,));

(b) T € C([ty, ), R); T is strictly increasing and (t) < t, t = t,,
suppose that 0 < p(t) < 1 fort > t,. Let x(t) be a continuous nonoscillatory solution of the
functional inequality

x(®)[x(t) —p©)x(z())] <0

defined in a neighborhood of infinity. Then x(t) is bounded.
Ii- In addition to the conditions
(@) p € C([to, ), (0,));

(b) T € C([tg, ), R); T is strictly increasing and 7(t) > t, t = t,,
suppose that p(t) = 1 for t > t,. Let x(t) be a continuous nonoscillatory solution of the
functional inequality

x(®)[x(t) —p©)x(z(t))] >0
defined in a neighborhood of infinity. Then x(t) is bounded.
2. Main Results
In this section , we present four results for the oscillation of all solutions of eq.(1.1). First, we
begin to study eq.(1.1) with § = +1.
Theorem 2.1. Assume that (H1) — (H3) hold, p(t) = 1,7(t) =t and
t

lim supf g(s)ds = oo, (2.1)
t—>oo
I J j _Arws) g, T>t (2.2)
im su = 00, > t,. )
t—>oop T p(r‘l(t—s)) 0

Then, every solution of eq.(1.1) oscillates on [t,, ).
Proof. Suppose that x(t) is an eventually positive solution of eq. (1.1) . Let

z(t) = x(t) — p(t)x(r(t)) (2.3)
then by eq.(1.1), we get

2"(t) = f tx(t —9)dr(t,s) =0, t>t, (2.4)
0

hence z"'(t), z' (t), z(t) are monotone functions. We claim that z"'(t) < 0, t = t; > t,.
Otherwise, if z"'(t) =0, t >t; > t,, yields z'(t) > 0,z(t) >0,t >t, > t, and
lim;_,, z(t) = oo implies that lim;_,., x(t) = co. On the other side, by lemma 1-ii, x(t) is
bounded, which is a contradiction. Hence z"'(t) < 0, t > t, = t,, then there are two
possibilities to consider:

1) Z@) <0, t=t, =>t;; (2) 2 (t) >0, t >t, >t,.

If (1) holds, thatis z'(t) <0, t > t, then z(t) < 0 and lim,_,,, z(t) = —

By (2.3), we obtain z(t) = —p(t)x(z(t))
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1 -1
x(t) = —mz(‘[ (t)) (2.5)
By substituting (2.5) in (2.4), we obtain
nr _ tZ(T_l(t - S))
z'"(t) = fo —p(r‘l(t — s)) dr(t,s), (2.6)
> —Z(T_l(t)) t;dr(t S)
N o it-s) 7

By integrating the last inequality from t, to t, we get

d
2/(0) = 2'(t) = ~2(x7 () f [t @

Ast — oo, then (2.7) leads to z"'(t) — o, whichisa contradlctlon since z"'(t) is negatively
increasing.
(2) z'(t) > 0, t = t,. Inthis case, there are two possibilities to investigate:
(@ z(t) >0, t=t;>t,;(b) z(t) <0, t >t; = t,.
If () holds, z(t) > 0, then x(t) = z(t), by (1.1), we obtain
t

z'"(t) = f z(t —s)dr(t,s) = z(t)g(t). (2.8)
0
By integrating (2.8) from t5 to t, it follows that

t
z"(t) —z"(t3) = z(t3) | g(s)ds.

t3
As t — oo, the last inequality implies that lim,_,, z''(t) = oo, which is a contradiction.
Finally, if (b) holds, then z(t) <0, z'(t) >0, z"'(t) <0, t > t5.
In this case, again, (2.6) is fquiIIed. It follows from (2.6) that

1
z'"(t) = —z(r‘l(O)) (r‘l(t )) dr(t,s), 2(1_1(0)) <z(t7(t3)) <0
t: P

Integrating the last inequality from ¢t to t yields

t rv 1
z'(t) —z"(t3) = _Z(T_l(o))f f p(r‘l(v _ S))
ts Jts

As t — oo, it follows that lim,_,., z'® = oo, which is a contradiction. Hence, every solution
of eq.(1.1) oscillates on [t,, ).

Theorem 2.2. Assume that (H1) — (H3) hold, 0 < p(t) < 1,7(t) < t and (2.1), (2.2) hold,
then every bounded solution of eq.(1.1) oscillates on [t,, ).

Proof.  Suppose that x(t) is an eventually positive bounded solution of eq.(1.1), then
z'"(t) = 0,t =tyand z"(t), z'(t), z(t) are monotone functions if z''(t) >0, t >t; = t,,
then z'(t) >0 and z(t) » o, which implies that lim,. x(t) = o, which is a
contradiction, since x(t) is bounded. If z"(t) <0, t = t; = t,, we claim that z'(t) > 0, for
t >t, >t,. Otherwise if z'(t) <0,t >t, >t;, then z(t) <0 and lim;_ z(t) = —o0
implies to lim,_,,, x(t) = o, which is a contradiction.

Hence, z'(t) > 0, t > t, > t, and there are two possibilities to investigate:

(@ z(t) >0,z'(t) >0,2"(t) <0, t =t; =t, ; (b) z(t)<0,z'(t)>0, z'(t) <0, t =
t; = t,. The proof of the cases (a) and (b) is similar to (2)-(a) and (2)-(b) in theorem 2.1.

In the following results, we study the eq.(1.1) when § = —1.

Theorem 2.3 Assume that (H1) — (H3) hold, 0 < p(t) < 1,7(t) < tand (2.1), (2.2) hold,
then every solution of eq.(1.1) oscillates on [t, o).

Proof. Suppose that x(t) is an eventually positive solution of eq.(1.1). Then by eq.(1.1), we
get

dr(v,s)dv.
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t

2"(¢) = —f x(t—s)d(r,s) <0,  t>to, (2.9)
0

Hence, z"' (t), z' (t), z(t) are monotone functions. We claim that z''(t) > 0, t = t; = t,.
Otherwise, if z""(t) <0, t >t; > t,, thisyieldsthat z'(t) < 0,z(t) < 0,t >t, > t; and
lim;_,, z(t) = —oo, which implies that lim,_,., x(t) = co. On the other side, by lemma 1-i,
x(t) is bounded, which is a contradiction. Hence, z"'(t) > 0, t > t; = t,, then there are two
possibilities to consider:

Dz >0t=2t,=>2t; 2 z2(t) <0, t=>t, >t.

If (1) holds, then z(t) > 0 and lim,_,, z(t) = .

Then, x(t) = z(t). By eq.(1.1), we obtain

z"(t) < - ftz(t —s)dr(t,s) < —z(t)g(t). (2.10)

0
By integrating (2.10) from ¢, to t, it follows that
t

z"'(t) = z"(ty) < —z(tp) | g(s)ds.

2
As t — oo, the last inequality implies that lim,_,, z''(t) = —oo, which is a contradiction.
(2) z'(t) <0, t = t,. Inthis case, there are two possibilities to investigate:
@ z(t) <0, t=tg=>t,; (b) z(t) >0, t=t3=>t,
Let (a) holds, then by (2.3) we obtain z(t) = —p(t)x(z(t)) and (2.5) holds.
By substituting (2.5) in eq.(1.1), we obtain
tz(x7H(t—9))
o p(t7H(t~5))

t 1

<z(r7't)) | ———=
( ) tZP(T_l(t—S))

By integrating the last inequality from ¢, to t, we get
voodr(v,s)

z'(t) - z"(ty) < Z(T_l(tz))f f p(T_I(V _ S)) dv.
t, Jt,

As t — oo, then (2.12) leads to lim,_,,, z''(t) = —oo. This is a contradiction, since z"'(t) is
positively decreasing.

If (b) holds, thatis z(t) > 0,z'(t) <0, t >t3 >t,, then x(t) = z(t). By (1.1) ,we
obtain

z'"(t) < dr(t,s), (2.11)

dr(t,s).

(2.12)

t

z'""(t) < —j z(t —s)dr(t,s) < —z(0)g(t) < —z(t3)g(t), t; = 0.
0

By integrating the last inequality from t; to ¢, it follows that
t

z"(t) —z"(tz) < —z(t3) | g(s)ds.
t3
As t — oo, the last inequality implies that lim;_,., z''(t) = oo, which is a contradiction.
Finally if (b) holds, then we have z(t) <0, z'(t) <0, z"(t) >0, t > ts.
By substituting (2.5) in eq.(1.1), we obtain
tz(z it —s))

o P(t71(t - )

t 1
< Z(T_l(t)) . p(T_l(t — S))

z'"(t) < dr(t,s),

dr(t,s).

Integrating the last inequality from ¢t to t yields
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t rv 1
Z”(t) _ Z”(t3) < Z(‘L’_l(t3))f f p(‘[‘l(v — S)) dr(v, s)dv.

As t — oo, it follows that lim,_,, z"'(t) = o, which is a contradiction.
Theorem 2.4. Assume that (H1) — (H3) hold, p(t) = 1,7(t) = t and (2.1), (2.2) hold, then
every bounded solution of eq.(1.1) oscillates on [t,, o).
Proof.  Suppose that x(t) is an eventually positive bounded solution of eq.(1.1), then
z'"(t) <0,t =tyand z"(t),z'(t), z(t) are monotone functions. If z"'(t) <0, t >t; = t,
then z'(t) < 0,z(t) <0 and z(t) » —oo, implies that lim, . x(t) =co. This is a
contradiction, since x(t) is bounded. If z"(t) > 0, t = t; = t,, we claim that z'(t) < 0, for
t >t, >t,. Otherwise, if z'(t) >0,t=>t,>t; then z(t) >0 and lim;_ z(t) = .
implies lim;_,,, x(t) = o, which is a contradiction.
Hence, z'(t) < 0, t = t, = t,, and there are two possibilities to investigate:

@ z()>0,z7(t)>0,z"(t) <0, t=t;=t,; (b) z(t)<0,2z'(t) >0, z'(t) <0, t =
t3 = t,. Proof of cases (a) and (b) is similar to cases (2)-(a) and (2)-(b) in theorem 3.
3. Applications
In this section, some examples are given to illustrate the obtained results.
Example 3.1. Consider the neutral integro-differential equation

t
[x(t) — 2x(t + m)]"" — f x(t —s)dr(t,s) =0, to =0, (3.1)
where p(t) = 2,7r(t,s) = 3(t +s),t(t) = t?+ m,g(t) =3(t+t)—3t=3t
t t
limsupf gw)dv = 3tli_)mf vdv = oo,

t—coo
I ff dr(v, s) 3 f( T)d T>t
1m su 1m vV — S = 0O, = .
Ftvia o M p(t=1(v — s)) T 2t 0
All conditions of theorem 1 are met. Thus, according to theorem 1, every solution of (3.1)

oscillates; for instance, x(t) = cos t is such a solution.
Example 3.2. Consider the neutral integro- differential equation

n

[x(t) — —x(t — n)] f x(t —s)dr(t,s) =0 (%)

where p(t) = i, r(t,s) = (t+s), t(t) =t —m To verify that conditions (2.1) and (2.2)
hold, we have

t

t
lim supf gw)dv = tlim vdv = oo,
0 Ed

t—>o0 oo 0

hmsup] ] dv=41lim | (v—T)ds = oo, T = t,.
t—co T p(‘r‘l(v - S)) t= Jr
According to theorem 2, every solution of (3.2) oscillates; for instance, x(t) = cost is such a
solution.
Conclusions

In this paper, two types of neutral integrodifferential equations of third order were studied,
where the integration is in the sense of Riemann-Stieltjes. Some necessary and sufficient
conditions were obtained to ensure the oscillation of all solutions of these equations. The
results included some illustrative examples.
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