

ISSN: 0067-2904

Application of Two Rowed Weyl Module in the Case of Partition $(7,6)$ and Skew- Partition (7,6)/(1,0)

Nejood A. Hatim, Haytham R. Hassan*
Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

Received: 8/9/2020
Accepted: 28/11/2020

Abstract

The aim of this work is to study the application of Weyl module resolution in the case of two rows, which will be specified in the partition $(7,6)$ and skew- partition $(7,6) /(1,0)$ by using the homological Weyl (i.e. the contracting homotopy and place polarization).

Keywords: Divided power algebra, resolution of Weyl module, place polarization, mapping Cone.

```
تطبيق مقاس وايل لصفين في حالة التجزئة (7,6) و (7,6)/(1,0)
    نجود عبد حاتم، هيثم رزوقي حسن
قسم الرياضيات ، كلية العلوم، جامعه المستتصريه، بغداد، العراق
```

الخلاصة
الغرض من هذا البحث هو دراسة تطبيق تحلل مقاس وايل في حالة الصنين والتي ستكون محددة
بالتجزئة (6, 7) وشبه التجزئة (1,0)/(7,6) وذلك باستخدام طرق همولوجية(أي التوافق الهوموتوبي ودالة
(المكان).

1.Introduction

Let R be a commutative ring with identity , F be a free R-module and $D_{b} F$ be the divided power of degree b.

Consider the figure below which is associated to the resolution of two-rowed Weyl module $K_{\lambda / \mu} F=\operatorname{Im}\left(d^{\prime}{ }_{\lambda / \mu}\right)$ where $d^{\prime}{ }_{\lambda / \mu}$ is the Weyl map that is described in [1], as follows:
$\lambda / \mu=$

We have:

$$
\begin{equation*}
\sum D_{p+k} \otimes D_{q-k} \xrightarrow{\square} D_{p} \otimes D_{q} \xrightarrow{d^{\prime} \lambda / \mu} K_{\lambda / \mu} \rightarrow 0 \tag{2}
\end{equation*}
$$

And by using letter-place algebra, the maps will be explained now as follows:
$\left(\begin{array}{c}w \\ w^{\prime} \mid 1^{(p+k)} \\ 2^{(q-k)}\end{array}\right) \xrightarrow{\partial_{21}^{(\mathrm{K})}}\left(\begin{array}{c}w \\ \left.w^{\prime} \left\lvert\, \begin{array}{c}1^{(p)} 2^{(k)} \\ 2^{(q-k)}\end{array}\right.\right) \rightarrow \quad \sum_{\mathrm{w}}\left(\left.\begin{array}{c}\mathrm{w}_{(1)} \\ \mathrm{w}^{\prime} \mathrm{W}_{(2)}\end{array} \right\rvert\,(t+1)^{\prime}(t+2)^{\prime} \ldots(p+t)^{\prime}\right. \\ 1^{\prime} 2^{\prime} 3^{\prime} \ldots q^{\prime}\end{array}\right)$
where

$$
\mathrm{w} \otimes \mathrm{w}^{\prime} \in D_{p+k} \otimes D_{q-k} \quad, \quad \square=\sum_{k=t+1}^{q} \partial_{21}^{(k)}
$$

and

$$
d_{\lambda / \mu}^{\prime}=\partial_{q^{\prime} 2} \ldots \partial_{1 / 2} \partial_{(p+\mathrm{t}), 1} \ldots \partial_{(t+1) / 1}
$$

is the composition of place polarization, from positive places $\{1,2\}$ to negative places $\left\{1^{\prime}, 2^{\prime}, \ldots\right.$, ($\left.\mathrm{p}+\mathrm{t})^{\prime}\right\}$.

And, as shown in [2], \square is deliver a component $x \otimes y$ of $D_{p+k} \otimes D_{q-k}$ to $\sum x_{p} \otimes x_{k}^{\prime} y$ where $\sum x_{p} \otimes x^{\prime}{ }_{k}$ is the element of the diagonal of x in $D_{p} \otimes D_{k}$.

Let Z_{21} be the free generator of divided power algebra $D\left(Z_{21}\right)$ in one generator, then the divided power component $Z_{21}^{(k)}$ of degree k of the free generator Z_{21} acts on $D_{p+k \otimes} D_{q-k}$ by place polarization of degree k from place 1 to place 2 .

Particularly, the 'graded' algebra 'with identity' $A=D\left(\mathrm{Z}_{21}\right)$ acts on the graded module $M=\sum D_{p+k} \otimes \mathrm{D}_{q-k}=\sum M_{q-k}$, where the degree of the $2^{\text {nd }}$ factor dictates the grading, see $[3,4,5]$.

Therefore, M is a graded left A-module, where, for $\mathrm{w}=\mathrm{Z}_{21}^{(k)} \in A$ and $v \in D_{\beta_{1}} \otimes D_{\beta_{2}}$, by definition, we have:

$$
\begin{equation*}
w(v)=\mathrm{Z}_{21}^{(k)}(v)=\partial_{21}^{(k)}(v) \tag{4}
\end{equation*}
$$

And if we have $\left(t^{+}\right)$, which is the graded strand of degree q

$$
\begin{equation*}
M_{\bullet}: 0 \rightarrow M_{q-t} \xrightarrow{\partial_{s}} \ldots \rightarrow M_{l} \xrightarrow{\partial_{s}} \ldots M_{1} \xrightarrow{\partial_{s}} M_{0} \tag{5}
\end{equation*}
$$

of the normalized bar complex, $\operatorname{Bar}(M, A ; \mathrm{S}, \bullet)$, and $\mathrm{S}=\{\mathrm{x}\}$.
By definition, M_{0} is the following complex:

$$
\begin{align*}
& \sum_{k_{1} \geq 0} \mathrm{Z}_{21}^{\left(t+k_{1}\right)} x \mathrm{Z}_{21}^{\left(k_{2}\right)} x \ldots x \mathrm{Z}_{21}^{\left(k_{l}\right)} x D_{p+t+|\mathrm{k}|} \otimes \mathrm{D}_{q-t-|k|} \xrightarrow{d_{l}} \\
& \sum_{k_{1} \geq 0} \mathrm{Z}_{21}^{\left(t+k_{1}\right)} x \mathrm{Z}_{21}^{\left(k_{2}\right)} x \ldots x \mathrm{Z}_{21}^{\left(k_{l}-1\right)} \varkappa \mathrm{D}_{P+t+|k|} \otimes D_{q-t-|k|} \xrightarrow{d_{l-1}} \\
& \ldots \xrightarrow{d_{1}} \sum_{k_{i} \geq 0} \mathrm{Z}_{21}^{(t+k)} x D_{p+t+|k|} \otimes D_{q-t-k} \xrightarrow{d_{0}} D_{p} \otimes D_{q} \tag{6}
\end{align*}
$$

where $|k|=\sum k_{i}$ and d_{l} is the boundary operator ∂_{\varkappa}. Notice that (6) illustrates a left complex $\left(\partial_{\varkappa}^{2}=0\right)$ over the Weyl module in terms of bar complex and letter-place algebra. Furthermore, in (6), when the separator x disappears between a $Z_{a b}^{(t)}$ and the components in the tensor product of divided powers, this means that $\partial_{a b}^{(t)}$ is applied to the tensor product (see [1] and [6]).

The authors in [4] and [5] exhibited the terms and the exactness of the Weyl module resolution in the case of partition $(8,7)$ and skew-shape $(8,6) /(2,1)$. In this work, we locate the terms and the exactness of the Weyl module Resolution in the cases of partition $(7,6)$ and skew- partition $(7,6) /(1,0)$.
2. Application of Weyl Module Resolution in the Case of Partition (7,6).

2.1 The Terms of Weyl Module Resolution in the Case of Partition (7, 6).

In this section, we find the term for the resolution of Weyl module in the case of the Partition $(7,6)$.
$M_{0}=\mathrm{D}_{7} \otimes \mathrm{D}_{6}$
$M_{1}=\mathrm{Z}_{21} \varkappa \mathrm{D}_{8} \otimes \mathrm{D}_{5} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{9} \otimes \mathrm{D}_{4} \oplus \mathrm{Z}_{21}^{(3)} \mu \mathrm{D}_{10} \otimes \mathrm{D}_{3} \oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{D}_{11} \otimes \mathrm{D}_{2}$ $\oplus \mathrm{Z}_{21}^{(5)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \quad \mathrm{Z}_{21}^{(6)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$M_{2}=\mathrm{Z}_{21} \mu \mathrm{Z}_{21} \varkappa \mathrm{D}_{9} \otimes \mathrm{D}_{4} \oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{10} \otimes \mathrm{D}_{3} \oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{10} \otimes \mathrm{D}_{3}$ $\oplus \mathrm{Z}_{21}^{(3)} \mu \mathrm{Z}_{21} \mathcal{\mu} \mathrm{D}_{11} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{2}$
$\oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(5)} \mathcal{H} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21}^{(5)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0}$ $M_{3}=\mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{10} \otimes \mathrm{D}_{3} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{11} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{11} \otimes \mathrm{D}_{2}$
$\oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{11} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mu \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \mu \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} \mathcal{\mu} \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$M_{4}=\mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{11} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mu \mathrm{D}_{12} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21} \mathcal{\mu} \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21}^{(2)} \mathcal{K} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mathcal{K} \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mathcal{Z} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(3)} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} x \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$M_{5}=\mathrm{Z}_{21} \mu \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0}$ $\oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} x \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$M_{6}=\mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0}$

2.2 The Exactness of Weyl Resolution in the Case of Partition $\mathbf{(7 , 6)}$

This section explains the building of contracting homotopies $\left\{S_{i}\right\}$, where $\mathrm{i}=1,2, \ldots, 5$.
We define the S_{i} map as follows:

$S_{0}: M_{0} \rightarrow M_{1}$

$S_{1}: M_{1} \rightarrow M_{2}$
$S_{1}\left(\mathrm{Z}_{21}^{(k)} \varkappa\left(\begin{array}{c|c}w & 1^{(7+k)} 2^{(m)} \\ w^{\prime} \mid & 2^{(6-k-m)}\end{array}\right)\right)=\left\{\begin{array}{cc}\mathrm{Z}_{21}^{(k)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}w & 1^{(7+k+m)} \\ w^{\prime} & 2^{(6-k-m)}\end{array}\right) \text {; if } m=1,2,3,4,5 \\ 0 \quad \text {;if } m=0\end{array}\right.$
$S_{2}: M_{2} \rightarrow M_{3}$
$S_{2}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa\left(\begin{array}{c}w \\ w^{\prime} \mid \\ 1^{(7+|m|)} 2^{(m)} \\ 2^{(6-|k|-m)}\end{array}\right)\right)=$
$\left\{\begin{array}{lc}\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{(m)} \mathcal{K}\left(\begin{array}{c}w \\ w^{\prime} \left\lvert\, \begin{array}{l}1^{(7+|k|+m)} \\ 0\end{array}\right. \\ 2^{(6-|k|-m)}\end{array}\right) ; \text { if } m=1,2,3,4\end{array}\right.$; if $m=0 \quad$ where $|k|=k_{1}+k_{2}$
$S_{3}: M_{3} \rightarrow M_{4}$
$S_{3}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{K}_{21}^{\left(k_{2}\right)} \mathcal{K} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H}\left(\begin{array}{c|c}w & 1^{(7+|k|)} 2^{(m)} \\ w^{\prime} & 2^{(6-|k|-m)}\end{array}\right)\right)$
where $|k|=k_{1}+k_{2}+k_{3}$
$S_{4}: M_{4} \rightarrow M_{5}$

$$
\begin{aligned}
& S_{4}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} \mid & 2^{(6-|k|-m)}
\end{array}\right)\right) \\
& = \begin{cases}\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right) & \text {; if } m=1,2 \\
0 & \text {; if } m=0\end{cases}
\end{aligned}
$$

where $|k|=k_{1}+k_{2}+k_{3}+k_{4}$
$S_{5}: M_{5} \rightarrow M_{6}$

$$
\begin{aligned}
& S_{5}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} \mid & 2^{(6-|k|-m)}
\end{array}\right)\right) \\
& = \begin{cases}\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{(k)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\binom{w}{\left.w^{\prime}\right|_{2^{(6-|k|-m)}} ^{(7+|k|+m)}} & ; \text { if } m=1 \\
0 & \text {;if } m=0\end{cases}
\end{aligned}
$$

where $|k|=k_{1}+k_{2}+k_{3}+k_{4}+k_{5}$
$S_{0} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{(k)} \varkappa\left(\begin{array}{c|c}w & 1^{(7+k)} 2^{(m)} \\ w^{\prime} & 2^{(6-k-m)}\end{array}\right)\right)=S_{0} \partial_{21}^{(k)}\left(\begin{array}{c|c}w & 1^{(7+k)} 2^{(m)} \\ w^{\prime} & 2^{(6-k-m)}\end{array}\right)$
$=\binom{k+m}{m} \mathrm{Z}_{21}^{(k+m)} \varkappa\left(\left.\begin{array}{c}w \\ w^{\prime}\end{array}\right|_{2^{(7+k+m)}} ^{(6-k-m)}\right)$
and

$$
\begin{aligned}
& \partial_{\mathcal{H}} S_{1}\left(\mathrm{Z}_{21}^{(k)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+k)} 2^{(m)} \\
w^{\prime} & 2^{(6-k-m)}
\end{array}\right)\right)=\partial_{\mathcal{H}}\left(\mathrm{Z}_{21}^{(k)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+k+m)} \\
w^{\prime} & 2^{(6-k-m)}
\end{array}\right)\right) \\
& =-\binom{k+m}{m} \mathrm{Z}_{21}^{(k+m)} \varkappa\left(\begin{array}{c|c|c}
w & 1^{(7+k+m)} \\
w^{\prime} & 2^{(6-k-m)}
\end{array}\right)+\mathrm{Z}_{21}^{(k)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+k)} 2^{(m)} \\
w^{\prime} & 2^{(6-k-m)}
\end{array}\right) \\
& =\mathrm{Z}_{21}^{(k)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+k)} 2^{(m)} \\
w^{\prime} & 2^{(6-k-m)}
\end{array}\right)
\end{aligned}
$$

It is clear that $\quad S_{0} \partial_{\mathcal{\varkappa}}+\partial_{\mathcal{\varkappa}} S_{1}=i d_{M_{1}}$.
$S_{1} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa\left(\begin{array}{c|c}w & 1^{(7+|k|)} 2^{(m)} \\ w^{\prime} \mid & 2^{(6-|k|-m)}\end{array}\right)\right)$
$=S_{1}\left(-\binom{|k|}{k_{2}} \mathrm{Z}_{21}^{|k|} \varkappa\left(\begin{array}{c|c}w & 1^{(7+|k|)} 2^{(m)} \\ w^{\prime} \mid & 2^{(6-|k|-m)}\end{array}\right)+\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \partial_{21}^{\left(k_{2}\right)}\left(\begin{array}{c|c}w & 1^{(7+|k|)} 2^{(m)} \\ w^{\prime} & 2^{(6-|k|-m)}\end{array}\right)\right)$
$=-\binom{|k|}{k_{2}} Z_{21}^{|k|} \varkappa Z_{21}^{(m)} \varkappa\left(\begin{array}{c|c}w & 1^{(7+|k|+m)} \\ w^{\prime} & 2^{(6-|k|-m)}\end{array}\right)+$
$\binom{k_{2}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+m\right)} \varkappa\left(\begin{array}{c|c}w & 1^{(7+|k|+m)} \\ w^{\prime} & 2^{(6-|k|-m)}\end{array}\right)$,
and

$$
\begin{aligned}
& =\binom{|k|}{k_{2}} \mathrm{Z}_{21}^{|k|} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{K}\left(\begin{array}{c}
w \\
w^{\prime} \mid
\end{array} 1_{2^{(6-|k|-m)}}^{(7+|k|+m)}\right)- \\
& \binom{k_{2}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+m\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)}\left(\begin{array}{c|c}
\mathrm{W} & 1^{(7+|k|)} 2^{(m)} \\
\mathrm{W}^{\prime} & 2^{(6-|k|-m)}
\end{array}\right),
\end{aligned}
$$

where $|k|=k_{1}+k_{2}$.
It is clear that $\quad S_{1} \partial_{\varkappa}+\partial_{\varkappa} S_{2}=i d_{M_{2}}$.
$S_{2} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{\varkappa}\left(\begin{array}{c}w \\ w^{\prime} \mid \\ 1^{(6-|k|-m)}\end{array}\right)\right)$

$$
\begin{aligned}
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \not \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)}\binom{w}{\left.w^{\prime} \left\lvert\, \begin{array}{c}
1^{(7+|k|)} \\
2^{(6-|k|-m)}
\end{array}\right.\right)} \\
& =\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(7+|k|+m)} \\
2^{(6-|k|-m)}
\end{array}\right.\right)-
\end{aligned}
$$

and

$$
\begin{aligned}
& =-\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \mathcal{X} \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1_{2^{(6-|k|-m)}}^{(7+|k|+m)}\right)+ \\
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \mathcal{Z} \mathrm{Z}_{21}^{(m)} \mathcal{\varkappa}\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1_{2^{(7+|k|-m)}}^{(7+|k|+m)}\right)- \\
& \binom{k_{3}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} x \mathrm{Z}_{21}^{\left(k_{2}\right)} x \mathrm{Z}_{21}^{\left(k_{3}+m\right)} x\left(\begin{array}{c}
w\left|\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(6-|k|-m)}}^{1^{(7+|k|+m)}}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \chi \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{X Z} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{X} \partial_{21}^{(m)}\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(6-|k|-m)}} ^{1^{(7+|k|+m)}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(6-|k|-m)}} ^{(7+|k|+m)}\right)-
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \not \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa\left(\begin{array}{c}
w \\
w^{\prime} \mid \\
1^{(7+|k|}\left(\begin{array}{l}
(k \mid-m)
\end{array}\right.
\end{array}\right) \text {, }
\end{aligned}
$$

where $|k|=k_{1}+k_{2}+k_{3}$.
It is clear that $\quad S_{2} \partial_{\varkappa}+\partial_{\varkappa} S_{3}=i d_{M_{3}}$.

$$
\begin{aligned}
& =S_{3}\left(-\binom{k_{1}+k_{2}}{k} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa\left(\begin{array}{c}
w \\
w^{\prime} \\
\mathbf{1}^{\prime} \\
1^{(6+|k|-m)}
\end{array}\right)+\binom{\left(k_{2}+k_{3}\right.}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \mathcal{x} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{X} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{Z} \mathrm{Z}_{21}^{(m)} \varkappa\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(6-|k|-m)}} ^{(7+|k|+m)}\right)+ \\
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{X Z} \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \mathcal{X} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{(m)} \mathcal{\varkappa}\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(6+|k|-m)}
\end{array}\right.\right)- \\
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{X Z} \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \mathcal{Z} \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(7+|k|+m)} \\
2^{(6-|k|-m)}
\end{array}\right.\right)+ \\
& \binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \nVdash \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}+m\right)} \varkappa\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(6-|k|-m)}} ^{1^{(7+|k|+m)}}\right),
\end{aligned}
$$

and

$$
\text { where }|k|=k_{1}+k_{2}+k_{3}+k_{4}
$$

$$
\text { It is clear that } \quad S_{3} \partial_{\mathcal{H}}+\partial_{\mathcal{H}} S_{4}=i d_{M_{4}}
$$

$$
S_{4} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)\right)
$$

$$
\binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} \mid & 2^{(6-|k|-m)}
\end{array}\right)+
$$

$$
\binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} \mid & 2^{(6-|k|-m)}
\end{array}\right)-
$$

$$
\binom{k_{4}+k_{5}}{k_{5}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}+k_{5}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+
$$

$$
\left.\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \partial_{21}^{\left(k_{5}\right)}\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
2^{(6-|k|-m)}
\end{array}\right)\right)
$$

$$
=\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)-
$$

$$
\binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{5}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+
$$

$$
\binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\binom{w}{w^{\prime}| |_{2^{(6-|k|-m)}}^{(7+|k|+m)}}-
$$

$$
\binom{k_{4}+k_{5}}{k_{5}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}+k_{5}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+
$$

$$
=\binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{5}+m\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)
$$

and

$$
\begin{aligned}
& \partial_{\varkappa} S_{5}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)\right) \\
& =\partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{K} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{5}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{\varkappa}\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)\right) \\
& =-\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{5}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{H}\left(\begin{array}{c|c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{K} \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(k_{5}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{\varkappa}\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)-
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)- \\
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)- \\
& \binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}+m\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \partial_{21}^{(m)}\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right) \\
& =\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)- \\
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{H}\binom{w}{w^{\prime}| |_{2^{(6-|k|-m)}}^{(7+|k|+m)}}+ \\
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2_{(6-|k|-m)}^{(6-2}
\end{array}\right)- \\
& \binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}+m\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{4}+k_{5}}{k_{5}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}+k_{5}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(6-|k|-m)}} ^{(7+|k|+m)}\right)- \\
& \binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{5}+m\right)}\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{5}\right)} \mathcal{~} \partial_{21}^{(m)}\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(6-|k|-m)}} ^{(7+|k|+m)}\right)- \\
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(k_{5}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{\varkappa}\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{4}+k_{5}}{k_{5}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4+k_{5}}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)- \\
& \binom{k_{5}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}+m\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{5}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(6-|k|-m)}
\end{array}\right),
\end{aligned}
$$

where $|k|=k_{1}+k_{2}+k_{3}+k_{4}+k_{5}$.
It is clear that $\quad S_{4} \partial_{\varkappa}+\partial_{\varkappa} S_{5}=i d_{M_{5}}$.
From the above, we get that $\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\right\}$ is a contracting homotopy [7], which means that the complex
$0 \rightarrow M_{6} \rightarrow M_{5} \rightarrow M_{4} \rightarrow M_{3} \rightarrow M_{2} \rightarrow M_{1} \rightarrow M_{0} \quad$ is exact.

3. Application of Weyl Module Resolution in the Case of the skew- Partition $(7,6) /(1,0)$.

3.1 The Terms of Weyl Module Resolution

The resolution of Weyl Module associated to this case has the following terms.
$M_{0}=\mathrm{D}_{6} \otimes \mathrm{D}_{6}$
$M_{1}=\mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{8} \otimes \mathrm{D}_{4} \oplus \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{9} \otimes \mathrm{D}_{3} \oplus \mathrm{Z}_{21}^{(4)} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{2}$
$\oplus \mathrm{Z}_{21}^{(5)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(6)} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{0}$
$M_{2}=\mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{9} \otimes \mathrm{D}_{3} \oplus \mathrm{Z}_{21}^{(3)} \mathcal{Z} \mathrm{Z}_{21} \varkappa \mathrm{D}_{10} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{2}$
$\oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{11} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(3)} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{D}_{11} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21}^{(3)} \mu \mathrm{D}_{11} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21}^{(5)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{0} \quad \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{0}$
$M_{3}=\mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mathcal{K} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(3)} \mathcal{Z} \mathrm{Z}_{21} \mathcal{\mu} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{1}$

$\oplus \mathrm{Z}_{21}^{(2)} \mathcal{Z} \mathrm{Z}_{21}^{(3)} \mathcal{Z} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(3)} \mathcal{Z} \mathrm{Z}_{21} \mathcal{\mu} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{0}$
$M_{4}=\mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mu \mathrm{D}_{12} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{0}$
$M_{5}=\mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{0}$

3.2 The Exactness of Weyl Resolution in case

This section explains the building of contracting homotopies $\left\{S_{i}\right\}$, where $\mathrm{i}=1,2,3,4$ in the case of the skew-partition $(7,6) /(1,0)$

We have the following homotopies:
$S_{0}: D_{6} \rightarrow D_{6} \rightarrow \sum_{k>0} \mathrm{Z}_{21}^{(k+1)} \varkappa \mathrm{D}_{6+k} \otimes \mathrm{D}_{6-k}$
$S_{0}\left(\left(\begin{array}{c|c}w & 1^{(6)} 2^{(k)} \\ w^{\prime} \mid & 2^{(6-k)}\end{array}\right)\right)= \begin{cases}\mathrm{Z}_{21}^{(k)} \varkappa\left(\begin{array}{c|c}w & 1^{(6+k)} \\ w^{\prime} & 2^{(6-k)}\end{array}\right) & ; \text { if } k=1,2,3,4,5,6 \\ 0 & ; \text { if } k=0\end{cases}$
$S_{1}: \sum_{k>0} \mathrm{Z}_{21}^{(k+1)} \mathcal{H} \mathrm{D}_{7+k} \otimes \mathrm{D}_{5-k} \rightarrow \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{D}_{7+k} \otimes \mathrm{D}_{5-k}$ such that:

where $|k|=k_{1}+k_{2}$
$S_{2}: \sum_{k_{i}>0} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{D}_{7+|k|} \otimes \mathrm{D}_{5-|k|} \rightarrow \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{D}_{7+|k|} \otimes \mathrm{D}_{5-|k|}$
such that:
$S_{2}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa\left(\begin{array}{c|c}w & 1^{(7+|k|)} 2^{(m)} \\ w^{\prime} \mid & 2^{(5-|k|-m)}\end{array}\right)\right)=$
$\left\{\begin{array}{lc}\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \mathcal{H}\left(\begin{array}{c}w \\ w^{\prime} \left\lvert\, \begin{array}{l}1^{(7+|k|+m)} \\ 0\end{array}\right. \\ 2^{(5-|k|-m)}\end{array}\right) ; \text { if } m=1,2,3 \\ \text {; if } m=0\end{array} ;\right.$
$\begin{array}{llllll}\text { where }|k|=k_{1}+k_{2} \\ S_{3}: \sum_{k_{i}>0} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa & \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa & \mathrm{D}_{7+|k|} \otimes \mathrm{D}_{5-|k|} \quad \rightarrow \quad \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \quad \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa\end{array}$

$$
\mathrm{D}_{7+|k|} \otimes \mathrm{D}_{5-|k|}
$$

$$
S_{3}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H}\left(\begin{array}{c}
w \\
w^{\prime} \mid \\
2^{(5+|k|)} 2^{(m)} \\
(5-|k|-m)
\end{array}\right)\right)
$$

$$
= \begin{cases}\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{\varkappa}\left(\begin{array}{c}
w \\
w^{\prime} \left\lvert\, \begin{array}{l}
1^{(7+|k|+m)} \\
0
\end{array}\right. \\
2^{(5-|k|-m)}
\end{array}\right) & ; \text { if } m=1,2 \\
& \text { if } m=0\end{cases}
$$

where $|k|=k_{1}+k_{2}+k_{3}$
$S_{4}: \sum_{k_{i}>0} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa} \mathrm{D}_{7+|k|} \otimes \mathrm{D}_{5-|k|} \rightarrow \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa}$ $\mathrm{Z}_{21}^{\left(k_{5}\right)} \mathcal{\varkappa} \mathrm{D}_{7+|k|} \otimes \mathrm{D}_{5-|k|}$
$S_{4}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa}\left(\begin{array}{c|c}w & 1^{(7+|k|)} 2^{(m)} \\ w^{\prime} \mid & 2^{(5-|k|-m)}\end{array}\right)\right)$

where $|k|=k_{1}+k_{2}+k_{3}+k_{4}$
So, we have the following diagram:

$S_{0} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{(k+1)} \varkappa\left(\begin{array}{c|c}w & 1^{(7+k)} 2^{(m)} \\ w^{\prime} & 2^{(5-k-m)}\end{array}\right)\right)=S_{0} \partial_{21}^{(k+1)}\left(\begin{array}{c|c}w & 1^{(7)} 2^{(k+m)} \\ w^{\prime} & 2^{(5-k-m)}\end{array}\right)=$
$=\binom{k+1+m}{m} \mathrm{Z}_{21}^{(k+1+m)} \mathcal{H}\left(\begin{array}{c|c}w & 1^{(7+k+m)} \\ w^{\prime} & 2^{(5-k-m)}\end{array}\right)$,
and

It is clear that $\quad S_{0} \partial_{\varkappa}+\partial_{\varkappa} S_{1}=i d_{M_{1}}$.

$$
\begin{aligned}
& \partial_{\varkappa} S_{1}\left(\mathrm{Z}_{21}^{(k+1)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+k)} 2^{(m)} \\
w^{\prime} & 2^{(5-k-m)}
\end{array}\right)\right)=\partial_{\varkappa}\left(\mathrm{Z}_{21}^{(k+1)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+k+m)} \\
w^{\prime} & 2^{(5-k-m)}
\end{array}\right)\right) \\
& =-\binom{k+1+m}{m} \mathrm{Z}_{21}^{(k+1+m)} \varkappa\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(7+k+m)} \\
2^{(5-k-m)}
\end{array}\right)+\mathrm{Z}_{21}^{(k+1)} \varkappa\left(\begin{array}{c|c|c}
w & 1^{(7+k)} 2^{(m)} \\
w^{\prime} & 2^{(5-k-m)}
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& S_{1} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa\left(\begin{array}{c}
w \mid \\
\left.w^{\prime} \left\lvert\, \begin{array}{c}
(7+|k|) \\
2^{(m-|k|-m)}
\end{array}\right.\right) \\
=S_{1}\left(-\binom{|k|+1}{k_{2}} \mathrm{Z}_{21}^{|k|+1} \varkappa\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1^{(7+|k|)} 2^{(m)}\right.\right. \\
2^{(5-|k|-m)}
\end{array}\right)+\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \partial_{21}^{\left(k_{2}\right)}\left(\begin{array}{c}
w \\
\left.\left.w^{\prime} \left\lvert\, \begin{array}{c}
1^{(7+|k|)} 2^{(m)} \\
2^{(5-|k|-m)}
\end{array}\right.\right)\right) \\
=-\binom{|k|+1}{k_{2}} \mathrm{Z}_{21}^{|k|+1} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{c}
1^{(7+|k|+m)} \\
2^{(5-|k|-m)}
\end{array}\right.\right)+ \\
\quad\binom{k_{2}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+m\right)} x\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1^{(7+|k|+m)}\right. \\
2^{(5-|k|-m)}
\end{array}\right),\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& =\binom{|k|+1}{k_{2}} \mathrm{Z}_{21}^{|k|+1} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{2}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+m\right)} \varkappa\left(\begin{array}{c}
w \\
\left.w^{\prime} \left\lvert\, \begin{array}{l}
1^{(7+|k|+m)} \\
2^{(6-|k|-m)}
\end{array}\right.\right)+\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)}\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} \mid 2^{(5-|k|-m)}
\end{array}\right), ~(, ~
\end{array}\right.
\end{aligned}
$$

where $|k|=k_{1}+k_{2}$.
It is clear that $\quad S_{1} \partial_{\varkappa}+\partial_{\varkappa} S_{2}=i d_{M_{2}}$.

$$
\begin{aligned}
& S_{2} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa\left(\begin{array}{c}
w \\
w^{\prime} \mid \\
2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =S_{2}\binom{k_{1}+1+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+1+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{\varkappa}\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \left.\binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+\quad \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)}\left(\begin{array}{c}
w \\
w^{\prime} \\
1^{(7+|k|)} 2^{(m)} \\
2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =\binom{k_{1}+1+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+1+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \varkappa\binom{w}{w^{\prime} \mid 1_{2^{(5-|k|-m)}}^{(7+|k|+m)}}+ \\
& \binom{k_{3}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+m\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& =-\binom{k_{1}+1+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+1+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{2}+k_{3}}{\mathrm{k}_{3}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \mathcal{Z} \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} 1_{2^{(5-|k|-m)}}^{(7+|k|+m)} .\right. \\
& \binom{k_{3}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(k_{3}+m\right)} \mathcal{H}\binom{w}{w^{\prime} \mid 1^{(5-|k|-m)}}+ \\
& \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)
\end{aligned}
$$

where $|k|=k_{1}+k_{2}+k_{3}$.
It is clear that $\quad S_{2} \partial_{\varkappa}+\partial_{\varkappa} S_{3}=i d_{M_{3}}$.
$S_{3} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa\left(\begin{array}{c|c}w & 1^{(7+|k|)} 2^{(m)} \\ w^{\prime} & 2^{(5-|k|-m)}\end{array}\right)\right)$
$=S_{3}\left(-\binom{k_{1}+1+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+1+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa\left(\begin{array}{c|c}w & 1^{(7+|k|)} 2^{(m)} \\ w^{\prime} & 2^{(5-|k|-m)}\end{array}\right)+\right.$
$\left.\binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa}\right)\left(\begin{array}{c|c}w & 1^{(7+|k|)} 2^{(m)} \\ w^{\prime} \mid & 2^{(5-|k|-m)}\end{array}\right)-$
$\binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \varkappa\left(\begin{array}{c|c}w & 1^{(7+|k|)} 2^{(m)} \\ w^{\prime} & 2^{(5-|k|-m)}\end{array}\right)+$

$$
\begin{aligned}
& \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{~} \partial_{21}^{\left(k_{4}\right)}\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right) \\
& =-\binom{k_{1}+1+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+1+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(7+|k|+m)}} ^{(5-|k|-m)}\right)+ \\
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \quad \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}+m\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \partial_{\mathcal{K}} S_{4}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|)} 2^{(m)} \\
w^{\prime} \mid & 2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =\partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =\binom{k_{1}+1+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+1+k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(k_{4}+m\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(7+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)
\end{aligned}
$$

From the above, we have that $\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}\right\}$ is a contracting homotopy [7], which means that our complex is exact.

Acknowledgments

The authors thank Mustansiriyah University / College of Science / Department of Mathematics for supporting this work.

References

1. David A.Buchsbaum and Gian C. Rota. 1993. Projective Resolution of Weyl Modules, Natl. Acad. Sci. USA, 90: 2448-2450.
2. David A.Buchsbaum and Brian D.Taylor. 2003. Homotopies for Resolution of Skew-Hook Shapes, Adv.In Applied Math. 30: 26-43.
3. David A.Buchsbaum. 2004. A Characteristic Free Example of Lascoux Resolution, and Letter Place Methods for Intertwining Numbers, European Journal of Gombinatorics 25:1169-1179.
4. Hassan H.R. and Jasim, N.S. 2018 , "Application of Weyl Module in the Case of Two Rows ", J. Phys.:Conf.Ser., Vol. 1003 (012051), pp.1-15
5. Shaymaa N.Abd-Alridah, Haytham R. Hassan. 2020. "The Resolution of Weyl Module for Two Rows in Special Case of The Skew-Shape ", Iraqi Journal of science, 61(4): 824-830.
6. David A.Buchsbaum. 2001. Resolution of Weyl Module: The Rota Touch, Algebraic Combinatorics and Computer Science, pp.97-109.
7. Vermani L.R. 2003. An Elementary Approach to Homotopical algebra, Chapman and Hall/CRC, Monpgraphs and Surveys in pure and Applied Mathematics.
