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Abstract 

     In this paper, chaotic and periodic dynamics in a hybrid food chain system with 

Holling type IV and Lotka-Volterra responses are discussed. The system is observed 

to be dissipative. The global stability of the equilibrium points is analyzed using 

Routh-Hurwitz criterion and Lyapunov direct method. Chaos phenomena is 

characterized by attractors and bifurcation diagram. The effect of the controlling 

parameter of the model is investigated theoretically and numerically. 
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 الفوضى في نموذج الدلدلة الغذائية الهجينة
 

4،  نوريهان محمد ارفين 3، رائد كامل ناجي 1ناجي عطيوي  دويةع  2، عبد المحدن ناجي المحيدن *1 يصفاء جواد عل    
 المنرهر، الجامعة التقنية الهسطى، بغجاد، العخاق /لمعهج الطبي التقني ا 1

 لجامعة التقنية الهسطى، مكتب رئيذ الجامعة، بغجاد، العخاق ا 2
 قدم الخياضيات، كمية العمهم، جامعة بغجاد، العخاق 3

 معهج بحهث الخياضيات، كمية العمهم، جامعة بهتخا جايا، ماليديا 4
 الخلاصة

 معالهجينة في نعام الدمدمة الغحائية  والجوري  الفهضهي  كيالجينامي الدمهك ، تمت مناقذةالبحثفي هحه      
. تم تحميل محجود بانتعام . لهحظ أن النعامفي النعام البيئي فهلتيخا-ههلينج من النهع الخابع ولهتكا مؤثخ

تم تذخيص ظاهخة الفهضى المباشخة. ليابهنهف وطخيقة  ههارتد-روثلنقاط التهازن باستخجام معيار  يةالاستقخار 
 نعام الدمدمة الغحائية ةكيتمت دراسة تأثيخ معامل التحكم في ديناميعن طخيق رسهم الاتخاكتخ والبافخيكذن. 

   .وعجديا تحميميا
Introduction  

    Nonlinear phenomena play important rules in design systems of engineering and structures. The 

works of Lotka [1] and Volterra [2] are the most major works in mathematical models and dynamical 

systems. Researchers in ecology and engineering reported the essence of chaos [3-12]. In the analysis 

of the mechanical model, the geometrical non-linearity, represented by the pendulum, may lead to 

chaotic dynamics [4, 13]. Continuous three species food chain models from dissipative dynamics are 

accounted for to have complicated patterns, such chaos  limit cycle, and stable cycle [14-17]. Two 
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types of hybrid functional responses of a food chain model were investigated [18] and the numerical 

works proved the existence of chaotic dynamics. Upadhyay et al. [19] proposed and studied a tri-

trophic food chain model with Sokol-Howell functional response, incorporating the multiple gestation 

time delays. They explored the existence of various dynamical structures, such as Hopf-bifurcation, 

periodic solutions, and chaotic dynamics. Fayeldi et al. [20] applied Euler method to discretize a SIR 

epidemic model with non-monotone incidence rate. They showed analytically and numerically that the 

discrete model is dynamically consistent with its continuous model. Liu and Huang [21]  investigated 

the dynamical behavior of a predator-prey system with Holling type IV functional response, in which 

both species are subject to harvesting. They illustrated that using the harvesting effort as a control 

parameter can change the behaviors of the system, which may be useful for the biological 

management. 

    The primary motivation behind this work is to examine the dynamics of a three species model. A 

food chain model with Lotka-Volterra and Holling type IV functional responses is proposed and 

studied both theoretically and numerically. The food chain model is modified to the food chain model 

studied in [9], so that it involves Lotka-Volterra type of functional response in the second and third 

levels, instead of Holling type-II functional response that was used in the previous work. The idea of 

such modification comes from the fact of availability of food at the second level in the environment. 

The second reason for such modification is that we want to reduce the intensity of nonlinearity in the 

system and then study the effects of such reduction on the existence of chaos.   

The Mathematical Model 

Consider a three species food chain model consisting of the prey, their density at time   is denoted by 

    , the intermediate predator, their density at time   is denoted by       and the top predator, their 

density at time   is denoted by     . It is assumed that the intermediate predator preys upon its sole 

food at the lower level according to a modified Holling type IV functional response, and the top 

predator preys upon the intermediate predator at the second level according to Lotka-Volterra 

functional response. The dynamics of the above food chain model can be represented by the following 

system: 
  

  
        

    

    
            

                                         
  

  
  

    

    
                                                                  

                                                  
   

  
                                                                                    

with                     . Obviously, system (1) is continuous and has continuous partial 

derivatives on the positive octant   
                                , and hence the 

solution of the system (1) exists and is unique.  

   Here, the positive constants ;,,, hdba j  2,1j
 
and ;kw  4,3,2,1k   denote  the following: a  is 

the growth rate of the prey x , b  represents the intraspecific competition of prey x , kw  represent the 

maximum values attainable by each  per capita rate, h  is the half-saturation constant, and jd   

represent the death rates of the intermediate and the top predators, respectively.  Moreover, it is easy to 

verify that system (1) is uniformly bounded. 

Stability Analysis 

   This section deals with the stability analysis of the non-negative equilibrium points of system (1). 

There are at most four non-negative equilibrium points, which are denoted respectively as    ,   ,    

and the interior equilibrium point   . 

The trivial equilibrium point            and the axial equilibrium point    (
 

 
    )  always 

exists. While the planer equilibrium point is      ̅  ̅    where 

                      ̅  
  

   
 

√  
     

  

   
   ̅  

     ̅ (   ̅ )

  
                                     (2) 

Clearly, there are two positive planar equilibrium points denoted by       ̅   ̅     and     
  ̅   ̅     if and only if the following condition holds 

                      
     

                               (3a) 
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while system (1) has a unique planar equilibrium point      ̅  ̅    provided that 

                      
     

  .                         (3b) 

 The positive equilibrium point               exists in the interior of the first octant if and only if 

the following conditions hold 

                    
  

  
 

  

  
                (4a) 

                            
   

 

                                   (4b)                    

 

where 

   
  

  
;    

 

  
(

   
 

        )                       (5) 

While    is a positive root of the following equation 

            (  
  

  
   )                                   (6) 

According to Descartes's rule of signs, Eq. (6) has either one positive root (given by     and two 

complex conjugate roots or three positive roots. Straightforward computation using Mathematica 

software shows that Eq. (6) has only one positive root with two complex conjugate roots. 

   Now, the local dynamical behavior of the food chain system (1) near the above equilibrium points is 

investigated. It is observed that the eigenvalues of the variational matrix of system (1) near the trivial 

equilibrium point (  ) are determined as 

                                                   (7) 

while the eigenvalues near the axial equilibrium point (  ) are given by 

              
    

                                      (8) 

Hence, the trivial equilibrium point is a saddle point, while the axial equilibrium point is locally 

asymptotically stable provided that the following condition holds 

 
    

                            (9) 

 

Moreover, the eigenvalues of system (1) near the planar equilibrium point    can be written as: 

     
 

 
 

√     

 
      

 

 
 

√     

 
        ̅              (10) 

where    ̅ *   
    ̅ ̅

    ̅   
+ and   

    (   ̅ ) ̅ ̅

    ̅   
. Thus, according to these eigenvalues, if the 

condition (3a) holds then both the planar equilibrium points are saddle points due to the negativity of 

  that leads to the existence of positive eigenvalues. However, if the condition (3b) holds, then the 

unique planar equilibrium point becomes non-hyperbolic point due to the existence of zero eigenvalue 

and hence the linearization does not give the real stability type.  

Now, for the positive equilibrium point, the variational matrix of system (1) around               

is computed as:  

            (   )   
                                                                            (11)  

where 
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here         . Then the characteristic equation of the variational matrix (11) can be written as  

      
                             (12) 

where 
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   (    
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Clearly,            and            if and only if the following conditions are fulfilled 

           
    

   

   
                                (13a) 

                      (13b) 

Therefore, according to the Routh-Hurwitz criterion [22], the locally asymptotically stable     
           takes place. However, the region of the global stability of the positive equilibrium point is 

investigated in the following theorem. 

Theorem 1. Assume that               of system (1) is locally asymptotically stable and the 

following condition holds 

 
   

       

                          (14a) 

                            (14b) 

            
  

 
 

  

 
 

        

                         (14c) 

where         . Then, the basin of attraction in the        
   of    satisfies the above conditions.  

Proof. . Consider the positive definite function  

                                  ∫
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Taking the derivative of   with respect to t along the solutions of system (1), we get after some 

algebraic manipulation that 
  

  
  *  

   
       

   +         *
  

 
 

  

 
 

        

   +                

     Clearly, under the given conditions that 
  

  
  is negative semi definite and then by using Lyapunov 

method, the positive equilibrium point is stable. Moreover, it is easy to verify that, by using LaSalle's 

invariance principle ,    is the only invariant set for which the solution is approached 

asymptotically and hence it becomes an attracting point. Therefore,    is an asymptotically stable 

point for any initial point that belongs to the region that is satisfying the above conditions.  

Numerical exploration 

    The global dynamics of system (1) is studied numerically using six order Runge-Kutta method. 

Many cases of system (1) are obtained for the following set of fixed parameters values 

                                                                              (15) 

Bifurcation diagram and the typical 3D attractors of system (1) are plotted with their projections and 

time series in the boundary planes. The fundamental target is to investigate the possibility of chaotic 

behavior in system (1) by relying upon the controlling parameter and keeping different parameters of 

(15) fixed. 

 
      Figure 1- Bifurcation diagram of system (1) for data set (15) that showing the successive 

                            maxima of   as a function of                and        . 
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               Figure 2- 3D chaotic attractor of system (1) for data set (15) with         

  

    Now, in the first case when        with the data set (15), it is observed that system (1) is chaotic 

and approaches to periodic attractor, as shown in Figure-2 and Figure-3a-b. In the second case, by 

decreasing the value of    to 4.1, system (1) approaches to a limit cycles attractor, as shown in Figure-

4a-b.  The third case deals with keeping on decreasing the values of    and    to 0.001 for data (15), 

where we observe the change in the dynamics of system (1) from limit cycles attractor to stable point, 

as blotted in Figure-5a-b.   

 
  

 

           Figure 3- a) 2D projection in the      plane of the chaotic attractor given by Figure-2,  

                                                b) Time series of Figure-3a    
 

      
         

            Figure 4- a) 3D of system (1) periodic attractor for data (15) with          
                                                 b) Time series of Figure-4a. 
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         Figure 5- a) 3D of system (1) stable point for data (15) with               
                                                 b) Time series of Figure-5a   

        

Conclusions 
    A food chain system with modified Holling type IV and Lotka-Volterra functional responses is 

proposed and discussed. The global stability of the system is investigated using Routh-Hurwitz 

criterion and the second method of Lyapunov. Bifurcation diagram and attractors are blotted to study 

the behavior of the hybrid continuous time model. The parameter       controlling the dynamics of 

this food chain model. Moreover, replacing Holling type-II functional response in [9] by Lotka-

Volterra response in system (1) above reduces the effect of nonlinearity and makes the dynamics less 

chaotic. In fact, the system approaches clearly a periodic behavior.    
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