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                       Abstract 

     Let G be a finite group and X be a conjugacy class of order 3 in G. In this paper, 

we introduce a new type of graphs, namely A4-graph of  G, as a simple graph 

denoted by A4(G,X) which has X as a vertex set. Two vertices,  x and y, are 

adjacent if and only if  x≠y and  x y
-1

=y x
-1

. General properties  of the A4-graph as 

well as the structure of A4(G,X) when G 
3
D4(2) will be studied. 
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 الخلاصة
في ىحه البحث نقهم بتقجيم نهع ججيج من  G صف من الختبة الثالثة في   Xزمخة منتيية و  Gلتكن      

بحيث انو نقطتين   A4(G,X)يعخف بانو بيان بديط يخمد لو بالخمد   Gللدمخة  A4-البيانات يدمى بيان
 x y-1=y x-1في البيان تختبط بحافة اذا وفقط اذا حققت الذخط  x,y مختلفتين

 الخهاص العامة للبيان-A4  
 G 3D4(2).عنجما   A4(G,X)بالإضافة الى ذلك قج تم  دراسة هيكل 

Introduction 
     Analyzing the group structures using graph structures,  on which the group acts upon , can be an 
effective method which gives rise to many interesting results. Currently, this style of studying the 
algebraic properties of groups is the most common. There is a remarkable number of researches in this 
area, see for example [1, 2, 3]. Assume that G is a finite groups and X is a conjugacy class of order 3 

in G. In this work, we present the A4-graph of G as a simple graph denoted by A4(G,X). The vertices 

set of A4-graph is X, and x,y  X are joined by an edge if and only if x≠y and  x y
-1

=y x
-1

. Firstly, we 

note about the A4-graph,  if x is adjacent to y, then the subgroup is generated by x and y, <x,y>A4. For 
this reason, we named the graph as A4-graph. Throughout this paper, we let G be a finite groups and X  
is a G- conjugacy class of order 3.. 
The aim of this work is to present the general properties of the A4-graph and  describe certain features 

of A4(G,X), when G is an exceptional Lie type group of characteristic two  
3
D4(2) information about 

this group, which can be found with details in [4]. 

For x  X, we define the i
th

 disc of x, i(x) , (i  N) to be  

i(x)={y  X| d(x,y)=i} 
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     where d( ,  ) is the usual distance metric on the graph A4(G,X). Certainly, G is acting by 

conjugation on X  imbedding G in the group of graph automorphisms of A4(G,X).  Obviously, G is a 

transitive on the vertices of A4(G,X). We now choose tX to be a fixed representative of the class X. 

The aim is to describe the disc structure of vertex t in A4(G,X). The diameter of A4(G,X) will be 

denoted by Diam A4(G,X) and is defined as  

Diam A4(G,X) =maxx  X{i| i(x)≠Ø and i+1(x)=Ø} 

    For deep details about concepts of graph theorem, we may refer to [5]. Finally we shall rely upon 
the Atlas for the names of conjugacy classes of G [6]. 

1- General Properties of A4(G,X) 

Definition 1.1: Let G be  a finite group. For G-conjugacy classes X of order 3, we assign a simple 

graph which is called A4-graph and denoted by A4(G,X), with vertices set being the set X, and two 

vertices x,y  X are adjacent if and only if x≠y and  x y
-1

=y x
-1

. 
The next  examples are to illustrate the structure of A4-graph for certain finite groups. 

Examples 1.2 
(1) Let GS5 be a symmetric group of degree 5 and t=(3,4,5), then we have : X=t

G
=[ (3,4,5), (3,5,4), 

(2,3,4), (2,3,5), (2,4,3), (2,4,5), (2,5,3), (2,5,4), (1,2,3), (1,2,4), (1,2,5), (1,3,2), (1,3,4), (1,3,5), (1,4,2), 

(1,4,3), (1,4,5), (1,5,2), (1,5,3), (1,5,4) ]. The graph A4(G,X) is connected with Diam A4(G,X) =3. 

The disc structures of the graph A4(G,X) are: 

0(t)=t, 1(t)={ (2,3,5), (2,4,3), (2,5,4), (1,3,5), (1,4,3), (1,5,4)}, 2(t)={ (2,3,4), (2,4,5), (2,5,3), 

(1,2,3), (1,2,4), (1,2,5), (1,3,2), (1,3,4), (1,4,2), (1,4,5), (1,5,2), (1,5,3) },3(t)= {(3,5,4)}. 
This can be achieved computationally by using the gap package YAGS [7]  as we describe in the next 
procedure which  proceeds as follows: 

Procedure 1 
1. Define the group G and t. 
2. Compute the G-Conjugacy classes X=t

G
. 

3. Compute A4(G,X) by using the code GraphByRelation. 
4. Draw the graph by using the code Draw. 
5. Compute the diameter of the graph by using the code Diameter. 
6. Set 0(t)=t. For i in {1,2,3} Do 

7. For  y1 in i-1(t) Do  

8. For y2 in X\ 0(t)   1(t)… i-1(t)    Do 
9. If y1*y2

-1
= y2*y1

-1 
 Then  

10. Add(i(t),y2) 
Now, to simplify the graph drawing, we replace the vertex by its position in the set X . For example, 
we label 1 instead of the first elements in set X, which is (3,4,5), and 2 for the second element ( 3,5,4), 
and so on. 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

Figure 1-The structure of A4(S5,(1,2,3)
S5

). 
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(2) Dihedral group  D6 =< a,b | a
3
=b

2
=1, bab=a

-1
 > has only one class of elements of order 3. Then, the 

class consists of the set X={a,a
-1

}. Clearly, a
2
≠ a

-2
, then the   A4(D6,X) is disconnected with single 

vertex connected components.   

Now, we will establish some general properties for A4(G,X). 

Proposition 1.3: Let G be a finite group and X be a conjugacy class of order 3 in G. Then, graph 

 A4(G,X) has the following properties: 

1- A4(G,X) is a simple undirected graph. 

2- A4(G,X) is a regular graph. 

Proof 

1- From the definition of the graph A4(G,X), we have two vertices x,y  X are adjacent if they are 

distinct and x y
-1

=y x
-1

. The first condition implies that the graph has no loops. If an edge (x,y) exists 
between the two vertices x and y, then x≠y and  x y

-1
=y x

-1
. But this also implies y  x

-1
 = x y

-1 
and that 

the edge (y,x) also exists, with a unique edge incident (x,y) and (y,x) (we may assume the graph 
without multiple edges). This shows that  the graph is without multiple edges and undirected. 

2- To show the regularity of the graph, let  x,y  X be two vertices of A4(G,X), then there is one to 

one correspondence between  1(x) and 1(y) that can be seen by looking to the map :1(x) 1(y), 

which is defined as (a)=a
g
, for all a 1(x) and g  G, which satisfies x

g
=y or g x g

-1
=y (note that g 

always exists because x,y  are conjugates in G). The map  is well-defined, since if a 1(x) then a
g 
y

-

1
= a

g 
(x

g
)

-1
= g a x

-1
g

-1
= g x a

-1
 g

-1
= y (a

g
)

-1
. This implies that a

g
 1(y) . The map  is obviously one to 

one and onto. 

Note that the second property means that the choice of the fix t  X will be arbitrary. This is because 

of the regularity of the graph; each vertex has the same number of neighbors, so if we take s X and 

s≠t then |1(t)|= |1(s)|, and for any path in the graph that contains t, we can conjugate by g such that 
t
g
=s, then

 
we obtain a path that contains s with the same length. 

We should also note that CG(t) is acting by conjugation on X. Also, if x is adjacent to y then for any w 

CG(x) we have x adjacent to y
w
. Thus, we can easily prove the following lemma: 

Lemma 1.4: ∆i(t) of the A4(G,X) is a union of certain CG(t)-orbits.  

Proof 

 Suppose that a  ∆i(t) and w commute with t. We aim to show that a
w
  ∆i(t).  Since  a  ∆i(t), thus 

the path which contains a and t is of a length that is at most equal to i. Then, it is clear that if we 
conjugate this path by w

 
we obtain a new path from a

w
 and t is of a length that is at most equal to i. 

Thus, a
w
  ∆i(t), as requested.  

For any group G and two subgroups H and K of G, the double coset  of K in G is defined as  the set 

HGK={h g k | h  H, g  G and  k   K}. The number of CG(t)-orbits is called the permutation ranks 
of CG(t) on X. The next result shows the way of obtaining the size of  CG(t)-orbits. 
Proposition 1.5:[8]. Suppose that  G is a finite group and X is a conjugacy class of G. Then, the 
number of the CG(t)-orbits is equal to the number of (CG(t), CG(t))-double cosets. 
The above result does not only tell the  permutation ranks. It also provides a representative for CG(t)-
orbits. 
For a G-conjugacy class C, define the set:  

XC={x X| tx X}. 
One can see that if  XC≠Ø then it is equal  to a  union of certain CG(t)-orbits of X. The way of XC 
breaks into CG(t)-orbits.  It will be essential to  determine which discs of t contain the vertices in XC. 
Also, knowing the size of XC can be beneficial  by leading to class structure constants. Class structure 
constants are the sizes of the sets: 

{(g1, g2)  C1 x C2 | g1g2 = g} 
where C1, C2, C3 are G-conjugacy classes and g is a fixed element of C3. Now, these constants can be 
calculated directly from the complex character table of G, which are recorded in the Atlas and are 
available electronically in the standard libraries of the computer algebra package Gap [9]. If we take 
C1 = C, C2 = X = C3 and g = t, then in this case  
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     where h is a representative from C and  1,  2,…,  s are the complex irreducible characters of G. 

The next proposition gives the criteria to decide the order of tx if x 1(t), which can be found by the 
below result: 

Proposition 1.6  

1- Let x , y be any two distinct vertices in A4(G,X). Then if x is adjacent to y then the subgroup 

generated by x and y, <x,y>,  isomorphic to A4 , the alternating group of degree 4. 

2- For x in 1(t), we have that tx has the order 3. 

Proof 
1- It is well known that the standard presentation of A4= <z,w|z

3
=w

3
, zwz=w

-1
>. Now, x and y have the 

order 3 and x y
-1

=y x
-1

. Then, we have  x y
-1

x=y. If we set x=z and y
-1

=w, we obtain that <x,y>A4. 

2- Since x 1(t)  then tx
-1

=xt
-1

, which leads to x=tx
-1

t.  As x,t have order 3, then we have  
(tx)

3
= tx tx tx= t tx

-1
t  t  t x

-1
t  t  tx

-1
t = 1. This illustrates that tx has order 3. 

2. Disc structures of A4(G,X), G  
3
D4(2)  

     The exceptional group 
3
D4(2) has the factor order 2

12
.3

4
.7

2
.13 and two classes of order 3, namely 

3A and 3B. The class 3A has a centralizer structure that is isomorphic to (((C3 x C3) : C3) : Q8) : C3, 
while the class 3B  has a centralizer structure that is isomorphic to C3 x PSL(2,8).  
     These results of the next theorem  were obtained computationally with the aid of Gap and the 
OnLine Atlas. In the context of these computations, we allocate the CG(t)-orbits on X. Representatives, 
in Gap format, for each of these orbits are to be obtained as downloadable files in [11], as they may be 
of value in other investigations of such group. In Section 3, we also give  information on the action of 
CG(t) on X. Specially , we provide the CG(t)-orbit sizes for each XC≠Ø. 
The main result of the paper is as follows. 
Theorem 2.2: Let G be isomorphic to 

3
D4(2). Then  

1- The sizes of the discs i(t) are listed in Table 1 and the G-conjugacy classes of tx for 

x i(t); i  ℕ are given in Table 2. 

2- If (G,X)= (
 3
D4(2),3A)= (

 3
D4(2),3B), then Dim A4(G,X).= 5. 

Proof 

First, we fix an arbitrary element t in the class 3A or 3B and we set  0(t)= t. Then, we calculate the 
CG(t)-orbits by using the Double Cosets of CG(t) in G, as we describe in  section 1 and by Gap. Now, 
we break CG(t)-orbits into XC sets using the class representative from the OnLine Atlas. This can be 
seen in the below table. 

Table 1-The Discs for A4(G,X)., G
3
D4(2). 

X=t
G 

|X| 1(t) 2(t) 3(t) 4(t) 5(t) 

3A 139776 27 648 13491 105463 20146 

3B 326144 243 39852 285255 792 1 

The above table  proves that Dim A4(G,X)=5 for (G,X)=(
 3

D4(2),3A)= (
 3
D4(2),3B). 

For i≠0, i(t) is equal to the set of each element in XC which  adjacencies with  some   elements in     

i-1(t). We employ this property to obtain the following table below. 

Table 2-The conjugacy class of products tx for x  i(t). 

X=t
G 

1(t) 2(t) 3(t) 4(t) 5(t) 

3A 3A(27) 
4A(216), 
7D(216

2
) 

3A(216
2
,504),4A(216), 

6A(1512
2
),7D(216, 

1512
4
),12A(1512

2
) 

 

1A,3A(378),4A(3
78),4B,6A 

(1512
2
),7AC,7D 

(1512
4)

,8B,9AC 
(504,1512

3
), 

12A(1512
2
), 

13AC,21AC 
(1512

2
),28AC 

(1512
2
) 

3A(56,378),3
B,4C,6B, 

9AC(504), 
21AC(504, 

1512),28AC(
1512

2
) 
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3B 3B(81
3
) 

6A(81
4
),8A,9

AC(216), 
14AC(648), 
18AC(648

4
), 

21AC(648
6
) 

,28AC(324
2
,

648
4
) 

3A,3B(216
2
),4B,4C, 

6A(648
6
),6B,7AC,7D,8B,

9AC(324
9
,648

9
), 

12A,13AC, 
14AC(324

9
,648

7
), 

18AC(216
6
,324

6
,1648

14
),2

1AC(648
19

), 
28AC(324

2
,648

12
) 

2B,3B(72
2
), 

4A,9AC(108) 
1A 

     As mentioned, we are using the class names in Atlas, although we have made some adjustments . 
First, we suppress the "slave" notation to write the class name of 

3
D4(2). Second, for the purpose of 

simplification, we compress the letter part of the class name, since we aim to union these classes and 

their characters in alphabetical sequence. As in the example shown in Table 2, for G
3
D4(2) and X = 

3A, 21AC is short-hand for 21A 21B21C .  

3. CG(t)-Orbits On X 
As mentioned above, we provide tables that include the sizes of the CG(t)-orbits, where  CG(t) acts 
upon a non-empty set XC, with C is a G-conjugacy class. In the next tables, we employ an exponential 

notation to state the multiplicity of a certain size. For example, in the table for A4(
 3

D4(2),3A), the 

entry 216
2
,378 next to 4A is implying that X4A is the union of three CG(t)-orbits, two of which have 

the size of 216 and one has the size of 378. While, in the table for A4(
 3

D4(2),3B), the entry 

324
4
,648

14
 next to 28AC indicates that each of X28A , X28B  and X28C  is the union of eighteen CG(t)-

orbits, four of which have the size of 324 and fourteen have the size of 648. We give details of the 
permutation ranks in our next table. 
 

Table 3-Class sizes and Permutation Rank for A4(
 3
D4(2),X). 

A4-Graph |X=t
G

| Permutation Rank 

A4(
 3
D4(2),3A) 118 139776 

A4(
 3
D4(2),3B) 600 326144 

 

In order to calculate the CG(t)-Orbits of A4( 
3
D4(2),3A)  and  A4( 

3
D4(2),3B),  we present the 

following Procedure: 

Procedure 2 

1. Choose t3A or 3B. 
2. Compute Centralizer in G of t, CG(t). 
3. Compute Double Cosets of CG(t) in G (CG(t)-orbits, which can be obtained  from Proposition 1.5. 
4. Break CG(t)-orbits into XC sets using the class representative from the OnLine Atlas. 
5. Use the class structure constants to compute the size of XC. 

 3.1 CG(t)-Orbits of A4(
 3
D4(2),3A) 

 

Table 4-CG(t)-Orbits of A4(
 3
D4(2),3A) 

1A 1 3A 27,56,216
2
,378

2
,504 3B 56 

4A 216
2
,378 4B 378 4C 756

2 

6A 1512
4 

6B 756
2
 7AC 504 

7D 216
3
,1512

8 
8B 1512

8
 9AC 504

2
,1512

3 

12A 1512
4 

13AC 1512
9
 21AC 504,1512

4
 

28AC 1512
4 

 

3.2 CG(t)-Orbits of A4(
 3
D4(2),3B) 

 

Table 5-CG(t)-Orbits of A4(
 3
D4(2),3B) 

1A 1 2B 81
3 

3A 216
5 

3B 72
2
,81

3
,216

2 
4A 81 4B 81

3
,216

6 
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4C 648
4 

6A 81
4
,648

6 
6B 648

10 

7AC 108,324
2 

7D 648
9 

8AB 648
12 

9AC 108,216,324
9
,648

9 
12A 216

12
,648

12 
13AC 648

49 

14AC 324
9
,648

8 
18AC 216

6
,324

6
,648

18 
21AC 648

25 

28AC 324
4
,648

16 

     It is worth noting in the case of A4(
 3
D4(2),3B) that the distance between t and x is almost decided  

by the G-class to which contains tx. 

 

Conclusions  
     This paper shows the relation between two important branches of mathematics, which are the graph 
theory and the group theory. During this work, a new graph was  introduced, namely the A4-graph. 
This graph was employed to study the structure of certain finite simple groups. Valuable results were 
obtained; for example, the general properties of A4-graphs were given along with the analysis of     

A4 (G,X), G 
3
D4(2). 
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