Tawfig and Kareem Iragi Journal of Science, 2021, Vol. 62, No. 9, pp: 3061-3070
DOI: 10.24996/ijs.2021.62.9.21

N
Iraqi
Journal of

Science

ISSN: 0067-2904

Efficient Modification of the Decomposition Method for Solving a System of
PDEs

L. N. M. Tawfig*, Z. H. Kareem
Department of Mathematics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad

Received: 8/9/2020 Accepted: 28/11/2020

Abstract

This paper presents an analysis solution for systems of partial differential
equations using a new modification of the decomposition method to overcome the
computational difficulties. Convergence of series solution was discussed with two
illustrated examples, and the method showed a high-precision, being a fast approach
to solve the non-linear system of PDEs with initial conditions. There is no need to
convert the nonlinear terms into the linear ones due to the Adomian polynomials.
The method does not require any discretization or assumption for a small parameter
to be present in the problem. The steps of the suggested method are easily
implemented, with high accuracy and rapid convergence to the exact solution,
compared with other methods that can be used to solve systems of PDEs.
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1. Introduction
The systems of partial differential equations (PDESs) have been used to describe many important
models in real life, such as contamination, distribution of shallow water, heat, wave’s contamination,
and the chemical reaction — distribution model [1-4]. The general ideas and key characteristics of these
systems are generally applicable [5]. In recent years, many authors have focused on solving the non-

linear systems of PDEs using various methods, such as Homotopy analysis method (HAM) [6],
variational iteration method (VIM) [7], differential transform method (DTM) [8], Homotopy
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perturbation method (HPM) [9-10], Adomain decomposition method (ADM) [11-13], coupled Laplace
decomposition method [14], and semi analytic technique [15]. Recently, the decomposition method
and its modifications have been used in a wider scope to solve different types of PDEs. In 2001,
Wazwaz and Al-sayed [16] presented a modification of the ADM for non-linear operator, which
replaced the process of dividing f (hon operator function) into two parts by an infinite series of
components. Another modification is the restarted ADM [17]. In 2005, Wazwaz [18] found another
modification to the ADM to overcome the difficulties that arise when the equation consists of singular
points. This modification is useful for similar models with singularities. Luo [19] proposed another
modification based on separating the ADM into two steps and, hence, it is termed the two steps ADM
(TSAMD). The purpose behind the proposed scheme is to identify the exact solution more readily and
eliminate some calculations. Herein we suggest a new modification for solving the non-linear systems
of PDEs with initial conditions to overcome the computational difficulties.
2. Description of the Suggested Modification
The procedure of the suggested modification (MDM) to solve the non-linear system of PDEs is
presented here. Firstly, we write the nonlinear system of PDEs as follows:

Liu+ Lyu + N;(u,v) = hy (X, t) D
Liv+ Lyv + Ny(u,v) = hy(X, t)
Subject to ICs:

u(X,0)=fX); vX0 =g@X) (2)

where X is a space variable that belongsinthe R,L: linear  differential  operator (Lt = % ) ,

(LX = aa_x) , N; and N, are nonlinear operators, and h, (X, t), h, (X, t) are the nonhomogeneous part.

By taking L;1 = fot(. )dt , to the system, we get
u(X,t) = QO + L (hy) — L Lyu — L7 [Ny (u, v)]

v(x,t) = g(X) + Lt (hy) — L7 ' Lxv — Lt '[Ny (w, v)] (3)
The linear unknown functions u(X,t) and v(X,t) can be decomposed by infinite series of
components, illustrated in equation (4), and hy, h, should be decomposed infinite series illustrated in
equation (5).

ulX,t) = A (Xt™ ,v(X,t) = b, (X)t™ 4)
hy = T (X)t™ and h, = Sm(X)t™ (5

N, (u,v), N, (u, v) are nonlinear terms that can be represented by an infinite series of polynomials, as
follows

Nl(u, 17) = Z Am(X)tm = AO +A1t +A2t2 + .-

m=0

Nz(u,‘l?) = 2 Bm(X)tm =B0+Blt+th2+"' (6)
m=0
where A,,and B,,, are Adomian polynomials

1am | (<,
N Z)lyl- , m=012,.. .
i=0

™ mldam
A=0

By substituting (4) and (5) in the system (3), we get

> amCOt™ = £ + 13 (Z rm(X)tm> ~ L'y (Z am(X)tm> - 1! (Z Am(X)tm>
m=0

m;O mczO m;O L=

> (0™ = g(@) + 13 (Z sm(X)tm> - L'l (Z bm(X)tm) - 1! (Z Bmootm)
m=0 - - - m=0 m=0 m=0

Now, we integrate the right side to get:

3062



Tawfig and Kareem Iragi Journal of Science, 2021, Vol. 62, No. 9, pp: 3061-3070

tm

S0 A )™ = £ + (S50 (®) o) = Ly (S0 am () ) = (S0 Am O)E™

m+1

o) m+1 m+1
me(X)t'”:g(XH(zsm(X) +1> LX(Zb o0 — ) ( (X);l+1>
m=0

m=0
Let m = m — 1 in the right side of the above system, we have

i am (Xt™ :f(X)+<§: Tm—1(X)f)_L (i Am-— 1(X)_> ( A1 (X) )
=1

m=0 m=1
Z bm(X)tm—g(xH(Zsm I(X)—)— (Z b 1<X)—> (Z m2 (0 )
We have the following recunrlsnlle relation:

ag(X) = f(X)
Let uo = ao,u1 = alt,uz = aztz, .
Let WO = bo, W1 = blt, WZ = bztz, e
After substituting in Adomian polynomials, we apply the relation (6):

1 d
an () = — [ 1 (0 = 5 (am 1 () = A1 (0
In the same manner,
bo(X) = g(X)

1 0
b () = — [$m1(X) = == (b1 (X)) = B 1 (0]

The coefficient a,,(X), b,,(X)in eqgs. (8) and (9) is substituted in eq. (4) to get
solution u(X,t) and v(X,t).

3. Hlustrative Problems

In this section, the suggested modification (MDM) is used to solve the nonlinear system of PDEs.
Problem 1

Consider the following 2D nonlinear system of Burgers equation [20-21]:

Up + Ully + WUy, = Uy + Uy,

W + UWy + WWy, = Wiy + Wy,

subjectto IC: u(x,y,0) =x+y, w(x,y,0)=x—y,(xy,t) € R?> X [0,%).

Solution

By taking Ly ' = [ “(.)dt to the system, we obtain

62 2
u(x,y,t) = u(x,y,0) to2 L u ]+WLt [u] = Lg* [uuy ] — Lt Hwuy ]
62 62
w(x,y,t) =w(x,y,0) + ﬁL?l[W]‘Fa—yzLEl[W] — Ly [uwy ] =L Hwuy ]
9* -1 0 -1 -1 -1
uC,y,t) =x+y+ ﬁl’t [u]+a—yth [u] — Ly uu, ] —L7 H [wu, ]
62 2
wx,y,t)=x—y+ ﬁL?l[WHa—yzL?l[W] — Ly [uwy ] L Hwuy ]

o)

let u(x,t) = Z am(Ot™ ,w(x, t) = Z b, (x)t™

m=0 m=0
® 92 o pm+1 92 o gm+1
D an(™ = x4y + 3| D anC g | D anCe ) g
m=0 m=0 m=0
m+1 o m+1

Z m(x,y);+1

=0

Z Am(x,7)—
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® 92 s pm+1 92 © gm+1
Zobm@t’":x‘y*ﬁ 2., nC) g )+ 35 2 nCe )y
m=

m=0 m=0
Fm+1 d Fm1
C Z Dy, (x,
2 m@ == ) D) —
m=0
where
w0 = ) anCu N Wiy, = ) bu(o "
m=0 m=0

= z Ay (e, Y™ = Ap + At + Ayt? +

m=0
oo

u
_— Z Bm(x,y)tm = BO + Blt + thz +
m=0

w
— = Z Cn (2, Y)t™ = Cy + C1t + Cot% +

mO

w—y Z Dy (x, y)t™ = Dy + Dyt + D,t% +
m=0
Let m = m — 1, then, on the right side of the above system, we have
m

¢ " 92 [ tm\ 9?2 [ t
zam(x)t =x+yto—s Zam—l(x'J’)E +a_yz Zam—l(x'Y)E

m=0 m=1 m=1

- i Ao o) - i BosGe)
me(x>tm—x Yo <Z b1 (3,7) ) 5 (Z b (5, y)—)
Z L Z Drroa o)

Wherea0=x+yand by =x-—y

1[ 02 K
an(x,y) = — [g (am1C6 ) + 577 (amoa(63)) = Ama (603) = Bna (5, ;v)]
Also,

1[02 02
bm(x'}’) = _I:ﬁ (bm—1(x'}’)) + ﬁ(bm—ﬂx'}’)) - Cm—1(x’}’) - Dm—1(x’}’)]

1
a;(x,y) = [6 > (a0, M)+ 6 > (ao(x ¥)) — Ao(x,y) — By(x, }’)]

Letuy = ag,uy = a t,u, = at?, ...

Aoy + (A100x + Agaq, )t + (ApA0, + Q1015 + QoA )t? + -+ = Ay + At + Axt? + -
Let wy = by, w; = byt,w, = b,t?, ...

boagy + (b1agy + boayy )t + (baagy + biayy + boasy)t? = By + Byt + Byt? +

aobox + (a1bgy + agby )t + (ayboy + a1byy + aghbyy)t? + -+ = Co + Cit + Cpt% + -+
boboy + (b1boy + bobyy )t + (bybgy + bybyy + bobyy )t% + -+ = Do + Dyt + Dot? + -+
Ay, y)=x+y , Bo(x,y) =x—y
a(xy)=0+0-Cx+y)-(x-y]=[-x—-y—-x+yl=-2x

and so,

1
bi(x,y) = 1|5x 2( 0(x, ) + (bo(x ¥)) — Co(x,y) — Do(x,y)
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Co(x,y) =x+y,Do(x,y) =—x+y
bi(,y) =[0+0—(x+y)— (—x+y)]
bi(x,y) = [ x—y+x—y] = —2y

a(x,y) = [ (a1( Y)) + (al(x 3’)) Ai(x,y) — B (x, )’)]
Ay(x,y) = —4x =2y, Bl(x y) ==

1
a,(x,y) = > [04+0—(—4x—2y) — (—Zy)]

1 1
a,(x, y)—2[4x+2y+2y] [4x+4y]—2x+2y

by (x,y) = [ 5 (ba(x, y))+ (bl(x ) = C1(x,y) — D1 (x, y)]
Cilx,y) = 1—2x ,Di(x,y) = 4y — 2x

by(x,) = 5[0+ 0 = (=2x) = (4y — 2)]

b,(x,y) =%[2x—4y+2x] =%[4x—4y] =2x—2y

as(x,y) = [ 7 (ax(x y))+ (az(x ) — Az (x,y) — By (x, y)]
A, (x, y)—iix+4y, B, (x, y)—4x—4y

as(x,y) = [0+0— (8x + 4y) — (4x — 4y)]

1 1
az(x,y) = [ 8x —4y — 4x+4y] 3[—12x] = —4x

b3(x,y) = [ 5 (ba(x y))+ (bz(xy)) C(x,y) — Dz(xy)]
Cz(xy)—4x+4y,D2(x,y)——4x+8y

bs(x, y)—1[0+0 (4x + 4y) — (—4x + 6y)]
1 1

bs(x,y) = g[—4x —4y +4x —8y| = 5[—1231] = —4y

3 1[62 0° ) 5 ]
a4(ny) _Z ﬁ(afi(x'y)) +a_yz(a3(x'y)) - 3(903’) - 3(90}7)
A3(X,_’)/) = 1—16X— 83"33(35'}’) = -
as(x,y) =710+ 0 — (—16x — 8y) — (=8)]
1
Z

1
as(x,y) =—-[16x+ 8y + 8y] = - [16x + 16y] = 4x + 4y

bsy(x,y) = [ ( 3(x }’)) + (b3(x }’)) C3(x,y) — D;3(x, 3’)]
Cs(x,y) = —8x,D3(x,y) = 16y 8x
by(x,y) ==[0+0— (—8x) — (16y — 8x)]

by(x,y) =

-PIH-hlb—x

1
[8x — 16y + 8x] =Z[16x—16y] = 4x — 4y
u’(x'y' t) = Z am(x:}’)tm = aO + alt + aztz + s
m=0
u(x,y,t) = x +y—2xt + (2x + 2y)t? — 4xt3 + (4x + 4y)t* + -
u(x,y,t) =x +y 4 2(x + Yt + 4(x + y)t* + -+ — 2xt — 4xt3 — 8xt5 — -
u(x,y, t) = (c+y)(1 + 22 +4t* + ) — 2xt (1 + 2t% + 4t* + )

1 1 x+y-—2xt
ux,y,t) = (x+y) (1—2t2) — 2xt (1—2t2) TS
which is closed to the exact solution:
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x+y—2xt
Wy D= om

and

w(x,y,t) = Z by (2, V)™ = by + byt + byt? + bst3 + byt +
m=0
w(x,y,t) =x —y — 2yt + (2x — 2y)t? — 4yt3 + (4x — 4y)t* +
wx,y,t) = (x—y+2(x —y)t?> + 4(x — yY)t* + 8(x — Y)t® + ) + (=2yt — 4yt3 — 8yt> —--+)
w(x,y,t) = (x —y)(1 + 2t% + 4t* + 8t + ---) — 2yt(1 + 2t* + 4t* + 8t® + ---)
__Xx-y-2yt
wix,y,t) = (x—y)(l 2t2) - Qy )(1 2t2) T 1-2¢2
that is closed to the exact solution:
xX—y—2yt
L T
This problem was solved in [20-22] by using ADM and its modification. However, only a series
solution, but not the exact solution, was obtained.
Problem 2
Consider a system of 3"¢ order nonlinear PDE [23]
ur+vv, =0
Ve + Vyyy T UV +u,v =0
subject to IC: u(x,0) = 2 sech®(x), v(x,0) = 2 sech(x)
Solution
By taking L;! = fot(.)dt to the system, we obtain
u(x, t) = u(x,0) — Ly [vv,]
3

a
v(x,t) = v(x,0) __Lt [v] — Lzl[uvx] Lt [u,v]
u(x, t) =2 sechz(x) Lt [vvy]
) = 2sech(x) =g 171 [0] = L fu] = L[]

Letu(x,t) = z Ay (O™ ,v(x,t) = Z b, ()t™

m=0
d gm+1
Z Ay (X)t™ = 2sech?(x) — (Z Am(x) )
m=0
S0 b (O™ = 25ech(x) ——(zm 0 b () o) = B B (1) o — B2 G (1) o
where
va = Z Am(x)tm = AO + Alt + Aztz +
m;O
uvx = Z Bm(x)tm = BO + Blt + thz +

=0

3

u,xv = Z Cm(x)tm = CO + Clt + Cztz +
m=0
Let m =m — 1 inthe right side of the above system, then we have

[o¢]

z A, (X)t™ = 2sech? (x) — (z A1 (%) —)

m:O m=1

z by (x)t™ = 2sech(x) ——(i m— 1(x)—) z B 1(x)—— Z Cone 1(x)—

ao (x) = 2 sech?(x)
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an(2) = [~ (A1 ()
Also,
by(x) = 2sech(x)
1 a3
bm(x) = E _ﬁ (bm—l(x)) - Bm—l(x) - Cm—l(x)
Letuy = ag,u; = a t,u, = at?, ...
Let vy = by, v; = byt, v, = byt?, ...
boboy + (b1bgy + bobix)t + (byboy + bibyy + bobyy )t? + +++ = Ay + Ayt + Ayt? + -
aoboy + (a1bgy + agby)t + (ayboy + a1byy + aghyy)t? + -+ = By + Byt + Byt? + -+
Agxbg + (a1,bo + Agyby)t + (Azxbg + A15by + Agyby)t? + -+ = Co + Cit + Cot? + -+

1
a;(x) = I [—(Ao(x))]
Then

a,(x) = %[4tanh(x)sech2(x)] = 4tanh(x)sech?(x)

1
bi(x) =~

83
1 [— 55 (bo (%)) — Bo(x) — Co(x)

0x3
3

b,(x) = [— % (2sech(x)) + 4tanh(x)sech®(x) + 8tanh(x)sech? (x)]

b, (x) = [-10tanh(x)sech3(x) + 2tanh3(x)sech(x) + 4tanh(x)sech3(x) + 8tanh(x)sech3(x)]
b, (x) = [2tanh(x)sech3(x) + 2tanh3(x)sech(x)]

b, (x) = [2tanh(x)sech(x)(sech?(x) + tanh?(x))]

by (x) = 2tanh(x)sech(x)

a2 () = 2 [~ (4, ()]

a(x) = E[Stanh2 (x)sech?(x) — 4sech*(x)]
a,(x) = %[4sech2 (x)(2tanh?(x) — sech?(x))]
)= o (TR Lt
ay(x) = %[4sech2(x)(—2 + cosh(2x))sech?(x)]
ay(x) = %[4sech4(x)(—2 + cosh(2x))]

a,(x) = —2sech*(x)(2 — cosh(2x))

by(x) = %[— aa—; (b)) = B () = (x)]

3
b,(x) = %[— % (2tanh(x)sech(x)) + 12tanh?(x)sech®(x) — 4sech®(x)

+ 24tanh?(x)sech?(x) — 8sech® (x)]

1
b,(x) = 3 [10sech®(x) — 36tanh?(x)sech®(x) + 2tanh*(x)sech(x) + 12tanh?(x)sech®(x)
— 4sech®(x) + 24tanh?(x)sech3(x) — 8sech®(x)]
1
b,(x) = 5 [—2sech®(x) + 2tanh*(x)sech(x)]
1

b,(x) = 5 [2sech(x)(—sech*(x) + tanh*(x))]

b,(x) = %[Zsech(x) (tanh*(x) — sech*(x))]
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b,(x) = % [2sech(x)(tanh?(x) — sech?(x))]

%(cosh(Zx) -1) 1

cosh?(x) ~ cosh?(x)

N~

b,(x) = =|2sech(x)

[EnN

b,(x) = = [25ech3(x) (% cosh(2x) — %)]
b,(x) =

b, (x) = =[sech®(x)(3 — cosh(2x))]

[sech®(x)(cosh(2x) — 3)]

N RN RN

1
b,(x) = — 3 (3 — cosh(2x))sech3(x)
and so on

[o¢]

u(x,t) = Z A (O™ = ag + ayt + ayt? + -
u(x,t) =mZ=soech2 (x) + (4ctanh(x)sech?(x))t — (2sech*(x)(2 — cosh(2x)))t? + ---

v(x,t) = Z by (X)t™ = by + byt + byt? + -+

m=0
v (x,t) = 2sech(x) + (2tanh(x)sech(x))t —%(3 — cosh(2x))sech3(x)t? + -

that is closed to the exact solution:
u(x,t) = 2sech?(x —t) , v(x,t) = 2sech(x —t)
Problem 2 is solved in [24] by using ADM and its modification, but only the series solution, not the
exact solution was obtained.
4. Convergence Analysis of the Series Solution
In this section, the convergence analysis of the series solution for the non-linear systems of PDEs is
discussed. The sufficient requirement for convergence of the suggested modification is addressed. We
show that the series solution for the systems of PDEs is converge to the exact solution.
Definition 1 [20]

A Banach space is a complete, normed, Vector space.
All norms on a Vector space of finite dimensions are equivalent. Every finite-dimensional standard
space is a Banach space, over R or C.
Definition 2 [21]

Let X be a set and let f: x — x be a function that maps x into itself. Such a function is often called
an operator. A fixed point of f is an elementx € X, for which f(x) = «x.
Definition 3 [25]

Let (X,d) be a metric space. A mapping T:X — X is a contraction mapping, or contraction, if
there exists a constant ¢, with 0 < ¢ < 1, such that
d(T(x),T(y)) <cd(x,y),x,y€EX
Definition 4 [26]

Let (X, d) be a complete metric space. A mapping T: X — X is a nonlinear contraction mapping, or
nonlinear contraction, if there exists a constant ¢, with 0 < ¢ < 1, such that
d(T(x),T(y)) < c(d(x, y))d(x, v),x,y €X.
Theorem 5 (Banach's fixed-point theorem)
A contractive function T on a Banach space S has a Unique fixed point X" in R* [27].
Theorem 6 (Sufficient Condition for Convergence)
If X and Y are Banach spaces and N: X — Y is a contractive nonlinear mapping, that is
Yw,w* EX;INW)—=NWH ISyllw—w*l,0<y <1,
then, according to Banach's fixed-point theorem, N has a unique fixed-point U, that is N(u) = U.
Assume that the sequence generated by the suggested method can be written as
Wy, = N(Wyp_q), W1 = Xdw;,n =123, ...
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Suppose that W, = w, € B,.(w) where B.(w) = {w* € X || w* — w |I< r}, then we have
1wy, € B.(w)
it. limW, =w

n—oo

Proof

(i) By the inductive approach, for n = 1, we have
IW, —wlil=INWy) —NW) ISy llwyg—w I
Assumethat Wi —wl<yllw,_q —wl

<y lwp,—wl
<y lwpz—wl
<y liw,—wl

As in the induction hypothesis, then

I W, =wil=INWp_)) = NW) ISy lwpq —w ISy lwg —w i
Using (i), we have

I W, —wilISy* lwg —w IS y™ <r =W, € B.(w)

Because of | W, —w IS y™ | wy —w |l and

limy*=0,lim | W, —w =0

n—>oo n—-oo

that is

limWh = w

5. Conclusions

In this article, a new modification of the decomposition method is suggested to solve the non-

linear system. We obtained an exact analytical solution, where ADM or other modifications are used
to solved the same examples but cannot achieve an exact analytical solution. Moreover, u, in ADM
and its modification is uy, = f(x) + tg(x), versus uy = ag = f(x),a; = g(x) in MDM, which is the
main reason for simplifying the steps of solution. Moreover, in MDM, the nonlinear terms are easier to
compute than in ADM or its modifications. The convergence concept of the decomposition series was
thoroughly investigated to confirm the rapid convergence of the resulting series. Hence, this approach
is very efficient, with easy implementation and rapid convergence to the exact solutions.
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