
Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770
 DOI: 10.24996/ijs.2021.62.8.29

__
*Email: 110897@student.uotechnology.edu.iq

2759

A lightweight AES Algorithm Implementation for Secure IoT Environment

Meryam Saad Fadhil *, Alaa Kadhim Farhan, Mohammad Natiq Fadhil

Computer Sciences Department, University of Technology, Baghdad, Iraq

 Received: 2/9/2020 Accepted: 28/10/2020

Abstract
In recent years, the rapid development in the field of wireless technologies led to

the appearance of a new topic, known as the Internet of things (IoT). The IoT

applications can be found in various fields of our life, such as smart home, health

care, smart building, and etc. In all these applications, the data collected from the

real world are transmitted through the Internet; therefore, these data have become a

target of many attacks and hackers. Hence, a secure communication must be

provided to protect the transmitted data from unauthorized access. This paper

focuses on designing a secure IoT system to protect the sensing data. In this system,

the security is provided by the use of Lightweight AES encryption algorithm to

encrypt the data received from physical environment. The hardware used in this

proposal is the Raspberry Pi 3 model B and two types of sensors. The LAES

algorithm was embedded inside the Raspberry in order to protect the sensing data,

that come from sensors connected to the Raspberry Pi, before sending them through

the network. The analysis results show that the proposed IoT security system

consumes less time in encryption/decryption and has high throughput when

compared with others from related work. Its throughput is higher in about 19.24%

than the value reported for one system in the related studies.

Keywords: IoT systems, LAES, Raspberry Pi, Sensors, Lightweight cryptography

اءــة انترنت الاشيــة بيئـايـلحمة ـالمخفف SEAة ـيبيق خوارزمـتط

محمد ناطق فاضل, علاء كاظم فرحان*, مريم سعد فاضل

التكشهلهجية, بغجاد, العخاق الجامعة قدم علهم الحاسهب,
 الخلاصة

ظيهر الإلى ىأد في مجال التكشهلهجيات اللاسلكيةالحي حرل ، التطهر الدخيع في الدشهات الأخيخة
 الحياة مجالات في اصبحت مهجهدة إنتخنت الأشياءتطبيقات حيث (. IoTإنتخنت الأشياء) ىهع ججيج سهضه ب
تم يالبيانات التي ,البشاء الحكي وغيخىا. في جسيع ىحه التطبيقات ,يةالخعاية الرح ,سختلفة مثل السشدل الحكيال

من اليجسات ىجفا للعجيج تالي أصبحت، وبالنتخلال شبكة الإنتخ سيتم ارساليا جسعيا من العالم الحقيقي
اصبحت مدألة ججا من الهصهل غيخ السرخح بو البيانات ىحه تهفيخ اترال آمن لحساية والستدللين. لحلك

تهفيخ حيث لحساية بيانات الاستذعار. منالا انتخنت الاشياء تخكد ىحه الهرقة على ترسيم نظام .ميسة
من البيئة دتلسةخفيفة الهزن لتذفيخ البيانات الس AESتذفيخ ال استخجام خهارزمية من خلال يتم الأمان

من أجيدة نهعينو Bنسهذج Raspberry Pi 3 ىه سقتخحلأجيدة السدتخجمة في ىحا الالفعلية. ا

ISSN: 0067-2904

Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770

2760

الاستذعار أجيدة من أجل حساية بيانات Raspberryداخل LAESتم تزسين خهارزمية حيث الاستذعار.
السقتخح الامن IoTقبل إرساليا عبخ الذبكة. تظيخ نتائج التحليل أن نظام Raspberry Piالسترلة بـ

لجيو إنتاجية عالية عشج مقارنتو بغيخه من كحلك التذفيخ/فك التذفيخ و كل من عسلية يدتيلك وقتًا أقل في
 .الدابقةاسات الجر في أحج الأنظسة ٪ من42.91حهالي بأعلى حا الشظاملي الإنتاجيةحيث . الدابقة الأعسال

1. Introduction

 Recently, the rapid development in communications, computer science and wireless networking

technology has given rise to the growth of a new topic, known as the Internet of Things (IoT) [1, 2].

The IoT allows a connection between every object in the real world with the virtual world. This

connection can be provided using some technologies such as Wireless Sensor Networking (WSN),

Radio Frequency Identification (RFID), or merging between these technologies, machine-to-machine

interfacing (M2M), cloud servicing, etc. [1, 3, 4]. The IoT can be found in various applications of our

daily life such as smart home, health care, smart city, smart farming, smart factories and so on [5].

With the IoT systems, all the data collected from the real world are transmitted through the Internet;

therefore, these data have become a target of cyber-attacks and hackers [6]. Hence, a secure

communication must be provided to protect these transmitted data [7].

 To provide security to IoT systems, such as confidentiality, integrity and authentication, the

solution is to use an appropriate cryptographic algorithm [2, 8]. There are many cryptographic systems

used to provide security services, which are classified into symmetric and asymmetric types. But, most

of the traditional cryptosystems cannot be used for secure IoT environments, because the IoT works

with constrained devices that have limited battery, power, as well as memory. Hence, the design of

efficient and lightweight cryptographic techniques became a challenge to guarantee secure data

transmission in the IoT networks [1, 2]. The lightweight cryptography should fit the low energy,

computation and memory capabilities of cyber-physical systems. Also, it should provide an optimized

security/cost/performance trade-off [1].

 There are many researches about providing security to the IoT systems. Several lightweight

cryptography methods were proposed by researchers to be used in secure IoT sensors/devices to

protect data transferred and collected. In 2017, Usman et al. [8] proposed a lightweight encryption

algorithm named secure IoT (SIT). This algorithm is a symmetric block cipher based on mixture of

feistel and a uniform substitution -permutation network. It encrypts 64 bits plaintext at a time, so it

requires 64 bits for key. The 64 bits plaintext is divided into 4 segments, each of size 16 bits, and this

algorithm uses five rounds, so it requires five keys, each of size 16 bits; therefore, the 64 bits key is

processed using permutation and an f-function operations to construct five keys. The SIT operations

used in each round is swapping, bitwise XNOR with key, f-function and finally bitwise XOR

operation. The hardware implementation of this algorithm is done on a low cost 8 bit microcontroller.

In 2018, Chowdhury et al. [9] proposed modifications on the AES algorithm to make it lightweight

and applicable with IoT environment. Their system focuses on using 1D S-Box, which is generated

using GF (2
4
) instead of using the GF (2

8
) in generating the standard AES S-Box. From the

implementation results, this proposal is more efficient than the original AES by around 18.35%; the

energy consumption when using this proposal is less than that for the original AES and therefore it

applies to the IoT environment. In 2018, Tsai et al. [5] proposed the low-power consumption scheme

with high security, named the Secure Low Power Communication (SeLPC) method. In this method,

some modifications are made to AES algorithm; the first modification is decreasing the encryption

cycles of AES for reducing end-devices data encryption power. The second modification is using the

encryption key and D-Box update procedure (the Dynamic Box (D-Box) instead of S-Box in AES) to

enhance security level. Also, the simplification of AES encryption processing can reduce power

consumption. The analysis results showed that the SeLPC can avoid many attacks also minimized the

encryption power by up to 26.2% compared with the original AES. However, it was used with IoT

environments. In 2018, Hassan and Habeeb[10] suggested a method to build a secure web of

things system to manage and monitor the patient information. This proposal provides security to the

information collected from IoT sensors. The modified TSFS encryption algorithm was used to provide

security in this system. It achieves high efficiency with lower cost, and the time is not affected when

compared to other systems. The hardware devices used in this proposal are Arduino and Raspberry Pi,

with different types of sensors. Each microcontroller (Arduino) is connected to different types of

Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770

2761

sensors and, through the Arduino microcontroller, these sensors are connected to the Raspberry Pi

device to provide security and privacy to the sensors data. In 2018, Khalaf and Mohammed [11]

proposed two types of security service for an IoT smart home application; the first security service is

providing the confidentiality which is achieved by the encryption process on all the sensors data sent

to IoT server. The encryption was performed using AES-GCM or RSA-OAEP encryption algorithm.

The second security service in that work is the integrity, which is achieved by using SHA3-512

algorithm. The hardware devices used to implement the smart home application are Raspberry Pi 3

and four sensors. The evaluation results showed that their system takes a shorter average time of about

3ms when using AES-GCM algorithm, whereas the RSA-OAEP algorithm takes about 9ms.

Furthermore, the integrity service takes about 25% of encryption time. In 2019, Naif et al. [12]

proposed modifications on the AES algorithm to make it lightweight. This proposal uses the same

operations as the original AES, except for the MixColumns operation which is replaced by multi XOR

stages, shift-cycle operations, and SHA3-256. In that proposal, a new chaotic system (named JORN) is

used to generate chaos keys which are used in the encryption process and the calculation of the

number of shift cycles and of AES rounds. MLAES uses two S-Boxes, each of size 64 bits. At each

iteration, the S-Boxes are shifted by K1 to generate new S-Box values. In that proposal, 40 sensors

were used in implementing the MLAES algorithm. These sensors were grouped into 10 groups, each

group consisted of four different types of sensors controlled by Raspberry Pi of type B. From the

results, it was concluded that the MLAES decreases time consumption and CPU cycles when

compared with the original AES.

 In the present paper, the lightweight AES algorithm is used in providing security to IoT networks.

Lightweight AES (LAES) is a modification on AES algorithm layers, such as S-Box, Keys, and

Shifting values, to be based on different chaotic systems. The IoT hardware components used in this

work are Raspberry Pi device and sensors. The aim of this work is to protect IoT sensors data, such as

temperature, humidity, and flame fire sensors, by the encryption process using the LAES algorithm

before sending these data through the network.

2. IoT Architecture

 In order to build any IoT project, four basic components are required; these are sensors, processors,

gateways, and applications. Each of these tools must have its own characteristics in order to form a

useful IoT system [13]. According to the design of other architectures, there is not a consensus on the

number of layers for the IoT architecture. Different researches have proposed architectures for IoT

systems that are consisting of three, four, or five layers [14]. Several researchers proved that any IoT

architecture is consisting of the three main layers: Perception (sensing) layer, Network layer, and

Application Layer [4, 14]. The simple architecture of IoT system may consist of the following four

layers: sensing (Things (IoT devices)), network, service, and interface.

2.1. Sensors

 The sensors represent the front end devices and the key building blocks of the Internet of Things.

These sensors are also called "Things" of the system; their main goal is to collect data from its

physical environment. They should have unique identifiable devices with a unique IP address so that

they can be easily identifiable over a large network. In addition, they must be active in nature to be

able to collect real time data. These devices can work either on their own (autonomous in nature) or

made to work by the user. Examples of sensors are gas sensor, water quality sensor, moisture sensor

etc. [13, 15]. Each type of these sensors converts signals of physical parameters, temperature,

humidity, motion, etc., to digital or analog form that can be readable by the machines and humans [15,

16].

2.2. Processors

 In any IoT system, the processors represent the brain of the system. Their main function is to

process the collected sensing data to extract the valuable data from the enormous amount of raw data

collected. Processors mostly work on real-time basis and can be easily controlled by applications.

These are also responsible for securing the sensing data by performing encryption/decryption.

Embedded hardware devices, microcontroller etc. are the ones that can process the data because they

have processors within [13]. The most famous devices used in IoT systems are Arduino and Raspberry

Pi.

Arduino: Arduino is a microcontroller device that is easy to use. It is connected to a computer and

can run a single program at a time. Arduino is an open source platform, meaning that the hardware is

Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770

2762

reasonably priced and the software development is free [10]. Arduino boards are able to read analog

or digital input signals from different sensors and convert them into an output, such as activating a

motor, turning LED on/off, connecting to the cloud and many other actions depending on the system.

There are various types of Arduino devices, the most famous of which is the Arduino UNO [16, 17, 8].

Raspberry Pi: Raspberry Pi is a mini computer with an operating system. It can run multiple

programs at a time. One of the Linux option Debian, called Raspbian operating system, is a great

match for Raspberry Pi because it is free and open source, keeping the price of the platform low [10,

19]. Raspberry Pi is considered as the main component of the IoT concept. There are various

generations of Raspberry, such as Raspberry Pi Zero, Model A, Model B, Model B+, etc. [16].

2.3. Gateways
The processed data are sent to the proper location using gateways. Therefore, The gateways are

responsible for routing the data. In other words, the gateway helps in communication and provides

network connectivity to the data. The network connectivity is very important for any IoT system in

order to communicate. LAN, WAN, PAN etc. are examples of network gateways [13].

2.4. Applications
Applications form another end of an IoT system. They are essential for proper utilization of all

collected data. Applications are controlled by users and represent the delivery point of particular

services. Some examples of applications are: home automation apps, security systems, industrial

control hub, etc. [13].

3. IoT security

 Data security has become an essential requirement for various organizations. Different entities

communicate with each other through networks or the Internet. Thus, a secure communication must be

provided [18-22]. In recent years, the IoT played an important role in different fields of our life, due to

utilizing different connected devices that can sense, compute and exchange data through networks or

the Internet. Because of the sensitivity of applications in the IoT network, the security of the

transmitted data is very important, There are many encryption algorithms [2], but these algorithms

often delay the communications due to the additional operations used [23]. Therefore, to protect IoT

sensors data, a lightweight encryption algorithm became a requirement [24]. The design of lightweight

cryptosystem has become a great challenge that the designer needs to deal with the trade-off between

achieving robust security level with low cost and enhanced performance. Three factors are required for

implementing the lightweight cryptography: size, power consumption and speed (throughput/delay).

The power consumption is important with those devices operated with limited battery supplement.

Also, a high throughput is necessary for devices that transmit large data such as a camera or a sensor,

while a low delay is important for the real-time control processing such as a car-control system, etc.

[25]. There are many lightweight cryptography systems, such as PRESENT[26], CLEFIA[27],

KATAN[28], HEIGHT[27], SIMON/SPECK[29], TEA[2], TSFS[30] and many others. The

lightweight cryptography aims to provide enough security levels with optimum use of resources [10].

Some block cipher algorithms are summarized in Table-1.

Table 1- A Comparison between different lightweight block cipher algorithms

Algorithm Block size (bits)
Key size

(bits)
No. of rounds

Algorithm

design pattern

HIGHT[27] 64 128 32 GFN

Pickolo[27] 64 80/128 25/31 GFN

PRESENT[26] 64 80/128 31 SPN

DES[2] 64 56 16 Feistel

AES[12] 128 128/192/256 10/12/14 SPN

Clefia[27] 128 128/192/256 18/22/26 GFN

TEA[2] 64 128 64 Feistel

XTEA[2] 64 128 64 Feistel

NTSA[2] 64 128 64 Feistel

Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770

2763

There are different approaches to develop lightweight cryptography, such as modifying existing

algorithms, optimizing existing algorithms, or developing new algorithms with lightweight issues [27].

4. The Proposed IoT security method
 The main goal of this proposal is to use a lightweight, secure, and fast symmetric encryption

algorithm (LAES) in protecting IoT sensors data. The LAES algorithm represents a modification on

AES algorithm using chaotic systems. Due to the high compatibility between the chaotic systems and

cryptography, LAES algorithm depends on different chaotic systems in designing all its needed tools,

such as S-Box, keys, tables of permutations and shifting values. The LAES algorithm layers are

different from the original AES in the following stages: The Initial Permutation (IP) is used instead of

the ShiftRows and the dynamic Shift Rows is used instead of MixColumns. Two types of IP tables are

used in initial permutation operation, one for odd rounds and the other for even rounds. Also, the S-

Box used in SubBytes operation is generated depending on the 1D chaotic logistic map system

represented in equation (1):

xi+1= *xi*(1-xi) …………………………… (1)

where x0 is the initial state, i is the number of iterations, and is the system control parameter. The

value of xi+1 is a number between zero and one for all i while the value of the control parameter

belongs to the interval (0, 4) [31].

 The IP tables used in the permutation step of LAES algorithm are generated from the 2D chaotic

logistic map system represented in equations (2) and (3):

 xi+1 *xi (1- xi) + 1* yi
2
 ……………………………

yi+1 2 * yi (1- yi) + 2*(xi
 2
+ xi* yi) ….………………… (3)

The initial parameters, x, y (0,1) and the system have chaotic behaviours when the control

parameters have the following values [32]:

 2.75 < < 3.4, 2.7 < 2 < 3.45,
0.15 < 1 <0.21, 0.13< 2 < 0.15

 Finally, the keys used in the add round key operation are generated from the 3D chaotic logistic map

system shown in equations (4), (5) and (6).

xi+1 * xi *(1- xi)+ * yi
2
* xi + * zi

 3
 …..……..…

 yi+1 * yi *(1- yi)+ * zi
 2
 * yi + * xi

3
 …………..…

zi+1 *zi * (1- zi) + * xi
2
 * zi + * yi

 2
 …..……..…

The three initial parameters, x, y and z belong to (0,1) and the system has the chaotic behaviour when

the control parameters are [32, 33]:

3.53 < < 3.81, 0< < 0.022, 0 < < 0.015

Three types of chaotic keys are generated in the first for odd rounds, the second for even rounds, and

the third for initial round key. Algorithm 1 represents the generation of all these tools of LAES

encryption algorithm.

Algorithm 1: Generating IoT Security system tools

Input: 1D logistic map initial conditions (x0,)

Output: S-Box (16*16), IPO(4*4),IPE(4*4), keys for odd rounds, keys for even rounds, keys for

initial rounds, shifting values array of size (40).

Begin
Step1: Read initial values.

Step2: Generate chaotic sequence using 1D logistic map and save this sequence of numbers in x //

where x is an array of floating numbers.

Step3: Apply some processes on x array to construct S-Box of size (16*16).

Step4: Send x array generated in step2 to the 2D logistic map system.

Step5: Make some processes on x array to be in the range of initial conditions and control parameters

of 2D logistic map system.

Step6: Use the initial values generated in step5 to generate two chaotic sequences of numbers x and y

using 2D logistic map system.

Step7: Apply some processes on x and y to generate two IP tables (IPO and IPE), each of size 4*4.

Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770

2764

Step8: Send the x and y sequences generated in step6 to the 3D logistic map system.

Step9: Make some processes on x and y sequences to be in the range of initial conditions and control

parameters of 3D logistic map.

Step10: Use the initial values generated in step9 to generate three chaotic sequences: x, y and z using

3D logistic map system.

Step11: Apply some processes on x, y, and z sequences to generate three types of keys (odd rounds’

keys, even rounds’ keys, and initial round key) and generate the array of shifting values.

End

 Therefore, each round in LAES uses the operations SubBytes, Initial Permutation, Dynamic

ShiftRows, and Add Round Key, as illustrated in Figure-1.

 Figure 1- LAES general structure

 Odd rounds use an IP table that is different from the IP for even rounds, to increase the diffusion. In

the, decryption process the same operations are used but in the reverse order. It uses the operations:

Inverse Dynamic ShiftRows, Inverse Initial Permutation, Inverse SubBytes, and Add Round Key.

 This proposal is responsible for securing sensors data which are sent through the network. These

sensors are used to sense the temperature and humidity, detect if there is a fire or not from using the

flame sensor, and send all these data through the network to the server. Hence, these data have

important roles in the server's decisions; therefore, the LAES encryption algorithm is used to protect

these sensors data from unauthorized access and hackers. As a case study, a Raspberry Pi device and

different types of sensors are used to monitor temperature and humidity degrees and check if there is a

fire or not in the room. In this proposal, the temperature and humidity degrees were measured by the

use of DHT11 sensor type, while the flame fire sensor is also used to check if there is fire or not.

These sensors data will be sent through the network to the server. These sensors data are very

important in the server's decisions. If there is an attacker who knows these data or can change them,

this leads to different server's decisions and will make wrong/error in the system. Therefore, these

sensors data will be protected through the encryption algorithm (LAES) embedded inside the

Raspberry Pi device. This IoT system, for example, can be used in industrial factories, nuclear reactors,

Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770

2765

or smart homes to monitor the changes in the temperature and humidity degrees. The first step in the

IoT system is to collect the sensing data from sensors that are connected with the Raspberry Pi device.

In this proposal, two sensor types were used. These sensors were controlled by Raspberry Pi 3 model

B. The sensors deliver numerical data to the Raspberry. In this work, the Raspberry Pi reads data from

sensors every five seconds to observe the changes in the environment. After that, the encryption

process, using LAES algorithm, will be performed to protect these sensing data. Finally, the encrypted

data on the Raspberry Pi will be sent through wireless connection by the socket (IP address) to the

server side, as shown in Figure-2. Table- 2 presents the encryption protocol on the Raspberry side.

Figure 2- Implementation of the proposed encryption algorithm

 In the server side, and after receiving data, the decryption process, using the LAES algorithm, will

be performed and the sensors data will be extracted. Table- 3 presents the decryption protocol on the

server side. The server used in this proposal is a personal computer that is running windows 10 as an

operating system.
Table 2- Encryption Protocol on the Raspberry Side.

Encryption Protocol on the Raspberry Side

1- Start

2- Initialize sensors, raspberry Pi, and network connection.

3- Initialize the chaotic systems.

4- Use chaotic systems to construct LAES tools.

5- Collect sensors data.

6- Apply the LAES algorithm on the data collected from sensors.

7- Send the encrypted data to the server side using socket protocol.

8- If the connection is closed then go to End

Else

 Go to step5 to collect new data from the environment.

End

Table 3- Decryption Protocol on the Server Side.

Decryption Protocol on the Server Side

1- Start

2- Initialize the chaotic systems and network connection.

3- Use chaotic systems to construct LAES tools.

4- Read received data from Raspberry Pi.

5- Apply the LAES algorithm on the data packet received, to decrypt these data.

6- Read the received data after the decryption process and print these data on the screen. If these

data have unexpected result then makes a simple alert.

7- If the connection is closed then go to End

 else

Go to step4 to receive new data from Raspberry Pi.

Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770

2766

End

5. Results and Analysis

 The LAES uses the 1D chaotic logistic map to generate an S-Box, that is difficult to guess, to be

used in the substitution process. Table- 4 presents the S-Box generated from x0 =0.201 and =3.71.

In this proposal, the construction of both the S-Box and its inverse takes only 59.75 milliseconds as

average time. The new S-Box is evaluated using S-Box tests criteria, including avalanche, balance,

completeness, strict avalanche, and invertibility, as explained bellow.

 Balanced Criteria (BC)

One of the essential S-Box test criteria is to test the distribution of the numbers of 0s and 1s in the

output sequences. This distribution should be balanced [34]. Through performing this test, the new S-

Box is balanced because it has an equal or near to equal numbers of 0s and 1s. For example, for the

word "Computer", after replacement with new data from the S-Box, the output from the S-Box has

equal numbers of ones and zeros.

Table 4- S-Box values if x0 =0.201 and =3.71

F E D C B A 9 8 7 6 5 4 3 2 1 0

4C 0B AA 5A FD D1 BE 86 49 A1 AC 1F 9B 97 10 BA 0

1E 02 68 DC 85 F1 F4 D2 00 22 7A 1D 95 B4 20 13 1

AE 03 DB EF AF DF 36 34 0A 53 12 A9 3E 67 9F 04 2

4A 26 0E F6 C7 8D 0D 6F 6B CA 76 E9 E7 2E 3A EE 3

5B 75 83 14 93 3F F8 2D 99 BD 6A BC CF 61 4E AB 4

B0 9D 0C CE E4 9A C6 CD D9 A5 92 3D 09 C3 58 9C 5

51 EB 80 42 A2 D7 E1 33 40 50 73 8B FF 1A A8 6D 6

B6 69 72 BB 28 84 30 55 7B B1 79 D5 37 A7 C8 21 7

23 88 E8 8F FB 41 1B D3 2C 0F B8 A0 CB 39 FA 59 8

06 57 5F C4 D8 F0 2A AD E2 B5 35 F7 05 8A EA 89 9

A3 3C A4 DA 16 C9 01 31 C1 96 CC C5 1C 47 D6 07 A

7F 2B 54 25 F5 71 B3 64 56 2F D0 DE 32 11 4B 98 B

8E 5C 91 29 E6 6C 65 F2 63 C2 FC 52 5E B7 78 45 C

27 FE 19 82 7C 18 66 70 DD ED 60 77 B9 E0 7D 9E D

E5 BF D4 62 3B 17 15 81 46 F3 38 5D 6E 4D 87 44 E

B2 4F EC 48 24 08 C0 74 94 F9 A6 7E 43 8C 90 E3 F

 The Completeness Criteria (CC)

 This test means that every output bit depends on all input bits. Therefore, if there is one pair of

plaintext vectors (zi and zi+1), where zi and zi+1 are different in only one bit, then the outputs from zi and

zi+1 are different at least in a bit k [35]. Each bit of the proposed S-Box depends on the initial values

(x0 and) of the 1D logistic map; therefore, if there are two different values of x0 (they differ in only

one digit after the decimal point), then the S-Boxes generated by the first and the second x0 are

different from each other. This property is one of the important features of using chaos. It means that a

slight change in initial conditions leads to a massive change in chaotic outputs. For example, the S-

Box generated by x0 = 0.201 and =3.71 and the S-Box generated by x0 = 0.0201 and =3.71

are different from each other. Therefore, the S-Box in LAES satisfies the completeness criteria.

 Avalanche Criteria (AC)
 The avalanche is the essential criterion in block ciphers, which refers to how a simple change in the

input bits leads to a large (avalanche) change in the output sequence; for example, changing one bit

from zero to one or vice versa leads to avalanche change in output. This criterion is a desirable feature

for block cipher methods because its result is related to the computing of diffusion. The avalanche

value should be within the range [0, 1]. The optimal value for avalanche effect is 0.5, which denotes

that the avalanche criterion is satisfied [35]. Equation (7) is used to calculate AC.

AC= Number of Flipped Bits in Cipher Text…………..…..……. (7)

 Number of All Bits in Cipher Text

Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770

2767

As an example, when one bit of letter "L" is changed to become "M" and the S-Box (L) is different

from the S-Box (M) in five bits from the original eight bits; therefore, the AC is equal to 0.625 which

means that it is within the optimal range.

 Strict Avalanche Criteria (SAC)

The S-Box satisfies the strict avalanche criterion if the change of one bit in the input changes half of

the output bits. In other words, SAC is achieved if both the completeness and avalanche criteria were

satisfied [36]. The S-Box in this paper satisfies these criterions, so the SAC is also achieved.

 Invertability
This test simply ensures that each input value to the S-Box is mapped into a unique output value,

forcing the S-Box to be a one-to-one function. This test is necessary to enable the correct recovery

(back substitution) which substitutes the values via the Inverse S-Box [36]. The S-box satisfies the

invertability feature, if S-Box (L1) = S-Box (L2) such that L1= L2 for all inputs L1 and L2 [35].

Let L1= "a" and L2 = "a", i.e. L1=L2, so the output, in hexadecimal, of S-Box (L1) is "A8" and

of S-Box (L2) is "A8". Now, using the S-Box inverse on "A8", the output is " 61" in hexadecimal,

which is after that converted to decimal to become "97", which corresponds to char (97) = a.

Therefore, the S-Box is invertible due to its ability to extract the original data.

Then, the LAES algorithm is implemented on Raspberry Pi to secure sensors data. The Raspberry Pi

collects and aggregates the sensors data, then applies the encryption using LAES algorithm to generate

the encrypted data. After that, these encrypted data are sent through the network to the server side. On

the server side, the decryption process, using LAES, is performed to extract the original sensors data.

The average time of encryption using LAES algorithm was measured by the timer of Netbeans IDE for

java programming. Also, the throughput of the LAES encryption algorithm was measured using

equation (8) bellow.

Throughput = Size of Text / Encryption Time……………………………...……. (8)

The LAES algorithm has high throughput and less time in encrypting sensors data on

Raspberry Pi, when compared with related work. For example, LAES can encrypt text of size of 25

byte in only 1.9285 msec and gives throughput of 12.96 byte/msec, while the original AES takes 2.910

msec and gives throughput of 8.5911 byte/msec. Also, the improvement reported in [10] yields time of

2.30 msec and throughput of 10.869 byte/msec in encrypting the same text size. Table-5 and Figure-3

show this comparison. Also, the total time required for reading data from sensors, encrypting them on

raspberry Pi, and sending them to the server was measured. The total time for these operations is only

2.73 seconds.

Table 5- Time of LAES on Raspberry Pi in comparison with related work

Text size

(byte)

Original

AES

(msec)

Throughput

(Byte/msec)

Modified

LAES[12]

(msec)

Throughput

(Byte/msec)

The

Proposed

LAES

(msec)

Throughput

(Byte/msec)

10 2.908 3.4388 2.19 3.4482 1.021 9.794

25 2.910 8.5911 2.30 10.869 1.9285 12.96

70 3.123 22.414 2.45 28.571 2.307 30.34

Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770

2768

0

0.5

1

1.5

2

2.5

3

3.5

10 bytes
25 bytes

70 bytes

Original AES

MAES[12]

Proposed LAES
Figure 3- Encryption time comparison with related work

 In order to test randomness of the ciphertext, the NIST test suite was used, which consists of 16

statistical measurements. They can be used to test the randomness of binary sequences, such as

ciphertext or pseudorandom number generators in cryptography. In each of these tests, a p-value is

computed, which can be used to discover if the test is passed or not. If the p-value is greater than or

equal to 0.01, then the sequence passes the test. Otherwise, it fails [36]. Table (6) presents the NIST

statistical test results for the LAES algorithm. It shows that LAES algorithm passes all the randomness

tests and that all these testing results are near to equal one.

Table 6- The results of NIST tests for the proposed LAES

NIST statistical test Results

1- Block Frequency Test Pass

2- Frequency(Monobit) Test Pass

3- FFT Test Pass

4- Approximate Entropy Pass

5- Cumulative Sums Test Pass

6- Serial Test Pass

7- Runs Test Pass

8- Longest Runs of One's Test Pass

9- Overlapping Template of all One's Test Pass

10- Non- Overlapping Template Test Pass

11- Linear Complexity Test Pass

12- Matrix Rank Test Pass

13- Lempel -ZIV Compression Test Pass

14- Random Excursions Pass

15- Random Excursions Variant Pass

16- Universal Statistical Pass

 The Raspberry Pi CPU status and the memory used during the encryption process are also

monitored; Table (7) presents this information. From these results, the LAES algorithm consumes

26.0% of memory size and 1.2% of CPU load of raspberry Pi. It also keeps CPU temperature in a

normal state during encrypting sensors data and sending it to the server side.

Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770

2769

Table 7- Raspberry Pi status during the encryption process

CPU and Memory

usage for LAES
Raspberry Pi status during running LAES algorithm

CPU usage = 1.2%

Memory used =240MB

(26.0%)

Swap Memory CPU

Total =100.0 MB

Used =17.2 MB

Total RAM = 926 MB

Total used =722 MB

Buffers =11.6 MB

Cache = 155MB

Temp = 48.29 C

CPU average =21.9%

Load average =0.27

6. Conclusions
 In this paper, the LAES algorithm was used to secure IoT sensors data. The design of the LAES

algorithm based on multi chaotic systems is a complicated process. Therefore, a slight change in the

chaotic initial condition leads to a big change in the output, thus bringing a high level of security. The

design of S-Box, IPs, dynamic shift row values, and keys depend on each other, so a small change in

the chaos initial conditions leads to a huge change in the design of the S-Box, IPs, values used in

dynamic shift rows, and encryption keys in each round of LAES algorithm. The results show that the

LAES is faster than the original AES and the algorithm given in a related work. Besides, it also passes

the NIST statistical tests. From the implementation on the hardware, the CPU used for this algorithm is

only 1.2% and the use of memory is only 26%.

References

1. O. Jallouli, 2017. ‖ Chaos-based security under real-time and energy constraints for the Internet of

Things,‖ Thesis, Signal and Image processing, Universite de Nantes, English, tel-01633910

2. S. Rajesh,V. Paul,V. G. Menon, and M. R. Khosravi 2019. ―A Secure and Efficient Lightweight

Symmetric Encryption Scheme for Transfer of Text Files between Embedded IoT Devices,‖

symmetry mdpi, 11(2).

3. M. B. Shemaili, C. Y. Yeun, K. Mubarak, and M. J. Zemerly 2012‖ A New Lightweight Hybrid

Cryptographic Algorithm for the Internet of Things,‖ The 7th International Conference for

Internet Technology and Secure Transactions (ICITST), IEEE.

4. J. R. Naif 2019. ―Design and Implementation of Secure IoT for Emergency Response System

Using Wireless Sensor Network and Chaotic,‖ Dissertation.

5. K.L. Tsai, Y.L. Huang, F.Y. Leu, I. You, Y.L. Huang, and C.H. Tsai 2018. ―AES-128 Based

Secure Low Power Communication for LoRaWAN IoT Environments,‖IEEE Access, Vol. 6.

6. NEC,‖Lightweight Cryptography Applicable to Various IoT Devices 2017.‖ NEC Technical

Journal, 12(1).

7. M. Tausif, J. Ferzund, S. Jabbar, and R. Shahzadi 2017.‖ Towards Designing Efficient

Lightweight Ciphers for Internet of Things,‖ KSII Tranactions on Internet and Information

Systems, 11(8).

8. M. Usman, I. Ahmed, M.I. Aslam, S. Khan, and U. A. Shah 2017.‖ SIT: A Lightweight

Encryption Algorithm for Secure Internet of Things, ‖International Journal of Advanced

Computer Science and Applications (IJACSA), 8(1).

9. A. R. Chowdhury, J. Mahmud, A. R. M. Kamal, and M. A. Hamid 2018. ―MAES: Modified

Advanced Encryption Standard for Resource Constraint Environments,‖IEEE.

10. S. Habeeb and R. F. Hassan 2018. ―Build Secure Web of Things system to Manage Patient

information Monitoring System,‖ Iraqi Journal of Information Technology, 9(1).

11. R. H. Khalaf and A. H. Mohammed 2018. ―Confidentiality and Integrity of Sensing Data

Transmission in IoT Application,‖ International Journal of Engineering & Technology, 7: 240-

245.

12. J. R. Naif, G.H. A. Majeed, and A. K. Farhan 2019.― Secure IOT System Based on Chaos-

Modified Lightweight AES, ‖ International Conference on Advanced Science and Engineering

(ICOASE), 2019.

13. Sukanya 2015. ―A walk through Internet of Things (IoT) basics,‖ opentechdiary.

https://opentechdiary.wordpress.com/2015/07/16/a-walk-through-internet-of-things-iot-basics-

part-2/

14. J. S. F. Hernandez 2018. ―A Comparison of Lightweight Ciphers meeting NIST Lightweight

https://opentechdiary.wordpress.com/2015/07/16/a-walk-through-internet-of-things-iot-basics-part-2/
https://opentechdiary.wordpress.com/2015/07/16/a-walk-through-internet-of-things-iot-basics-part-2/

Fadhil et al. Iraqi Journal of Science, 2021, Vol. 62, No. 8, pp: 2759-2770

2770

Cryptography Requirements to the Advanced Encryption Standard,‖ Thesis.

15. V. Bhuvaneswari and R. Porkodi 2014. ―The Internet of Things (IoT) Applications and

Communication Enabling Technology Standards: An Overview,‖ International Conference on

Intelligent Computing Applications, IEEE.

16. R. H. Khalaf 2019. ―Secure Mechanisms for Smart Home IoT Application,‖ Thesis.

17. Arduino Tutorials point 2016. ‖ ©Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

18. G. Mahalakshmi and M. Vigneshwaran 2017 ―IOT Based Home Automation Using Arduino,‖

International Journal of Engineering and Advanced Research Technology (IJEART)ISSN: 2454-

9290, 3(8), August,2017.

19. M. Saari, A. Muzaffar bin Baharudin, and S. Hyrynsalmi 2017 ―Survey of Prototyping Solutions

Utilizing Raspberry Pi,‖ MIPRO/CTS.

20. K. Farhan, G.H. A. Majeed, and R.S. Ali 2017. ―Enhancement CAST Block Algorithm to

Encrypt Big Data,‖ Annual Conference on New Trends in Information & Communications

Technology Applications, IEEE, pp. 80-85.

21. K. Farhan and M.A. A. Ali 2017. ―Database Protection System Depend on Modified Hash

Function,‖ In Conference of Cihan University-Erbil on Communication Engineering and

Computer Science.

22. K. Farhan and S. Khalaf 2015. ―New Approach for Security Chatting in Real Time,‖

International Journal of Emerging Trends &Technology in Computer Science (IJETTCS), 4(3).

A. Ahmad 2018 ―A New Security Method for the Internet of Things Based on Ciphering and

Deciphering Algorithms,‖ Kirkuk University Journal/Scientific Studies (KUJSS), 13(3).

23. S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park 2017 ―Advanced lightweight encryption

algorithms for IoT devices: survey, challenges and solutions,‖Springer -Verlag Berlin Heidelberg.

24. O. Toshihiko 2017. ―Lightweight Cryptography Applicable to Various IoT Devices,‖ NEC

Technical Journal, 12(1),Special Issue on IoT That Supports Digital Businesses.

25. L. Dalmasso, F. Bruguier, P. Benoit, and L. Torres, 2019. ―Evaluation of SPN-Basd Lightweight

Crypto-Ciphers, ‖IEEE Access, Vol. 7.

26. C.G. Thorat and V.S. Inamdar 2018. ―Implementation of new hybrid lightweight cryptosystem,‖

Elsevier, Applied Computing and Informatics.

27. C.D. Canniere, O. Dunkelman, and M. Knezevic 2009. ―KATAN and KTANTAN—A family of

small and efficient hardware-oriented block ciphers,‖ in: Cryptographic Hardware and

Embedded Systems, CHES, Springer, LNCS, pp. 272–288.

28. R. Beaulieu, S. T. Clark, S. Douglas, S. Weeks, B. Smith, and J. Wingers 2013. ―TheSIMON and

speck families of lightweight block ciphers,‖ in: 52nd ACM/EDAC/IEEE Design Automation

Conference (DAC),San Francisco, pp. 1–6.

29. S. Habeeb and R. F. Hassan 2018. ―Sensors data encryption using TSFS Algorithm, ‖ Journal of

Madent Alelem College, 10(1).

30. Q. Lu,C. Zhu and G. Wang 2019 ."A Novel S-Box Design Algorithm Based on a New Compound

Chaotic System,"mdpi, entropy, 21.

31. K. Farhan and H. Emad 2017. ― Mouse Movement with 3D Chaotic Logistic Maps to Generate

Random Numbers, ‖ Diyala Journal for Pure Sciences, 13(3).

32. M. B. Hossain, M. T. Rahman , A B M S. Rahman, and S. Islam 2014 .‖ a new approach of image

encryption using 3D Chaotic map to enhance security of multimedia component‖, 3
rd

International Conference on informatics ,electronics and vision ,IEEE.

33. Maram K and J M Gnanasekar 2016." Evaluation of Key Dependent S-Box Based Data Security

Algorithm using Hamming Distance and Balanced Output," TEM Journal, 5(1).

34. H. Saeed AL-Wattar 2019." A Review of Block Cipher’s S-Boxes Tests Criteria," Iraqi Journal

of Statistical Science First Student Conference, 29: 1- 14.

35. N. B. Abdulwahed 2013." Chaos-Based Advanced Encryption Standard," Thesis, King Abdullah

University of Science and Technology.

36. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D.

Banks, A. Heckert, J. Dray, and SanVo 2000. ―A Statistical Test Suite for Random and

Pseudorandom Number Generators for Cryptographic Application, ‖ NIST Special

Publication 800-22.

