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Abstract

Let G be a connected graph with vertices set V = V(G) and edges set E = E(G).
The ordinary distance between any two vertices of V(G) is a mapping d fromV x V
into a nonnegative integer number such that d(v,u) is the length of a shortest
(v — u) — path. The maximum distance between two subsets S and S of V(G) is the
maximum distance between any two vertices v and u such that v belong to § and u
belong to S. In this paper, we take a special case of maximum distance when S
consists of one vertex and S consists of (n — 1) vertices, n = 3. This distance is
defined by:

Apax(,S) = max{d(v,u):u € S},|S|=n—-1,3<n<p,veV(G),vés,
where p is the order of a graph G.

In this paper, we defined M, — polynomials based on the maximum distance
between a vertex v in V(G) and a subset S that has (n — 1) —vertices of a vertex set
of G and M,, — index. Also, we find M, —polynomials for some special graphs, such
as: complete, complete bipartite, star, wheel, and fan graphs, in addition to M, —
polynomials of path, cycle, and Jahangir graphs. Then we determine the indices of
these distances.

Keywords: max—n—distance, M,, —Polynomial , M,, —index .
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1. Introduction
In 1999, Dankelmann et al. defined the distance between two subsets of vertices in a connected
graph G, as follows:
The minimum distance from U to V is:
Admin(U, V) =min{dw,v):ue€eU,veV},
the average distance from U to V is:
1
davg w,v) = WZuEU JVEV d(u,v), and
the maximum distance from U to V' is:
Admax (U, V) =max {d(u,v):uelU,veV},
where U and V' are not necessarily distinct subsets of vertices of G , and d(u, v) is the number of edges
in a shortest path between u and v [1] .
For metric axiom (2) for the maximum distance from U to V, we note that d,,,,(U,V) =0 if
U=V ={w}; thus for U=V and |U| or |V| =2, this implies that d,,.,(U,V) > 0. Therefore,
axiom (2) of the metric space does not in this case hold.
The literature is rich in papers on determining polynomials that depend on the minimum distance
between a vertex v and a subset of vertices of G consisting of (n — 1) — vertices for many graphs and
operations defined in graphs (see [ 2,3]). Also, there are many recent studies on other types of
distances for some graphs (see ([4,5,6,7,8,9,10,11]). For additional information about the applications
for some types of these distances, see [12,13,14], and about other applications see [15,16].
We assume that all graphs G in this paper are simple, undirected, and connected [17]. We define the
max — n — distance in G as the maximum distance from a singleton v, v € V(G) to an (n — 1) —subset
S, S € V(G), such that v does not belong to S, as follows:
Amax(,S) = max{d(v,u) :u € S},|S|=n—-1,2 <n < p,inwhichp is the order of agraph G.
It is clear that, for any vertex v and for any subset S of V(G ), we have: d,,,,(v,S) = 1. This means
that the axiom (2) of metric space does not hold. If the vertex v dominates all vertices S, then
Amax(,S) = 1.
When n = 2, the ordinary distance between two vertices of V(G ) can be obtained [17]. Therefore, we
let n > 3. The M,, —eccentricity of a vertex v is also the maximum distance between v and a set S of
(n — 1)vertices. This means that:
emax(v' n) = maxg cv(G) {dmax(v: S) } )
|S|=n—1
and the M,, —radius and the M,, — diameter of G with respect to this distance ( max — n —distance),
respectively, are defined by:
radyax (G, 1) = Tinax (G, n) = Minyey{€max (v, 1)}
and
diamyay (G, 1) = 8y (G, 1) = maxyey{€max (v, M)} -
The M,-index of a graph G of order p, where, 3 < n < p , is the sum of max — n — distances of all
pairs (v,S)inG :
M, (G) = ZVEV—S dmax (17, S)'
Scv

The Mn-polynamial of a graph G of order p is denoted by M,, (G; x) and defined by :
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My (G; %) = 3omex(M) ¢ (G, k)xk

where m = mm{dmax(v S)veV-S5S5ScV} and C,(G, k) is the number of pairs (v,S),S <
V(G),|S| =n—1,3 <n <p, such that d,,,,,(v,S) =k , for each m < k < 6,,,4,(G,n). It is clear
that the M,,- index of any connected graph G can be obtained from the M,,-polynomial, as follows :

My (6) = =M (G5 )=y = T ™™ kCo (G, k) .

If 2, (v) represents the number of pairs (v, S) such that d, ., (v, S) = k, then

Cn(G k) = ZUEV(G) L (V) .

Properties 1.1: Forall 3 < n < p, we have:

d
a. Cn(G, 1) = Xwver( G)( egv)

1)
b. Zome<™ ¢, (6,k) = p(P7Y).

C. Omax(G,n) =6, Where 6 is the diameter of ordinary distance of G.

Proof

a. Since the number of vertices that are lying at a distance one from the vertex v € V(G) is equal to
the degree of v, deg v, and there is no vertex lying at a distance less than one to v, then

d
A (w) = egv (de}gv) (n o 1) (deg 17)
d
Therefore, C,(6,1) = Zveve) 1 (¥) = Zwevie (5,0
b. Let C,(v, G, k) be the number of pairs (v,5) ,S € V(G),IS|=n—1,3<n<p, v&S,suchthat
Amax(,S) =k ,foreach 1 < k < 6,,4,(G,n) then
Cn(G k) = Yvev(c) Cn(v, G, k) , SO
kaax(G ™ n(G k) = Zvev(a)Zk’"“"(G ™ Ch(v,G, k) = Zvev(c)(z:i) = P(ij .
c. By the definition of the diameter of a graph G with respect to the max- n distance, we have
Omax (G, ) = max{d,qox(v,S):v €V(G),v & S,S cV(G),|S|=n—-1}
= max{maxd(v,u):v € V(G),u € S}
=max{d(v,u):v,ueV(G)} =46
Example (1): Let K;, be a complete graph of order , p = 3, then
M, (Kyix) =p(P-)x ,where |S|=n—1,0#ScV(K,) ,n>3.
2. Main Results
2.1 M,, —Polynomials of some special graphs which have a diameter equal to two
We find the M,,—Polynomials for some special graphs which have a diameter equal to two, such as
complete bipartite, star, wheel, and fan graphs.
Theorem 2.1.1: Forallp = 4, p = p; + p, , We have:

MoKy 1) = [P1(22) + 2o (2 + [PCE) = pa(22) = pa 22

Proof : From property (1), we have

Cr(Kpypy 1) = 22 ([F2) + 220
Since diam(K,_ p,) =2, then
n( P1,P2’ 2) p(n—i) Cn( P1,D2’ 1) (by property 2) .

=p(®7)) - p:(;72) —p2(P,), where = p, +p, .
Since the star graph S,, is a special case of complete bipartite graph K, ; , then

Mp(Sp ;) = (P D)x + (p — 1)(P2H)x?, where = p; + 1.
By the same method, we obtain the M, —Polynomials of wheel W, and fan F, graphs .
Theorem 2.1.2: For p = 5, we have

1 Ma(Fy i) = (07 + (0 - D(2 )b+ 0 - DICT - (21
2. M, (Wy i) = (1) 4~ (7 e+ = DIED - (7 e

Proof : Obvious.
Proposition 2.1.3 : The M,,— index of G has a diameter equal to two, for all n > 3, that is

- d .
M,(G) = Zp(z_i) — Svver(a) (ne;gli)’ where p is order of G.
Proof
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Since § = 2, then from properties 1.1, (a) and (b), we obtain the proposition 2.1.3.
Corollary 2.1.4: For all n > 3, we have :

1. M ( plpz) = ZP(p ) p1 (pzl) Pz(n 1) wherep =p; +pp; =2,i =1,2.

2. My(Sp)=@p—-1D().p=4

3. My(Wp) = 2p - D) - -D(,,)p=4

4 Ma(B) = @p— DD - - D(, ) p = 5.

Proof:

1. Since degv = py, when v € V, and degv = p,, when v € V;, where V(K), ) =V, UV, , then
from Proposition 2.1.3 , we obtain what is required.

2. Sincedegv =1,whenv € V(Sp) — {center vertex} and degv = p — 1, when v is center vertex
of S,,, then from Proposition 2.1.3 , we obtain

Mn(Sp) = 2~ 1311 p = 4

3. Since degv =3, when v € V(Wp) — {center vertex}, and degv =p — 1, when v is center
vertex of 14, then from Proposition 2.1.3 , we have

Mo (Wp) = (2p — 1)(2:1 —(- 1)(nil)’ p=4

4. Since degv = 2, when v € V(Fp) — {center vertex} and degv = p — 1, when v is center vertex
of F,, then from Proposition 2.1.3 , we get

M, (E,) = 2p - 1)(5:1 -~ 1)(7131)' p=5.

2.2. M,—Polynomials of some other Special Graphs:

In this section, we shall find the M,, —Polynomials of a cycle C, and a path B, graphs and find the
indices of the maximum distance of them.

Theorem 2.2.1: Let C,, be a cycle graph of order p, p = 6. Then for all 3 < n < p, we have

Ma(Gy 1) = p(,2 1)x+pz“ (%) - ()]

—z)xz ;if piseven,
(2D - (ﬁ:i)]xpT_l ;if p is odd.
Proof: We have from property (1) that Cn(cp ,1) = p(n:)-

To find Cn(Cp ,k) forall2 <k < EJ , let S be a subset of vertices of V(C,) that has length (n — 1)
and let U = {uj41 ,Uiz2 o »Ujsk—1,Ui—1,Ui—2, - ,Ui—k+1} then the cardinality of U is 2k — 2.
Now, if p is an odd number, then we have three cases:

Casel :S = {ui+k}U51, 0+ Sl cU.

Casell :S = {ui_k} V) Sl ,@ * 51 cU.

Case Il :S = {ujyp , ui—}US;, S € U.

Then from these cases, we obtain:

L) =322, (2) (272) = () - (D), 1<i<p.
Since C(Cp . k) = Toeve, )Ak(v) , then we have:

Ma(Gy 1) = p(,2 ) + P ELLI(2%) - (2t

If p is an even number, then we get the same coefficient Cn(Cp ,k), and when p is an odd for all
2<k< EJ —landk = g, then u; ., = u;_g. Thus, we have:
e(w)=P2) 1<i<p.
2

This completes the proof
Corollary 2.2.2: Forall 3 <n < p,p = 6, we have :

(6) = p(,2) + PR, K{(25) - ()

+p ng {(i_z ;if pis even,
-1y _ (P23 if pis odd.
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Theorem 2.2.3 : Let P, be a path graph of order p, p = 5. Then forall 3 <n < p, we have:
Mn(By;x) = (p = 2)(,2)x + Zhey Cu(By k)xk where

Ca(Py 1) = (P2N(2) - (B2)} + (55 2<k<|Y,
n\‘p> 1 n-1 (pzl) lJ+1<k<P—1
Pm“““mwmww%ﬂ=@—mug+nwa-@ 2)(,2,).forall n > 3., by proerty

(2).
Now, to find C,(B, k) forall 2 < k < p — 1, let S be a subset of vertices of V(P,) that has length
n — 1. Then, there are two cases:

Casel :Forall 2<k < EJ , then there are two subcases:

a. If S ={ujxk}US;, where @S, €S, U{ujzq1,, Uisx—1} S2 = {uq,...,u;_1}, such that
S, # @ wheni =1, then

M) = (9, 1<i<k.

By symmetry, we have A, (v;) = Ak(vp_iﬂ) 1<i<k.

b. If S={ujr,u;_}YUS;, where S is required to contain at least one of {u;,,u;_x} and

S3={ul k+1s > ul 1,ul+1,.. ul+k 1} k+1SlSp_k,|S3|=2k_2,then
2k-2 2k— 2
2w = T (5) (257) = () = G

Case Il - Forall |[5|+1<k<p—1,we have:

L) = (5D, 1<i<p-k,
where S = {uj 1, JUS,, 0 =S, S {uy, o, Ujmq1 , Ujsq s ever Uink—1} -
From the two cases and C,, (Pp ,k) = Zvev(P )Ak (v), we have:

By 1) = (7((2) - i) + skl
n\‘p» —
Lo Zf’f‘(p )i Bl +1<k<p-1
Corollary2.24:Forall3<n<p,p=5,is
Mn(Py) = (0 = 2)(,31) + S K[ CTNGE) - I
(k+12’ 2<k<l_J
P Bl r1sksp-1
2.3. The Mn—Polynomlal of Jahangir Graph J; .,
Definition [18]: Jahangir graph J,., is a graph of nm + 1 vertices, for m > 3, that is, a graph

consisting of a cycle of order nm,C,,,,, with a new additional vertex which is adjacent to the m vertices
of C,,,,, at distance n between each other on C,,,,,. We consider the graph J, ., whenn = 2 (Figure 1).

(k+l 2

U3

U2m+1

Figure 1-Jahangir graph J, ,,,,has 2m + 1 vertices, 3m edges of degree three and one vertex of degree
m
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Some Properties of J;,,

e Diameter property: The graph J, ,,, has a diameter of 4, for all m > 4.

e The distance property: The vertices of the graph J,,, have the max- n - distance between the
vertex v; and any subset S of vertices of V(J ,,,), as follows:

dmax(vl's) <2,

Amax(;, S) < 3 foralli = 2,4,...,2m,

Admar(;, S) <4, foralli =3,5,...2m + 1.

e Symmetry property :Vertices of the graph J; ,,, that have the same max —n —

distance are called the symmetric vertices, which are:

v, =, foralli=4,6,..,2m,and vy = v;, foralli =5,7,..2m + 1.

Theorem 2.3.1: For all m > 4, we have

Mn(]z,m; x) = Yk=1 Cn(]Z,m: k)xk , Where

Cn(jz,m: 1) = (nml) + m(n3 1) + m(nz 1)

Callzm 2) = (73) = (7)) + ml(G2) — G2 +m[(.2) - G2)),

Calzm3) = ml(,73) = G +m[G) = 2]

Cn(]Z,m: 4) = m[ n—1 (m+3)]

Proof: Itis obvious that C,(Jom 1) = (") +m(,>,) +m(2,).

To prove C,(Jom , k) for all k = 2,3,4, we will find the coefficients C,(v;,Jom , k) for i = 1,2,3 and
use the symmetry property to get the required result. Let S € V(J,,,) be a subset of (n — 1) elements,
3<n<2m+1,and let 1, (v) be the number of subsets S for which the max-n-distance between v
and S is equal to k.

Now, when k = 2, then there are three cases:

Case | : If i = 1, then there are m vertices {v;,vs,..., Vam+1} lying at a distance of 2 from v; and
there are m vertices { vy, vy, ..., Vo } lying at a distance of 1to v, . Thus,

Cn(v1Jom 2) = 22 (vy) = j=1 (T) (n —j- 1) ) (n 1)

Case Il : If i = 2, then there are (m — 1) vertices {v4 , Vg .-+, Uam} lying at a distance of 2 from v,
and there are 3 vertices { v, V3, Vame1} lying at a distance of 1 to v4. Thus

n(UZJZm'Z) A (v2) = m 1( j )(n j- 1) (m+2) (n 1)

Case Il : If i = 3, then there are 3 vertices { v4, vs,vamsq} lying at a distance of 2 from v and
there are only 2 vertices { v,, v, } lying at a distance of 1 to v5. Then

Cu(V3.Jom 2) = A2 (v3) = ?=1 (j) (n = 1) (n )- (n -

From the three cases and the symmetry property, we have

Cn(m 2) = (;73) = GZ0) +ml(G20) = G2+ mlG2) - G2l

Now, when = 3 then

A3(v1) = 0, from the distance property.

If i =2, then there are (m — 2) vertices {vs,v,,...,v,m—1} lying at a distance of 3 from v, and
there are (m + 2)vertices { vy ; vy, Vs, o) Vom } Iying at a distance of less than 3 to v, . Then

n(szzm ,3) A3(vy) = m 2 (mj—z) (nff;f_Zl) — (m+2

If i = 3, then there are (m — 2) vertices {vg,vg,. ..,va} lying at a distance of 3 from v; and there
are 5 vertices { vy, vy, V4, Vs, Vamyq 1lying at a distance of less than 3 to v . Then

Ca(v3Jom 3) = 25(ws) = 772 ("72) (,°-y) = (79 = (5.

From the above and the symmetry property, we have

Callom 3) = m[(27) = D+ m[(35) = G2 )]
Finally, when = 4 , then we have
As(v;) =0, fori = 1,2, from the distance property.
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If i = 3, then there are (m — 3)vertices {v,, vy,...,v,m_1} lying at a distance of 4 from wv; and
there are (m + 3) vertices { vy, Vs, Voms1} U { V2, Vs, ..., Vo, } lying at a distance of less than 4 to
v3. Then
Ca(v3Jom 4) = Aaws) = T2 (") (me2,) = (1) = (03,
From the above and the symmetry property, we have
Cn(J2m %) = m| ;211 - (7:13)]
Remark: When m = 3, then the Jahangir graph J, 5 has 3 diameters and we have :
3 2 6 3 5 3
Mn(]2-3; x) = [4(n—1) + g(n—l)]xz-l_ {(n—l) - (511—1) + 3[(n—1) - (n—l)]
+3[(n—1) - (n—1)]}x2 +6(n_2)x3.
3. The Relation Between the M,, - polynomial and the Hosoya polynomial
In this section, we expound the relation between M,, —polynomial and Hosoya polynomial when
n = 2. Let G be any connected graph of order p, then Hosoya polynomial is defined as follows [19]:
H(G;x) =Y3_,d(G, k)x¥,
where d(G, k) is the number of pairs unordered of distinct vertices that are at a distance k, and Wiener
index of G is defined as:
d
W(G) = -H(G; X)|x=1 = TR=1 kd(G, k) .
From properties 1.1, we get:
d
€2(6,1) = Zwwevca) (V90"
Hence C,(G,1) = 2d(G, 1).
Theorem 3.1: Let G be a connected graph of order p, then H,(G; x) = 2H(G; x).
Proof: Let C,(G, k) be the number of all order pairs (v,S) such that d,.x(v,S) =k .k >1,|S| =
n—1,S € V(G). If we take n = 2, then C,(G; k) is the number of all order pairs (v, {u}) such that
Apmax(,{u}) =k, k>1,v+u.
Since (v, {u}) # (u, {v}) for v # u, then
C; (G, k) = Z{u,v};V(G) dmax (17, {u}) such that dmax (17, {u}) = k.
Since dax (v, {u}) = dpmax(u, {v}) and d(G, k) are the numbers of all distinguishable unordered pairs
(v, u) of vertices that are of distance k apart, then
C,(G, k) = 2d(G, k), fork = 1, which implies that
Zkal G (G, k) =2 Zkal G, k).
Hence, M, (G; x) = 2H(G; x).
Also, we can obtain Wiener index from W, (G) by :
Hence, My (G) = =My (G; X)|x=1 = 3= 2H(G; X)|x=1 = 2W(G).
In the table below, we explain the difference between the M,, — polynomial and Hosoya polynomial
when n = 2 for the special graphs. We obtained Hosoya Polynomial results of the special graphs K, ,
Ky, p, + Sp» Wpy Ey, Cpy By, and Jp ,from the new results which we obtained in this paper, after
substituting the value of n = 2 and dividing M, (G; x) by 2.

) = ZVUEV( G) degv = 2q.

Table 1-Comparison between M,, — polynomial and Hosoya polynomial for some special graphs

Special graphs M, — Polynomial (M, (G; x)) Hosoya Polynomial ( H(G; x) )
-1
Ky p(p — Dx Po—1),
( : D
pp —
Kp. b, 2p1p2x + [p(p — 1) — 2pyp2]x® PiP2x + [———— = P1pa | *?

4 (p - 1)2(P —2

W, 4(p—Dx+ (- D(p - 5)x* 20p - D+ LD D

F, 3 - x+(p - D@ - 3)x° D, D029,

Sp 2(p— Dx + (p — D(p — 2)x? (p — x
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B B
: L. : L.
C, Zprk+{px p,prlseven, 2p xk+{px p,tfplseven,
k=1 prlfj ;if pis odd. k=1 2pxl§] ;if pis odd.
p—-1 p—1
B 2> (0~ Iox¥ > o —koxk
k=1 ( k=1 )
m(m+ 3
2 —9),3
J 6mx + m(m + 3)x? + 2m(m — 2)x3 3mx + 2 x% +m(m — 2)x
2m +m(m — 3)x* m(m-3) ,
+———x

Also, we can obtain Wiener index for special graphs by deriving M, (G; x) with respect to x, and then
x = 1, followed by division by 2.
4. Conclusions

This paper investigated M,, —polynomials with special structures and properties based on the
maximum distance between the subset S of vertices of V(G) with (n — 1) — vertices, (S € V(G),|S| =
n—1, =3 ), and a singleton vertex v in V(G) which does not belong to S. In this paper, we
determined the Hosoya polynomial from M, — polynomial by dividing the M, — polynomial by 2
whenn = 2.
This type of distance can have an application in several areas, for example in networks, by sending a
set of signals or messages from a specific site to the farthest set of sites, so that these signals or
messages from that set are then sent to sets closer to them in order to ensure that some data is not lost.
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