

ISSN: 0067-2904

Generalized-hollow lifting_q modules

Noor M. Mosa*, Wasan Khalid

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

Let R be any ring with identity, and let M be a unitary left R-module. A submodule K of M is called generalized coessential submodule of N in M, if ($N)/K \subseteq [Rad] _g (M/K)$. A module M is called generalized hollow- $[lifting] _g$ module, if every submodule N of M with M/N is a G-hollow module, has a generalized coessential submodule of N in M that is a direct summand of M. In this paper, we study some properties of this type of modules.

Keywords: generalized coessential submodule, generalized strong supplement submodule, generalized hollow-lifting q module.

مقاسات (الرفع) والمجوفة المعممة

نور محمد موسى ، وسن خالد

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق.

K محلقة ذات عنصر محايد وليكن M مقاسا أحاديا أيسر على R يقال على مقاس جزئي M معمم ضد جو هري في M اذا كان M اذا كان M يقال على المقاس M بانه مقاس مجوف M اذا كان M في M بحيث أن أجوف-معمم فأن M له مقاس جزئي معمم رديف Mnt جوهريا و يكون جمع مباشر . في هذا االبحث سوف ندرس خواص هذا النوع من المقاسات و نبرهن بعض النتائج التي تعتبر تعميم لمقاسات(الرفع)_ي المجوفة.

1. Introduction

Throughout this paper R is a ring with identity, and every R-module is a unitary left R-module, N⊆M denotes N is a submodule of M .Let M be an R-module , and let N⊆M , N is called essential submodule of M (denoted by $N\subseteq eM$) if every nonzero submodule B of M, we have $B\cap A\neq 0$ [1]. A submodule N of M is called small submodule of M (denoted by N \ll M), if for every K \subseteq M, M=N+K implies K = M [2]. Rad(M) is the sum of all small submodules of M [2]. A submodule N of M is called generalized–small submodule of M (for short ,G-small) (denoted by N \ll _G M) , if for every $K\subseteq eM$, M=N+K implies K=M [3]. Rad_g (M) is the sum of all G-small of M[3], It clear that Rad(M)⊆Rad_g (M), but the converse is not true in general. A nonzero module M is called generalized-hollow (for short ,G-hollow), if every proper submodule of M G-small (in [4], it is denoted by e-hollow). A Submodule K of M is called coessential submodule of N in M (denoted by $K\subseteq Ce\ N$, if $N/K\ll M/K$. A module M is called lifting module or satisfies (D1) if for every submodule N of M there exists a direct summand K of M such that $M = K \square K'$, $K \subseteq N$, $K' \subseteq M$ and $N \cap K' \ll M[5]$. M is called hollow lifting , if for every submodule N of M with M/Nis hollow has a coessential submodule in M that is a direct summand of M, [6]. Clearly every lifting module is hollow lifting, while the converse does not hold in general, see [6]. A submodule K of M is called G-

*Email: noor.mosa327@gmail.com

coessential submodule of N in M (denoted by $K\subseteq GceN$), if $N/K \ll (G)$ M/K,[7]. An R-module M is called generalized lifting or satisfies (GD1), if for every submodule N of M, there exists a direct summand K of M, such that $K\subseteq (GCe)$ in M [4]. It is clear that every lifting module is a generalized lifting module . An R-module M is called a generalized hollow lifting module (for short , G-hollow lifting module), if for every submodule N of M, with M/N is hollow module, N has a generalized coessentioal submodule of M that is a direct summand of M, [7]

tIn this paper we introduce a generalized hollow [lifting] _g module as a generalization of generalized hollow lifting module.

Let N, $K\subseteq M$, N is called supplement of K in M if M=N+K and $N\cap K\ll N$,[2] and N is called strong supplement of K if N is a supplement of K in M and $N \cap K$ is a direct summand of K [3].

We introduce G-strong supplement submodule, let N, K⊆M we called K is G-strong supplement of N in M if M=N+K, $N\cap K\subseteq [Rad]$ g (M)and $N\cap K$ is a direct summand of N.

In fact, we prove for an indecomposable module M, M is G-hollow-lifting_g module if and only if M is G-hollow or else M has no G-hollow factor module . We also prove that for N⊆M , N has a generalized strong supplement in M if and only if N has a generalized coessential submodule that is a direct summand of M, therefore M is a G-hollow-lifting g module if and only if for every submodule N of M, with M/N is G-hollow has a generalized strong supplement in M.

In section three, we prove that for fully invariant submodule N of M, if M is G-hollowlifting a module, then M/N is a G-hollow-lifting a module. In fact, we give sufficient condition for direct sum of two G-hollow lifting module to be G-hollow lifting. We prove if $M = M_1 \oplus M_2$ is a duo module, then M is a G-hollow-lifting q module, if and only if M_1 and M_2 are G-hollowlifting_amodules.

2. Some properties of G-hollow llifting $_a$ modules

In this section, we introduce G-hollow $lifting_g$ module as a generalization of hollow lifting module, and study some properties of this type of modules.

Definition 2.1[7]: A submodule K of M is called generalized coessential submodule of N in Mdenoted by

$$K \subseteq_{GCe} N, if \frac{N}{K} \subseteq Rad \frac{M}{K}$$
.

 $K\subseteq_{GCe}N, if\frac{N}{K}\subseteq Rad\frac{M}{K}.$ if K is coessential submodule of N in M, then K is generalized coessential submodule of N in M. However the converse in general is not true, for example $0 \subseteq_{GCe} Q$ as Z-module, but 0 is not coessential of Q.

An R-module M is called generalized **Definition 2.2[4]:** lifting or satisfies for every submodule N of M, there exists a direct summand K of M, such that $K \subseteq_{GCe} N$ in M.

It is clear that every lifting module is a generalized lifting module. An R-module M is called hollow lifting, if every submodule N of M such that $\frac{M}{N}$ hollow has a coessential submodule that is a direct summand of M [6].

It is know that $Rad(M) \subseteq Rad_g(M)$, [8].

The following gives the properties of $Rad_a(M)$ which appeared in [8].

Lemma2.3: The following assertions are holds:

- 1. If M be an R -module, then $Rm \ll M$ for every $m \in Rad(M)$.
- 2. If $f:M \to N$ is an R-module homomorphism, then $f(Rad_q(M)) \subseteq Rad_q(N)$.
- 3. If $N \subseteq M$, then $Rad_q(N) \subseteq Rad_q(M)$.
- 4. If K,L \subseteq M, then $Rad_g(K) + Rad_g(L) \subseteq Rad_g(K + L)$. 5. If K,L \subseteq M, then $Rad_g(K) = \frac{Rad_g(K + L)}{L}$. 6. If $M = \bigoplus_{i \in I} M_i$, then $Rad_g(M) = \bigoplus_{i \in I} Rad_g(M_i)$.

Lemma 2.4: Let N be a direct summand submodule of M. Then $Rad_q(N) = Rad_q(M) \cap N$. **Proof:** See [8].

As a generalization of generalized of hollow lifting module we introduce the following:-

Definition 2.5: An R-module M is called G-hollow -lifting g module, if for every submodule N of M with $\frac{M}{N}$ is G-hollow has a G-coessential submodule in M that is a direct summand of M.

Examples and Remarks 2.6:

- 1- \mathbb{Z}_4 as Z-module is G-hollow $lifting_g$ module.
- 2- M= Z_{12} as Z-module is not G-hollow $lifting_g$ module, since let N= $<\overline{2}>$ and K= $<\overline{4}>$ is a direct summand of M such that $\frac{N}{K} \nleq Rad_g \frac{M}{N}$.

Proposition 2.7: Let M be a G-hollow $lifting_g$ module, then every submodule N of M such that $\frac{M}{N}$ G-hollow, can be written as $N = K \oplus L$, where K is a direct summand of M and $N \cap L \subseteq Rad_g(M)$.

Proof : Let $N \subseteq M$, with $\frac{M}{N}$ is G-hollow, since M be a G-hollow $lifting_g$ module, then $\exists K \subseteq M$, $K \subseteq N$ and $\frac{N}{K} \subseteq Rad_g$ ($\frac{M}{K}$), let $L \subseteq M$ with $M = K \oplus L$ then $N = K \oplus (L \cap N)$. Now $\frac{N}{K} = \frac{(K \oplus (L \cap N))}{K} \cong \frac{N \cap L}{K \cap (N \cap L)}$ But $N / K \subseteq Rad_g$ (M / K) = Rad_g (M / K) = Rad_g

Proposition 2.8: Let M_1 and M_2 be G-hollow modules, if $M = M_1 \oplus M_2$ then the following are equivalent:

- 1. M is G-hollow lifting a.
- 2. M is G-lifting.

Proof: $1 \rightarrow 2$ Let $N \subseteq M$, let $\pi_1 : M \rightarrow M_1$ and $\pi_2 : M \rightarrow M_2$. If $\pi_1(N) \neq M_1$ and $\pi_1(N) \neq M_2$, then $\pi_1(N) \ll_G M_1$ and $\pi_2(N) \ll_G M_2$. Thus $\pi_1(N) \oplus \pi_2(N) \ll_G M_1 \oplus M_2$. [9]

Now let $n \in \mathbb{N}$, then $n \in \mathbb{M} = M_1 \oplus M_2$, hence $n = m_1 + m_2$, where $m_1 \in \mathbb{M}$ 1, $m_2 \in M_2$

 π_1 (n) = π_1 ($m_1 + m_2$)= m_1 and π_2 (n) = π_2 ($m_1 + m_2$)= m_2 , thus n= π_1 (n) + π_2 (n) this implies that N $\subseteq \pi_1$ (N) $\oplus \pi_2$ (N)) therefore N \ll_G M. Assume that π_1 (N) = M_1 then M= N + M_2 , thus M / N = N + M_2 /N but M_2 is G- hollow, hence $M_2 + N$ / N is a G- hollow this implies that M / N is G-hollow, therefore $\exists K \subseteq \bigoplus M$ such that N / K $\leq Rad_g$ (M / K),hence M is a generalized lifting. $2 \to 1$ Clear.

Remark 2.9: It is clear that every module has no hollow factor module is a G-hollow $lifting_g$ module. However, if M is indecomposable we have the following:

Proposition 2.10: Let M be an indecomposable module, then the following are equivalent:

- 1. M is G-hollow *lifting* q module.
- 2. M is G-hollow or else M has no G-hollow factor module.

Proof: $1\rightarrow 2$ Suppose that M has a G-hollow factor module, then $\exists N\subseteq M$, such that is $\frac{M}{N}$ G-hollow.

Since M is G-hollow $lifting_g$ module., then $\exists K \subseteq M$, $K \subseteq_{\bigoplus} M$ such that $\frac{N}{K} \subseteq Rad_g(M)$. But M is indecomposable, then K = 0 and hence $N \subseteq Rad_g(M)$.

Let R be any ring, and M is an R-module.Let N, K be two submodules of M, K is called strong supplement of N in M, if K is a supplement of N in M, and K \cap N is a direct summand of N,[3].

As a generalization of strong supplement submodule, we introduce the following:

Definition 2.11: Let N, K be submodules of M. K is called a generalized strong supplement of N (for short G-strong supplement of N), if M = N+K with $K \cap N \subseteq Rad_q(K)$ and $K \cap N \subseteq_{\bigoplus} N$.

It is clear that if K is strong supplement submodule in M, then K is G-strong supplement submodule, but the converse in general is not true, for example: consider Z_{12} as Z-module, let $N=\{\overline{0},\overline{4},\overline{8}\}$, it is clear that N is G-strong supplement since there exist a direct summand 0 of M, $N \ll_G M$, but N not small in M.

Remark 2.12: In semisimple modules, every submodule is G-strong supplement.

Proposition 2.13: Let $N\subseteq M$, then the following are equivalent:

- 1. N has a G-strong supplement in M.
- 2. N has a G-coessential submodule that is a direct summand of M.

Proof: $1 \rightarrow 2$ Let K be a G-strong supplement of N in M, then M = N+K, $N \cap K \subseteq Rad_g(M)$ and $N \cap K \subseteq_{\bigoplus} N$, hence $\exists L \subseteq N$ such that $(N \cap K) \oplus L = N$, then $M = L \oplus K$. Now $\frac{N}{L} = \frac{(N \cap L) \oplus K}{L} \subseteq \frac{Rad_g(M) + L}{L} \subseteq Rad_g(\frac{M}{L})$.

2 \rightarrow 1 Let $N \subseteq M$, then by (2), $\exists K \subseteq N \text{ such that } \frac{N}{K} \subseteq Rad_g\left(\frac{M}{K}\right)$ and K is a direct $M=K\oplus L$ for $L\subseteq M$. Thus $N=N\cap (K\oplus L)=K\oplus (N\cap L)$ thus $N\cap$ summand of M,hence

L is a direct summand of N.
$$now \frac{N}{K} = \frac{K + (N \cap L)}{K} \cong \frac{(N \cap L)}{N \cap L \cap K} = \frac{(N \cap L)}{L \cap K} \cong N \cap L.$$
 But $\frac{N}{K} \subseteq Rad_g\left(\frac{M}{K}\right)$, then $N \cap L \subseteq Rad_g(M)$.

Thus N has a G-strong supplement in M.

Corollary 2.14: Let M be any R-module, then the following are equivalent:

- 1. M is a G-hollow $lifting_g$ module.
- 2. Every submodule N of M, with $\frac{M}{N}$ is G-hollow, has a G-strong supplement in M.

Proposition 2.15: Let M be a G-hollow module, Then the following are equivalent:

- 1. M is a G-hollow *lifting* $_a$ module.
- 2. M is a G-lifting module.

Proof: $1 \rightarrow 2$ by [4], for any $N \subset M, \frac{M}{N}$ is G-hollow and by (1) M is G-lifting. 2→1 Clear.

3. The direct sum of G-hollow $lifting_g$ module

In this section we study the quotient and the direct sum of G-hollow $lifting_g$ module, we prove under certain condition the quotient and the direct summand of G-hollow $lifting_q$ module is Ghollow *lifting*_amodule.

Remark 3.1: the quotient module of G-hollow $lifting_g$ module needn't be G-hollow $lifting_g$ the following example shows:

Example3.2: Consider the Z-module $M = \frac{Z}{4Z} \oplus \frac{Z}{8Z}$, let $N = \frac{2Z}{4Z} \oplus < 0 >$, clearly that M is G-hollow lifting $_g$ module, since it is lifting but $\frac{M}{N}$ is not, since $\frac{M}{N} = \frac{\frac{Z}{4Z} \oplus \frac{Z}{8Z}}{\frac{2Z}{2Z} \oplus <0>} \cong \frac{\frac{Z}{4Z}}{\frac{2Z}{2Z}} \oplus \frac{Z}{8Z}$. Then $\frac{M}{N} \cong \frac{Z}{2Z} \oplus \frac{Z}{8Z}$ which is not G-hollow *lifting* $_{a}$.

Recall that a submodule N of M is called fully invariant if $f(N) \subseteq N$ for every $f \in End(M)$, and an R-module M is called duo module, if every submodule of M is fully invariant,[10].

Proposition3.3: Let M be any R-module, if M is a G-hollow lifting module, then $\frac{M}{N}$ is a Ghollow $lifting_g$ module, for every fully invariant submodule N of M.

Proof: Let N be a fully invariant submodule of M, and let $\frac{K}{N} \subseteq \frac{M}{N}$ such that $\frac{M/N}{K/N} \cong \frac{M}{K}$ is G-hollow. Since M is G-hollow $lifting_g$, then $\exists L \subseteq \bigoplus M$, such that $L \subseteq K$, $\frac{K}{L} \subseteq Rad_g$ $(\frac{M}{L})$ and $M = K_1 \bigoplus L$ for $K_1 \subseteq M$, clearly N+L $\subseteq K$, then $\frac{L+N}{N} \subseteq \frac{K}{N}$. Define f: $\frac{M}{L} \to \frac{M}{N+L}$ by f(m+ L)=m+(L+N), \forall m \subseteq M. It is clear that f is an epimorphism, $f(\frac{K}{L}) \subseteq Rad_g(\frac{M}{N+L})$, then $K+(L+N)\subseteq Rad_g(\frac{M}{N+L})$, hence $\frac{K}{N+L}\subseteq_{Gce}\frac{M}{N+L}$. $\operatorname{Now}_{\overline{N}}^{\underline{M}} = \frac{K_1 + N}{N} \bigoplus_{\overline{N}} \frac{L + N}{N}$, hence L+N/N $\subseteq_{\bigoplus} \frac{M}{N}$, thus $\frac{M}{N}$ is a G-hollow $lifting_g$ module.

Corollary 3.4: The direct summand of duo G-hollow $lifting_g$ module is again G-hollow $lifting_g$ module

Remark 3.5: The direct sum of two G-hollow lifting q modules need not be a G-hollow lifting as the following example shows:

Example3.6: The modules Z_4 and Z_3 as Z-module are G-hollow lifting g modules.

While the module $Z_4 \oplus Z_3 \cong Z_{12}$ which is not G-hollow *lifting* q module.

The following shows under curtain condition the direct sum of two G-hollow lifting g is again Ghollow $lifting_g$ module.

Proposition 3.7: Let M be a duo module such that $M = M_1 \oplus M_2$, if M_1 and M_2 are G-hollow lifting $_q$ modules, then M is a G-hollow lifting $_q$ module.

Proof: Let $N \subseteq M$ with $\frac{M}{N}$ is G-hollow, then $N \cap M = (N \cap M_1) \oplus (N \cap M_2)$ by [9]. Hence $\frac{M}{N} = \frac{M_2 \oplus M_2}{(N \cap M_1) \oplus (N \cap M_2)} \cong \frac{M_1}{N \cap M_1} \oplus \frac{M_2}{N \cap M_2}$, thus $\frac{\frac{M}{N}}{\frac{M_1}{N \cap M_2}} \cong \frac{M_2}{N \cap M_2}$ is G-hollow, and similarly $\frac{M_1}{N \cap M_1}$ is G-hollow.

Since M_1 and M_2 are G-hollow $lifting_g$ module, then $\exists k_1 \subseteq_{\bigoplus} M_1$ with $k_1 \subseteq N \cap M_1$ and $\frac{N \cap M_1}{K} \subseteq Rad_g\left(\frac{M_1}{K_1}\right)$, $M_1 = K_1 \oplus L_1$, $L_1 \subseteq M_1$ and $\exists K_2 \subseteq_{\bigoplus} M_2$ with $K_2 \subseteq N \cap M_2$ and $\frac{N \cap M}{K_2} \subseteq Rad_g\left(\frac{M_2}{K_2}\right)$, $M_2 = K_2 \oplus L_2$, $L_2 \subseteq M_2$. Thus $K_1 + K_2 \subseteq (N \cap M_1) + (N \cap M_2) = N$ and $K_1 + K_2 \oplus L_1 + K_2 = M_1 \oplus M_2 = M$. Thus $K_1 \oplus K_2 \subseteq_{\bigoplus} M$.

$$M. \text{Thus } K_1 \oplus K_2 \subseteq_{\bigoplus} M.$$

$$\text{Now,} \frac{N}{K_1 + K_2} = \frac{(N \cap M_1) \oplus (N \cap M_2)}{K_1 \oplus K_2} \cong \frac{N \cap M_1}{K_1} \oplus \frac{N \cap M_2}{K_2} \subseteq Rad_g\left(\frac{M_1}{K_1}\right) + Rad_g\left(\frac{M_2}{K_2}\right) \subseteq Rad_g\left(\frac{M}{K_1 + K_2}\right). \text{ Then } K_1 + K_2 \subseteq_{Gce} N \text{ , and hence } M \text{ is G-hollow } lifting_g \text{ module.}$$

Corollary3.8: let $M=M_1 \oplus M_2 \oplus \ldots \oplus M_n$ be a duo module if $\forall i=1,2,\ldots,n$, M_i is a G-hollow *lifting* q module, then M is M is a G-hollow *lifting* q module.

References

- 1. Kasch, F. 1982. Modules and Rings. Academic Press, Inc-London.
- 2. Wisbauer, R.1991. Foundations of Modules and rings theory. Gordon and Breach, Philadelphia.
- **3.** Kosar B., Nebiyev C. and Sökmez N. **2015**, G. Supplemented Modules. *Ukrainian Mathematical journal*, **67**(6): 861 864.
- **4.** Hadi, I.M.A. and Aidi, S.H. **2015**. On e-Hollow modules. *International journal of Advanced Sc. And Technical Reserch*, **3**(5): 2249-9954.
- **5.** Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R. **2006.** *Lifting modules*. Frontiers in Mathematics Birkhäuuser.
- **6.** Oshiro, K. **1984**. lifting modules, extending modules and their applications to generalized uniserial rings. *Hokhaido Math. J.* **13**(3: 339-346.
- **7.** Wassan K. **2016.** Generalized-hollow lifting modules. *Iraqi Journal of Science*, **57**(3B): 2089-2093.
- Wassan K. and Adnan S. 2017. Generalized Radical_g Lifting Modules. Iraqi Journal of Science, 6(7): 2319-7064.
- **9.** Hadi, I.M.A. and Aidi, S.H. **2015.** On e-Small Submodules. *International journal of Advanced Sc. And Technical Reserch*, **28**(3): 214-222.
- **10.** Ozcan A.C., Harmanci A. and Smith P.F. **2006.** Duo modules. *Glagow Math. J. Trust.*, **48**: 533-545.