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Abstract

The first aim in this paper is to introduce the definition of fuzzy absolute value on
the vector space of all real numbers R then basic properties of this space are
investigated. The second aim is to prove some properties that finite dimensional
fuzzy normed space have.
Keywords: Fuzzy Absolute value, Finite dimensional fuzzy normed space,
Complete fuzzy Normed space, Compact fuzzy normed space.

) giiall laal) (bl slab galsidg R o dglual) Aithal) Aedll (alsd

e o

F e e . e
S G daa) ¢ pad Glaa g
el €3any cm oSS Aaalal) (il pglel) o cpulall il el g i

Ladal)
Jias 3 Slgaiall o limb o Aplaal) Zllall Ladll Cappat a8 Conill 138 8 J5V1 gl
Gind 13g) S Cangl o Lindl) 13gd Buli) Galsall o inid) 5 ey aayy Addall 2aeY) desane

o) giall sl Gl o Limd LSy ) Galoall (e Gl s

1. Introduction

Zadeh in his research in [1] introduced fuzzy logic and fuzzy set theory then this paper found it
applications in variety branch of sciences. Many mathematicians at this time tried to translate the
classical theory of various branches of mathematics in fuzzy context. Katsaras [2] in his study of fuzzy
topological linear space was the first who introduced the notion of fuzzy norm. Another type of fuzzy
norm was introduced by Felbin [3]. The idea of fuzzy norm corresponding to the fuzzy metric of type
Kramosil and Michalek [4] was introduced by Cheng and Mordenson [5]. We believe that the suitable
definition of fuzzy norm was introduced by Bag and Samanta [6] and they study properties of finite
dimensional fuzzy normed space. Other approaches for fuzzy normed space can be found in [7-13].

Absolute value is the tool for real analysis to translate the classical results in this paper we
introduce the notion of fuzzy absolute value and proved the famous result that R with fuzzy absolute
value is complete. After that we study completeness and compactness properties over finite
dimensional fuzzy normed linear spaces.
2. Fuzzy normed space

In this section we recall basic properties of fuzzy normed space
Definition 2.1: [1]

Suppose that U is any set, a fuzzy set Ain U is equipped with a membership function, pz (w): U —
[0,1]. Then A'is represented by A’ = {(u, uz (0): uel,0 < pz(w) < 1}
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Definition 2.2: [2]

Let =: [0,1] x [0,1] — [0,1] be a binary operation then = is called a continuous t -norm (or
triangular norm) if forall a,B,y,8 € [0, 1] it has the following properties

Daxp = pa.

2 ax1=a.

@) (a* B)xy = ax(B*y).

A Ifa < pandy < dthen axy < [ *6.

Remark 2.3: [14]

(1) If @ > B then there is y such that a xy > .

(2) Thereis & suchthat § * § > o wherea ,B,y,6,0 € [0,1].

Definition 2.4: [6]

The triple (V, L ,*) is said to be a fuzzy normed space if V is a vector space over the field F,* is a t-
norm and L: V x [0,00) — [0,1] is a fuzzy set has the following properties for all a,b € V and
a,f > 0.

1-L(a,a) > 0.

2-L(a,a) =1 if and only if a = 0.

3-L(ca,a) = L(a,%) forallc + 0 €F.

4-L(a,a)*L(b,B)< L(a + b,a+p).
5-L(a,.):[0,0) — [0,1] is continuous function of a.
6- limy_e L(a, @) = 1.
Remark 2.5: [14]
Assume that (V, L ,*) is a fuzzy normed space and leta € V,t > 0,0 < g < 1. If
L(a,t) > (1 — q) thenthere isswith 0 < s < tsuchthat L(a,s) > (1 — q).
Definition 2.6:[6]

Suppose that (V, L,*) is a fuzzy normed space. Put
FB(a,p,t) ={b€X:L(a—b,t) > (1 —p)}
FBla,p,t] ={beX:L(a—b,t) = (1 —p)}

Then FB(a,p, t) and FBJa,p, t] is called open and closed fuzzy ball with the center a € V and
radius p, with p > 0.
Definition 2.8: [6]

Assume that (V, L,*) is a fuzzy normed space W < V is called fuzzy bounded if we can find t >
0and 0 < g < 1suchthat L(w,t) > (1 — q) for eachw € W.
Definition 2.9 :[6]
A sequence (vy,) in a fuzzy normed space (V,L,*) is called converges to v € V if for each q >
Oandt > 0 we can find N with L[v,, — v,t] > (1 — q) for all n = N. Or in other word lim,,_,,, v,, =
v or simply represented by v,, = v, v is known the limit of (v,,) or lim,_ L[v, — v, t] = 1.
Definition 2. 10: [6]

A sequence (v,,) in a fuzzy normed space (V,L,*) is said to be a Cauchy sequence if for all
0 <g<1,t>0thereisanumber N with L[v,, — v,,t] > (1 — q) forall
m,n = N.
Definition 2.11: [4]

Suppose that (V, L,*) is a fuzzy normed space and let W be a subset of V. Then the closure of W is
written by W or CL(W) and which is W = N{W < B: B is closed in V'}.
Lemma 2.12: [14]

Assume that (V, L,x) is a fuzzy normed space and suppose that I/ is a subset of V. Theny € W if
and only if there is a sequence (w;,) in W with (w,,) converges to y.
Definition 2.15: [14]

A fuzzy normed space (V, L,*) is said to be complete if every Cauchy sequence in V converges to a
pointinV.
Definition 2.16: [15]

Let L; and L, be two fuzzy norms on V with for all (v,) € V and v in V then

limy e L[V - v,s] = 1if and only if lim,_,e Ly[v, - v,t] =1 for all ¢ > 0,s > 0. then L, and
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L, are said to be equivalent fuzzy norms onV. Also (V,Lq,*) and (V,L,,*) are equivalent fuzzy
normed spaces.
Theorem 2.17: [15]

Two fuzzy norms L, and L, on a vector space V are equivalent if we find k € R with

= Ly(0,6) < Li(v,5) < k Ly(v,t) forallv € Vand ¢ > 0,5 > 0.

Theorem 2.18:[15]

The fuzzy normed space (V,L,x) is compact if and only if every (v,) in V contains (v, ) with
Vp,, = V-
Proposition 2.19:[15]

Suppose that (V, L,*) a fuzzy normed space and W c V. If W is compact then W is closed.

3. Fuzzy Absolute Value

First we introduce the main definition in this section
Definition 3.1:

Let R the vector space of real numbers over the field R and ©, ® be a continuous t-norm. A fuzzy
set Lg: R X [0, ) is called a fuzzy absolute value on R if it satisfies the following conditions for all
a,b, € R;

(L1) 0 < Lg(a,t) <1forallt > 0.

(L2) Lg(a,t) =1forallt > 0 ifand only if a = 0.

(L4) LR(a + b, t+ S) = L]R(a, t)@L]R(b, S).

(L5) Lr(ab,st) = Lr(a,t)@Lr(b,s).

(L6) Lg(a,) : [0,00) = [0,0) isa continuous function of t.
(L7) lim¢ e Lr(a, t) = 1.

Example 3.2:

Define Ly (a,t) = fm'for alla € Rthen L is a fuzzy absolute value on Rwherea®©b =a®b =
a - bforalla,b €R.

Definition 3.3:

Let {a, }n=1be a sequence in R, we say that {a, },—; fuzzy approaches the limit a as
n approaches to oo if for every € € (0,1) there exists N € R such that
Lr(a, —a,t) > (1 —¢)forallt > 0and foralln > N. If a,, fuzzy approaches the limit a
we write or lim,,,, a, = a,a, — aorlim,_. Lg(a, —a,t) = 1.
Theorem 3.4:
If {a, }n=1is a sequence in R such that lim,,_,, a,, = a and lim,,_,., a, = b thena = b.
Theorem 3.5:

If the sequence {a, }n=; in R fuzzy approaches the limit a then any subsequence of
itis also fuzzy approaches to a.
Proof:

t

Since a, — athenlim,_,Lg [an —a E] = 1. Also (a,,) is a Cauchy sequence then

lim Ly [an - am,g] = 1whenn — o and m — oo. Now

n—oo

LR[ank —a, t] = LR[ank —a, +a,—aq, t] > Ly [ank - an,g] * Lp [an —a, %]
Now limy,_,e Lg[an, — a,t] = 1+ 1 = 1. Hence (a,, )converges to a.
Definition 3.6:

The sequence {a, }o=; in R is said to be fuzzy bounded if there exists ¢ € [0,1]
such that L (a,, t) > (1 —q) forall t > 0.

Theorem 3.7:

If the sequence {a, }n=1 in R fuzzy approaches the limit a then it is fuzzy bounded.
Proof:

Suppose that {a, }n=1 in R fuzzy approaches the limit a then for every e € (0,1)
there exists N € R such that Lr(a, — a, %) >(1—¢)forallt >0andforalln > N.
This implies
Lp(@n,t) = Lp(a — an — a,t) = Lg(a,))OLp(ay — a,3) = Lp(a,5) O(1 — &)
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Now put (1 —¢q) = min{LR(al, tl), Lg:(az, ty), ..., Lg(ay_1,tn—1)}-
Then Ly (an,t) = (1—¢q) ©L(a,5) ® (1—¢) > (1—p) forsome g € [0,1] m
Theorem 3.8:

Let {a, }n=1 and {b,, }=1 be two sequences in R if {a,, }n=; fuzzy approaches the
limit a and {b,, };.=, fuzzy approaches the limit b then {a,, + b, };—, fuzzy approaches the limita + b.
Proof:

Since {a,}n=, approaches the limit a then for every r € (0,1) there exists N € R such that
Lr(a, —a,t) > (1 —r) for all t >0 and for all n > N. Also Since {b,,},-; approaches the limit
b then for every p € (0,1) there exists N € R such that Lg(b, —b,t) > (1 —p) for all t > 0 and
foralln > N. Now
Lrla, + b, — (a+Db),t +s] = Lg(a, —a,t) ® Lr(b, —b,s) = (1 —1)O(1 —p)
Put(1—-7)®©(1 —p) = (1 —q) for some q € [0,1] then Lg[a, + b, — (a+ b),t +5s] = (1 —q) for
aln>N.m
Theorem 3.9:

Let {a,}n=q be asequence inRandc # 0 € R. If {a,}n=; is fuzzy approaches the limit a then
{ca,}n=1 is fuzzy approaches the limit ca.

Proof:

Since {a,}n=, approaches the limit a then for every r € (0,1) there exists N € R such that
Lr(a,—a,t) = (1—r) for all t>0 and for all n>N. Now Lgi(ca, —ca,t) = Lg[c(a, —
a),t] =Lg(c,t) @ Lr(a, —a,t) = Lg(c,t)® (1 —1). Let Lr(c,t) = (1 —0). Now choose «a
where0 < a <1suchthat(1—-0)® (1 —-7) > (1 —a)so Lg(ca, —ca,t) > (1 —a).

Hence {ca, }n=; is fuzzy approaches to the limit ca.m
Theorem 3.10:

Let {a,}n=; and {b,}a=; be two sequences in R if {a,}n=; fuzzy approaches the limit a and
{b,}n=q fuzzy approaches the limit b then {a,, - b, }n=, fuzzy approaches the limit a-b.

Proof:

Since {a, }n=; fuzzy approaches the limit a then for every r € (0,1) there exists N € R such that
Lr(a, —a,t) > (1—r) for all t>0 and for all n>N. Also Since {b,},=; approaches the limit b then for
every p € (0,1) there exists N € N such that L(b,, —b,t) > (1—p) for all t>0 and for all n=N. Now
Lr[ay,b, —ab, t) = Lg[a,b, —ab,+ ab, —ab,t]

> Ly[anby —aby, 5] © Ly[ab, —ab, ]

> Lp(by, \E) ® Lg[a, 4, \/%] O Lg(a, \E) ® Lg[by —h, \E]

> Lg(by, \E)@ (1-r) © Lg(a, Jg)@(l—p)

Put Lg(by, \E) =(1—a) and L(a, \E) = (1-6) for some 0 < a, 6 < 1. Now let (1—q) for some q €

[0,1] be choose so that (1—a) ® (1-r) © (1-6) ® (1—p) > (1—0q).
Hence Lg[a,b, —ab, t) >(1—q) for all n>N. m
Definition 3.11:

Let {a,}n=1 be a sequences in R that is fuzzy bounded above and let M,,=l.u.b{a,, ap;q, ... }. If {
M.} approaches we define lim,,_,, supa, =lim,_, M. If {a,}a=;is not bounded above we write
lim,,_,, supa,=co.

Theorem 3.12:

If {a,}n=1 issequence in R fuzzy approaches the limit a then lim,,_,,, sup a, = &E{,’o ap=a
Proof:

Since {a,}n=1 fuzzy approaches the limit a then for every r € (0, 1) there exists N € N such that
L(a, —a,t) = (1 —r)forallt > 0and foralln = N.Or
a+(1-1r) <a,<a—(1-r).Thusifn>N,a— (1—r)isan upper bound for the
set{a,, ansq, .. }and a + (1 —r) is not an upper bound . Hence
a+(1—-r)<M,=Lub{a,, a4, } < a—(1—r)thatis
a+(1—-r) <lim_owM, < a—(1—-r)butlim, . M, = lim,_,, sup a,. Thus
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a+(1—-r) <lim,_esupa, < a—(1—r)since (1 —r) was arbitrary this implies
lim, . supa, = a.m
Definition 3.13:

Let {a,}n=q be a sequences in R that is fuzzy bounded below and let m, =
g-l.b{a,, ayq, ... }. If {m,} approaches we define lim,_,,, infa, = lim,_ . m,. If {a,};=1iS not
bounded below we write lim,,_,, infa,, = —co.

Theorem 3.14:

If {a,}n=1 iSsequencein R fuzzy approaches the limit a then lim,,_,, infa, = lim,_,, a, = a.
Theorem 3.15:

If {a,}n=1 is a Cauchy sequence in R then {a, },~, is fuzzy bounded.

Proof:
Since {a,}n=1 is a Cauchy sequence in R then for every r € (0,1) there exists N € N such that

Lr(a, — an,é) > (1—r)forallt > 0andforalln,m = N. Then

Lp(am — aN,é) > (1—r)forallt > 0andforall m > N. Henceif m = N we have
Lr(am,t) = Lg(ay, —ay +ay,t) = Ly (am - aN,g) © LR(aN,g) and so
t .

Lr(am,t) 2 (1 —=1) O Lg (ay,3), Now put (1 —p) = min{ Lg(as,t), Lr(azt), ..., Lg(an-1, )}
Then Lg(a,,t) = (1—1) OLg (aN,é) ®(1 — p). Hence {a, }y=1 is fuzzy bounded.m
The following is the main results in this section
Theorem 3.16:

Every Cauchy {a,}n=1 Sequence in R is fuzzy approaches the limit a € R. That is (R, Lg) is
complete fuzzy normed space.

Proof:
Let be a Cauchy {a,}n=1 Sequence in R then {a,}n-,has a monotonic subsequence {an}.};‘f=1 but

{a, }n=1is fuzzy bounded hence {anj};f:lis fuzzy bounded. Thus {anj},‘;"=1 fuzzy approaches the limit

a € R. Then for every r € (0,1) there exists N € R such that Lg (ap —a,%) > (1—r) for all
t > 0and for all n > N. Since {a,}n=, is @ Cauchy sequence in R then for every r € (0,1) there
exists N € Rsuchthat Ly(a,, — ané) > (1—r)forallt > 0and foralln,m = N. Then

Ly (am — ay,5) = (1 —7) forall £ > 0 and for all m > K. We may choose K > N.

Now suppose k = K thenk > N, Lg(a,, — ay, %) > (1-r).

t t
Lr(ay —a,t) = Lg(ay = an, + an, — a,t) = Lr(ay — an, ,5)OLg(an, — a,3)

> A1-mNod-rN=>0-¢
For some € € (0,1). Thus {an,-}?f=1 fuzzy approaches the limit a € R.
Definition 3.17:

We say that f(x) approaches d where d € R as x approaches a if for any given r € (0,1) and
t > 0 there exists p € (0,1) and s > 0 such that Lg(f(x) —d,t) = (1 —r) whenever Lg(x — a,s)
> (1 — p). In this case we write F lim,_,, f(x) =d or f(x) > dasx — a.

Theorem 3.18:

If Flim,_, f(x) =dandF lim,_, g(x) = bthen Flim,_,[f(x) + g(x)] =d + b.
Definition 3.19:

We say that f(x) approaches d where d € R as x approaches o if for any given r € (0,1) and
t > 0 there exists p € (0,1) and s > 0 such that Lgx(f(x) —d,t) = (1 —r) when ever x - oo. In
this case we write F lim,_,, f(x) =d or f(x) = d as x — co.

Definition 3.20:

We say that f(x) from the right approaches d whered € R if for any givenr € (0,1)andt > 0
there exists p € (0,1) and s > 0 such that L(f(x) —d,t) = (1 —r) for alla <x <a+p. In this
case we write F lim,._,,+ f(x) = d. Also we say that f(x) from the left approaches d where d € R if
for any given r € (0,1) and t > 0 there exists p € (0,1) and s > 0 such that Lx(f(x) —d,t) =
(1 —=r)forall a —p < x < a. In this case we write F lim,_,,- f(x) = d.
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Theorem 3.21:
Flimy_, f(x) =difandonly if F lim,_,+ f(x) = Flim,_ .- f(x) = d.

Example 3.22:
Show that F lim,. ., — = 0.
Proof:
Givenr € (0,1) and forall t > 0 we must find d € R such that Ly ( ) a-n ..
1

for all x > d this is equivalent to >+/(1—r) for all x > d. Choose d =

hold.
4. Finite Dimensional Fuzzy Normed Space

In this section we deal with finite dimensional vector spaces with fuzzy norm.
Definition 4.1:

Let (V,Ly,*) and (R, Lg,*) be two fuzzy normed spaces. Define Ly (av, t) = Lg(a,t) * Ly(v,t)
forallveVanda #0€R.

The following theorem plays the key role in the studying properties of finite dimensional fuzzy
normed linear spaces.
Theorem 4.2:

Let {vy, v, ..., v, } be linearly independent set in a fuzzy normed space (V,Ly,*). Then there is
0 <r < 1suchthat Ly[a,v; + avy + -+ apvp, t] < 7 Lg(a;,t) forsome 1 < j <n.

Proof:

Suppose that this is not true, then we can find a sequence (v,,) in V where v,, = a;,,v; +
AymVy + -+ + Apmy, SUCh that Ly (v, t) - 1 asm — co. Now for each fixed j we have a sequence
Ajm = (@1, Ajz -, Ay, - ) 18 fuzzy bounded since 0 < Lg(@jy,,t) < 150 (ajp,) has a convergent
subsequence. Let a; denote the limit of the subsequence (aj,,) for each 1 < j < n. Let (v;,) denote
the corresponding subsequence of (v;,) where the corresponding subsequence of scalar a;,,, converges
toa; foreach1 < j <n.

Now put v = Z?=1 a; v; then (vy,) has a subsequence (vj,,) converges to v since {vy, v, ..., vp} is
linearly independent set so v # 0. Now v;,,, — v implies Ly (vj,,, t) = L(v,t) by fuzzy continuity of
the fuzzy norm. But L(v,,, 1) — 1 by our assumption and (vj,,) is a subsequence of (vy,). Thus
Ly (vjm,t) = 1. Hence L(v, t) = 1 so v = 0. This contradicts v # 0.

Theorem 4.3:

Let (V,Ly,*) be a fuzzy normed space. If W is a finite dimensional subspace of V then W is
complete wherea b =a- b forall ,b € [0,1] .

Proof:

Suppose that (v,,) is a Cauchy sequence in W. Let dim W =n and B = {w;,w,, ..., w, } be any
basis for W. Then each v,, has a unique representation as v,, = 1wy + SomWy + -+ + BpmWy, Since
(v, is Cauchy sequence so for every 0 < a < 1 and t > 0 there is N such that Ly, (v,,, — v,, t) >
(1 — a) for every m,n > N. Now by Theorem 4.2 we have some 0 < r < 1 such that (1 —a) <

LV(vm Uny t) - LV[Z 1(.B]m .Bjn)W]: t] STk LR(ﬂjm - .Bjnr t)
dividing by r we get Lg(Bjm — Bjn, t) > =@ This show that (Bim) = (Bj1,Bj2, ) is Cauchy
sequence in R or C Hence B;,,, - B; for each 1 <j<n.Put = ¥, Bjw;.Clearly e W.
Also now forallm > N
LV(vm -V, t) LV[Z 1(ﬁjm ﬁjn)wj: t]

> Ly (wa, n|31m—31|) Ly (w2 nlﬁzri—ﬁzl) ot Ly (W mmi ﬁn|)
Ly(v,—v)2A—-r)*(1—-1r)*..x(1—mn,) where Ly, (W], Fm=F] ) (1 ]) for some
0<(1-7r)<1 j=12..n. Let 0<(1-y)<1 be such that (1 —ry)*(1—ry)*..*
1-n)>0-y)soL(v,, —v,t)> (1 —y)forallm> N .Hence v,, - v.
Theorem 4.4:

Let V be a finite dimensional vector space if L; and L, are two fuzzy norms on V then L, is
equivalent to L,.

- |t is clear that (1)
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Proof:

Let dimV =nand B = {v,v,, ..., v, } be any basis for V. Then for anyv € V, v = ¥"_; a;v;.
Now L,(v,t) = Ll(Z}l:l ajvj,t) > Ll(ajvj, t) > LR(aj, t) * Ll(vj,t) put Ll(vj,t) = a for some
0 < a < 1andforsome 0 <j < n we get %Ll(v,t) > Lg(aj,t) ... (1).

Also L,(v,t) =L, (Z}Ll a;vj, t) <rox LR(aj,t) for some 0 < j < n. %Lz(v, t) < LR((Z]', t) .. (2)
from 1 and 2 we get

1 1 1 1

;LZ('I], t) < LR(Qj,t) < ELl(v' t) or ;LZ(U, t) < ;Ll(v, t) or

2L, (v,t) < Ly (v,t). Similarly we can get Ly (v, t) < =L, (v, t)

%LZ (,t) <L (v,t) < £L2(v, t). Hence L, is equivalent to L.

Theorem 4.5:

Let (V, Ly,*) be a finite dimensional fuzzy normed space and W < V. If W is closed and fuzzy
bounded then W is compact.
Proof:

Let dim W =n and B = {w;,w,,...,w,} be any basis for V. Consider the sequence (v,,) =
AW + AWy + - + ApmWy, Since W is fuzzy bounded so is (v,,) that is L(v,,, t) = (1 — «) for
all m and for t >0, some 0 <a < 1. Now by Theorem 4.2 (1 —a) < L(X}_; ajmw;,t) <7+

Lg(@jm, t) of Lg(ajm,t) = (1;“). Hence the sequence (a;y,) for fixed j is fuzzy bounded so it has a
limit point a; for each 0 < j <n. We see that (v,,) has a subsequence (z,) which converge to
z = ¥j=; a;jw;. Since W is closed so € W . Since (vy,,) was an arbitrary sequence in W. Hence W is
compact.

Lemma 4.6:

Let (V, Ly,*) be a fuzzy normed space and let W and Z two subspace of V with W < Z and W is
closed. Then for every r € (0.1) thereisz € Z suchthat L(z — w,t) < rforallw e W.

Proof:

Letv € z—wand put a = sup,ey L(v —w, t). Clearly a > 0 since W is closed. Take r € (0.1)
with r > a then by definition of suprimum there is wy, € W such that %S L(v—wy) <a. put
z=v—wy. Now L(z—w,t)=L(v—wyg—w,t) =L(v—wy,t) where w; =wy+w . Hence
Liz—w,t)=Llv—wy,t)<a<r.

Theorem 4.7:

Let (V, Ly,*) be a fuzzy normed space and let M = {v € V: 0 < L(v,t) < 1} be a closed fuzzy ball
in ¥V which is compact then V must be finite dimension.
Proof:

Suppose that M is compact and dimV is not finite. Choose v; € M and let V; be the subspace of V
with basis {v,} so it is closed by Proposition 2.19. But V/; # V since dimV is not finite. Now by

Lemma 4.5 there isv, € M such that L(v, —vy,t) <r = % Let V, be the subspace of IV with basis

{v,,v,} since V, # V so there is v; € M such that L(v; — v,,t) < %and (v3 — vy, t) < % Continue in

this way by induction we obtain a sequence (v,) € M such that (v,, — v,,t) S% (m #n). This

implies that (v,) dose not contains a subsequence which is converges. This contradicts the
compactness of M. Hence dimV must be finite.
5. Conclusion

The principle goal of this research is to introduce the definition of fuzzy absolute values in order to
tried to translate all the classical real analysis to a fuzzy real analysis in this paper we translate some of
these properties. The second goal is study completeness and compactness properties of finite
dimensional fuzzy normed space by proving a theorem which is the key role in studying properties of
finite dimensional fuzzy normed spaces.
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