

ISSN: 0067-2904

S-K-nonsingular Modules

Farhan Dakhil Shyaa* ${ }^{* 1}$, Inaam Mohammed Ali Hadi ${ }^{2}$
${ }^{1}$ Department of Mathematics University of Al-Qadisiyah, College of education,Al-Qadisiya,Iraq,
${ }^{2}$ Department of Mathematics University of Baghdad, College of Education for Pure Sciences (Ibn-Al-Haitham), University of Baghdad, Iraq

Received: 30/8/2020
Accepted: 10/10/2020

$$
\begin{aligned}
& \text { Abstract } \\
& \text { In this paper, we introduce a type of modules, namely S-K-nonsingular modules, } \\
& \text { which is a generalization of } \mathrm{K} \text {-nonsingular modules. A comprehensive study of } \\
& \text { these classes of modules is given. } \\
& \text { Keywords: Nonsingular modules, S- K-nonsingular modules. } \\
& \text { AMS Subject Classification :16D50, 16D80, 16E50, 16E60, 16D40. } \\
& \text { S-K المقاسات غير المنفردة من النمط } \\
& \text { (نعام ححج علي هادي ¹ , فرحان داخل شياع² }{ }^{2} \\
& \text { 1-قسم الرياضيات جامعة القاسية، كلية الترببية، القاسية، العراق، } \\
& \text { 2 قسم الرياضيات جامعة بغاد، كلية التربية للعلوم الصرفة (ابن الهيثم)، جامعة بغاده، العراق } \\
& \text { الخلاصة } \\
& \text { في هذا البحث نقدم نوع من المقاسات الغير المنغردة من النمط S-K والتي هي تعيم للمقاسات } \\
& \text { الغير منفرده من النهط K. دراسة مركزة اعطيت لهغا المقاس. }
\end{aligned}
$$

Introduction

Let M be a right R-module, where R is a ring with unity. A submodule N of M is called essential in M (denoted by $N \leq_{\text {ess }} M$). If $N \cap W=(0)$ and $W \leq M$, then $W=(0)$ [1]. Rizievi [2] introduced the concept of K-nonsingular modules, where an R-module M is called K-nonsingular if for each $f \in$ $\operatorname{End}(M), \operatorname{Ker}(f) \leq_{\text {ess }} M$, implies $f=0$. Ali and Younis [3] called an R-module M as an essentially quasi-Dedekind if $\operatorname{Hom}\left(\frac{M}{N}, M\right)=0$ for each $N \leq_{\text {ess }} M$. Also, they proved that K-nonsingular modules and essentially quasi-Dedekind modules are coinciding concepts. In this paper, we introduce a generalization of K-nonsingular module which we call S - K-nonsingular, where an R-module M is called S - K-nonsingular if for each $f \in \operatorname{End}(M), \operatorname{Ker}(f) \leq_{\text {ess }} M$, implies $f(M) \ll M$. A submodule N of M is small and denoted by $(N \ll M)$ if whenever $N+W=M, W \leq M$, then $W=M$ [4]. It is clear that the zero submodule is small, hence every K-nonsingular is S - K-nonsingular. However, the converse may be not true (see Remarks and Examples 1.2 [1].

This paper consists of three sections. In section one, we study the basic properties of $\mathrm{S}-\mathrm{K}$ nonsingular modules. In section two, we show that the direct summand of S - K-nonsingular is S - K nonsingular. The direct sum of $S-K$-nonsingular might not be true (Examples 3.4 [2]).Also, we show that, under certain conditions, the direct sum of S - K-nonsingular modules is S - K-nonsingular (Theorem 2.4, Proposition 2.5, Proposition 2.6, Theorem 2.7).
In section three, we show that if $E(M)$ (injective hull of module M) is an S - K-nonsingular, then M is

[^0]not necessarily an S - K-nonsingular. Also, we show that if M is a faithful finitely generated multiplication R-module, then M is S - K-nonsingular if R is S - K-nonsingular.
Note that $N \leq{ }^{\oplus} M$ (implies that N is a direct summand of M) and, for any $m \in M, r-a n n_{R}(m)$ implies that $\{r \in R: m(t)=0\}$ and $\operatorname{Im} f($ implies an image of $f)$.
Definition 1.1An R-module M is called S - K-nonsingular if for each $f \in \operatorname{End}(M), \operatorname{Ker}(f) \leq_{\text {ess }} M$ implies $f(M) \ll M$.

Remarks and Examples 1.2

1 - It is clear that every K-nonsingular module is S - K-nonsingular, but the converse is not true in general; for examples, each of the Z-modules Z_{4}, Z_{12} and $Z_{P} \infty$, where P is a prime number, is S - K nonsingular, but they are not K-nonsingularmodules.
2- Every hollow module M (that is, every submodule of M is small see) X is S - K-nonsingular.
3- Every Rickart module M is K-nonsingular and hence S - K-nonsingular, where M is called Rickart module if for each $f \in \operatorname{End}(M)$,
$\operatorname{Ker}(f) \leq^{\oplus} M[4, \mathrm{P} .21]$.
Proof: Let $f \in \operatorname{End}(M)$ with $\operatorname{Ker}(f) \leq_{\text {ess }} M$. Since M is Rickart, then $\operatorname{Ker}(f) \leq^{\oplus} M$. It follow that $\operatorname{Ker}(f)=M$, hence $f=0$ and M is K-nonsingular.
4- S - K-nonsingular modules need not to be Rickart modules; for example, Z_{4} as Z-module is S - K nonsingular and it is not Rickart.
5- If M is S - K-nonsingular and dual Rickart module, then M is K-nonsingular, where M is called dual Rickart if for each $f \in \operatorname{End}(M), \operatorname{Im}(f) \leq^{\oplus} M$ [4,P.21].
Proof: Let $f \in \operatorname{End}(M)$ and $\operatorname{Ker}(f) \leq_{\text {ess }} M$. To prove that $f=0$, we state that since M is S - K nonsingular, then $f(M) \ll M$. But M is a dual Rickart, then $f(M) \leq^{\oplus} M$, so that $f(M)=0$, that is $f=0$.
6- For any R-module $M, \frac{M}{Z_{2}(M)}$ is nonsingular, so it is K-nonsingular, which implies that S - K nonsingular, where $Z_{2}(M)$ is the second Z_{2}-torsion submodule of M.
7- Let M be an R-module with $\operatorname{RadM}=0$. Then M is S - K-nonsingular if and only if M is K nonsingular.
Proof: \Leftarrow It is clear by (1).
\Rightarrow Let $f \in \operatorname{End}(M)$ and $\operatorname{Ker}(f) \leq_{\text {ess }} M$. Since M is S - K-nonsingular, then $f(M) \ll M$. Hence $f(M) \leq \operatorname{RadM}=0$. Thus $f=0$.
8- Every nonsingular module is K-nonsingular [5], hence it is S - K-nonsingular.
9- Every polyform module is K-nonsingular, hence it is S - K-nonsingular, where a module M is said to be a polyform if for each $L \leq M$ and for any $0 \neq \varphi: L \mapsto M, \operatorname{Ker} \varphi \not_{\text {ess }} L$ [6, P.44].
The following Proposition is a characterization of S - K-nonsingular module.
Proposition 1.3: Let M be an R-module. Then M is S - K-nonsingular if and only if for each $f \in$ $\operatorname{Hom}\left(\frac{M}{N}, M\right), N \leq_{e s s} M$, implies $f(M) \ll M$.
Proof: \Rightarrow Let $N \leq_{e s s} M$ and $f \in \operatorname{Hom}\left(\frac{M}{N}, M\right)$. Then $g=f \circ \pi \in \operatorname{End}(M)$, where π is the natural projection from M to M / N. $N \leq \operatorname{Kerg}$, so $\operatorname{Kerg} \leq_{e s s} M$. But M is S - K-nonsingular, implies $g(M) \ll M$, that is $f\left(\frac{M}{N}\right) \ll M$.
\Leftarrow Let $f \in \operatorname{End}(M)$ such that $\operatorname{Ker}(f) \leq_{\text {ess }} M$. f induces $\widehat{f}: \frac{M}{\operatorname{Ker}(f)} \longmapsto M$ by $\hat{f}(m+\operatorname{Ker}(f))=f(m)$ for each $m \in M$. By hypothesis, $\widehat{f}\left(\frac{M}{\operatorname{Ker}(f)}\right) \ll M$. It follows that $f(M) \ll M$ and M is $S-K-$ nonsingular.
Corollary 1.4: Let M be a S - K-nonsingular. If $N \leq_{e s s} M$, then $M r \ll M$ for each $r \in \operatorname{ann}(N)$.
Recall that for an R-module $M, Z^{k}(M)=\sum_{\varphi \in S} \operatorname{Im} \varphi$ and $\operatorname{Ker} \varphi \leq_{e s s} M . M$ is K-nonsingular if and only if $Z^{k}(M)=0[6,2964]$.
We have the following.
Proposition 1.5: For an R-module M, M is S - K-nonsingular if $Z^{k}(M) \ll M$ and the converse holds if M satisfies the ascending chain condition on small submodules.
Proof: Let $\varphi \in S$ and $\operatorname{Ker} \varphi \leq_{e s s} M$. By the definition of $Z^{k}(M), \operatorname{Im} \varphi \leq Z^{k}(M) \ll M$. Hence $\operatorname{Im} \varphi \ll M$. Thus M is $S-K$-nonsingular.

Conversely, since M satisfies the ascending chain condition on small submodules, then $\operatorname{RadM} \ll$ M [7, Theorem 3.1].
Hence. for $\varphi \in S$, with $\operatorname{Ker} \varphi \leq_{\text {ess }} M$, then $\operatorname{Im} \varphi \ll M$. It follows that $Z^{k}(M)=\sum_{\varphi \in S, \operatorname{Ker} \varphi \leq_{\text {ess }} M} \operatorname{Im} \varphi \leq \operatorname{RadM} \ll M$. Thus $Z^{k}(M)$ is a small submodule.
Remark 1.6: If $Z(M) \ll M$, then M is S - K-nonsingular.
Proof: Since $Z^{k}(M) \leq Z(M)\left[5\right.$, Proposition 2.11] and $Z(M) \ll M$, then $Z^{k}(M) \ll M$ and hence M is S - K-nonsingular, by Proposition 1.5.
Example 1.7: Let $M=Q \oplus Z_{4}$ as Z-module and $Z(M)=(0) \oplus(\overline{2}) \ll M$. By Remark $1.6, M$ is $S-K-$ nonsingular. Also, M is not K-nonsingular since, if so, then Z_{4} (direct summand of M) is K nonsingular, which is a contradiction.
Recall that an R-module is essentially prime if $\operatorname{ann}_{R} M=a n n_{R} N$ for each $N \leq_{\text {ess }} M$ [3].
Proposition 1.8: Let M be a divisible R-module (where R is an integral domain). If M is $S-K$ nonsingular, then M is essentially prime.
Proof: Assume that $N \leq_{\text {ess }} M$ and $a n n M \subsetneq a n n N$, that is, there exists $a \in a n n N$ and $a \notin a n n M$. Thus $a N=0$ and $a M \neq 0$. But M is divisible, so $a M=M$. Define $f: M \mapsto M$ by $f(m)=a m$ for each $m \in M$. It is clear that f is a well-defined R-homomorphism. Since $\operatorname{Ker}(f) \supseteq N \leq_{\text {ess }} M$ and M is S - K-nonsingular, then $f(M) \ll M$, which is a contradication, since $f(M)=a M=M$. Thus $\operatorname{annM}=\operatorname{ann} N$ for each $N \leq_{\text {ess }} M$.
Remark 1.9: Essentially prime modules need not to be S - K-nonsingular; for example, $M=Z \oplus Z_{2}$ as Z-module is an essentially prime [3], but M is not S - K-nonsingular.
Recall that an R-module M is called a SQD-module if every nonzero submodule N of M is a SQDsubmodule of M, that is, for each $f \in \operatorname{Hom}\left(\frac{M}{N}, M\right), f\left(\frac{M}{N}\right) \ll M$ ’[9]. By applying Proposition 1.3 , we have immediately the following.
Remark 1.10: Every SQD-module is S - K-nonsingular. However, the convers is not true; for example, the Z-module $Z \oplus Z$ is K-nonsingular (hence S - K-nonsingular) but it is not SQD-module [8].
The following Theorem is a characterization for S - K-nonsingular rings.
Theorem 1.11: For a ring R, R is S - K-nonsingular if and only if, for each ideal I in $R, I \leq_{\text {ess }} R$, implies $a n n_{R} I \ll R$.
Proof: \Rightarrow Suppose that $a n n_{R} I+J=R$ for some ideal J of R. Then $1=a+b$ for some $a \in$ $\operatorname{ann}_{R} I, b \in J$. Define $f: R \mapsto R$ by $f(a)=r a$ for each $r \in R . f$ is a well-defined homomorphism. $f(I)=I a=0$, so that $I \leq \operatorname{Ker}(f)$. Hence $\operatorname{Ker}(f) \leq_{\text {ess }} R$, since $I \leq_{\text {ess }} R$. Now, by $S-K-$ nonsingular of $R, f(R) \ll R$; that is $R a \ll R$. But $R=R a+R b$, so $R=R b$ and this implies that $1=t b$ for some $t \in R$. Thus $1 \in J$ and hence $J=R$ and $\operatorname{ann}(I) \ll R$.
\Leftarrow Let $f \in \operatorname{End}(R)$ with $\operatorname{Ker}(f) \leq_{\text {ess }} R$. To prove that $f(R) \ll R$, since $f \in \operatorname{End}(R)$, then there exists $a \in R, a \neq 0$ such that $f(r)=r a$, for all $r \in R$. Hence $f(R)=R a$ and $\operatorname{Ker}(f)=$ $a n n_{R}(a) \leq_{\text {ess }} R$. By the condition, $\operatorname{ann}_{R}(\operatorname{Ker}(f))=a n n_{R}(\operatorname{ann}(a)) \ll R$. Thus $f(R) \ll R$.
Corollary 1.12: For a ring R, R is S - K-nonsingular if and only if, for each $f \in \operatorname{End}(R)$, there exists $a \in R, a n n_{R}(a) \leq_{\text {ess }} R$, implies $(a) \ll R$.
2. Direct summand of \boldsymbol{S} - \boldsymbol{K}-nonsingular modules and direct sum of \boldsymbol{S} - \boldsymbol{K}-nonsingular modules

First we have the following.
Proposition 2.1: A direct summand of S - K-nonsingular R-module is a S - K-nonsingular module.
Proof: Let M be a S - K-nonsingular module, $W \leq{ }^{\oplus} M$. Then $W \oplus U=M$ for some $U \leq M$. To prove that W is a S - K-nonsingular, suppose that $f \in \operatorname{End}(W)$ and $\operatorname{Ker}(f) \leq_{\text {ess }} W$. Since $\operatorname{End}(M)=$ $\left(\begin{array}{cc}\operatorname{End}(W) & \operatorname{Hom}(U, W) \\ \operatorname{Hom}(W, U) & \operatorname{End}(U)\end{array}\right)$, take $g=\left(\begin{array}{ll}f & 0 \\ 0 & 0\end{array}\right)$, then $\operatorname{Kerg}=\operatorname{Ker}(f) \oplus U \leq_{\text {ess }} W \oplus U=M$. But M is S - K-nonsingular, hence $g(M) \ll M$ and so $f(W) \oplus(0) \ll W \oplus U$. Thus $f(W) \ll W$ and W is $S-K-$ nonsingular.
Remark 2.2: The direct sum of two S - K-nonsingular modules needs not to be S - K-nonsingular (see Example 3.4(2)).
Proposition 2.3: Let M be indecomposable S - K-nonsingular which has a maximal essential submodule N. Then $M \oplus \frac{M}{N}$ is not S - K-nonsingular, but M and $\frac{M}{N}$ are S - K-nonsingular.
Proof: Suppose that $M \oplus \frac{M}{N}$ is S - K-nonsingular, and let $\varphi \in \operatorname{End}\left(M \oplus \frac{M}{N}\right)$ defined by $\varphi(m, \bar{n})=$
$(0, \bar{m})$. Thus $\operatorname{Ker} \varphi=N \oplus \frac{M}{N} \leq_{\text {ess }} M \oplus \frac{M}{N}$, so that $\varphi\left(M \oplus \frac{M}{N}\right)=(0) \oplus \frac{M}{N} \ll M \oplus \frac{M,}{N}$ which is a contradiction. Thus $M \oplus \frac{M}{N}$ is not S - K-nonsingular, but it is clear that M and $\frac{M}{N}$ are S - K-nonsingular.
Recall that a submodule N of an R-module M is fully invariant if for each $f \in \operatorname{End}(M), f(N) \subseteq N . M$ is called Duo if every submodule is fully invariant [8].
Theorem 2.4: Let a module $M=M_{1} \oplus M_{2}$ where M_{1} and M_{2} are fully invariant submodules of M. Then M is S - K-nonsingular if and only if
1- M_{i} is S - K-nonsingular modules for each $i \in\{1,2\}$.
2- $\operatorname{Hom}\left(M_{i}, M_{j}\right)=0$ for each $i \neq j$.
Proof: \Rightarrow The condition (1) holds by Proposition 2.1 and condition (2) holds by [10, Lemma 1.9].
$\Leftarrow \operatorname{End}(M)=\left(\begin{array}{cc}\operatorname{End}\left(M_{1}\right) & \operatorname{Hom}\left(M_{2}, M_{1}\right) \\ \operatorname{Hom}\left(M_{1}, M_{2}\right) & \operatorname{End}\left(M_{2}\right)\end{array}\right)$. Hence $\operatorname{End}(M)=\left(\begin{array}{cc}\operatorname{End}\left(M_{1}\right) & 0 \\ 0 & \operatorname{End}\left(M_{2}\right)\end{array}\right)$ by condition (2). Let $f \in \operatorname{End}(M)$, then $f=\left(\begin{array}{cc}f_{1} & 0 \\ 0 & f_{2}\end{array}\right)$ for some $f_{1} \in \operatorname{End}\left(M_{1}\right), f_{2} \in \operatorname{End}\left(M_{2}\right)$, and let $\operatorname{Ker}(f) \leq_{\text {ess }} M=M_{1} \oplus M_{2}$. Since $\quad \operatorname{Ker}(f)=\operatorname{Kerf} f_{1} \oplus \operatorname{Ker}(f)_{2}, \quad$ then $\quad \operatorname{Ker} f_{1} \leq_{\text {ess }} M_{1}$, $\operatorname{Kerf}_{2} \leq_{\text {ess }} M_{2}$. Then by condition (1), $f_{1}\left(M_{1}\right) \ll M_{1}, f_{2}\left(M_{2}\right) \ll M_{2}$, so that $f(M)=f_{1}\left(M_{1}\right) \oplus f_{2}\left(M_{2}\right) \ll M_{1} \oplus M_{2}=M$.
Proposition 2.5: Let M be a direct sum of R-modules M_{1} and M_{2}, and let $a n n_{R} M_{1} \oplus a n n_{R} M_{2}=R$. Then M is S - K-nonsingular module if and only if M_{1} and M_{2} are S - K-nonsingular modules.
Proof: \Rightarrow It follows by Proposition 2.1.
$\Leftarrow \quad \operatorname{End}(M)=\left(\begin{array}{cc}\operatorname{End}\left(M_{1}\right) & \operatorname{Hom}\left(M_{2}, M_{1}\right) \\ \operatorname{Hom}\left(M_{1}, M_{2}\right) & \operatorname{End}\left(M_{2}\right)\end{array}\right) . \quad$ Since $\quad \operatorname{ann}_{R} M_{1} \oplus \operatorname{ann} n_{R} M_{2}=R, \quad$ then
$\operatorname{Hom}\left(M_{2}, M_{1}\right)=0 \quad$ and $\quad \operatorname{Hom}\left(M_{1}, M_{2}\right)=0 \quad$ by $\quad[10, \quad \operatorname{Lemma}$ 2.7]. Thus $\operatorname{End}(M)=\left(\begin{array}{cc}\operatorname{End}\left(M_{1}\right) & 0 \\ 0 & \operatorname{End}\left(M_{2}\right)\end{array}\right)$. Let $f \in \operatorname{End}(M)$, with $\operatorname{Ker}(f) \leq_{\text {ess }} M$. Then we get $f(M) \ll$ M (by the same procedure of Theorem 2.4.
Recall that M is an abelian module if all idempotent endomorphism commutes with any endomorphism [2, Definition 4.2.1]. Equivalently, every direct summand of M is fully invariant [5, Theorem 4.6].
Proposition 2.6: Let M be abelian module and $M=M_{1} \oplus M_{2}$ where $M_{1}, M_{2} \leq M$. Then M is $S-K$ nonsingular if and only if M_{1} and M_{2} are S - K-nonsingular.
Proof: Since M is abelian, then M_{1} and M_{2} are fully invariant submodules and so $\left(M_{1}, M_{2}\right)=0$, $\operatorname{Hom}\left(M_{2}, M_{1}\right)=0$, by [9, Lemma 1.9]. Thus the result follows by Theorem 2.4.
Theorem 2.7: Let $M=\oplus M_{i}(I$ is an index set $)$ be a direct sum of modules $M_{i}(i \in I)$ such that M is duo. Then M is S - K-nonsingular if and only if M_{i} is $S-K$-nonsingular, for each $i \in I$.
Proof: $\Leftarrow \operatorname{Let} f \in \operatorname{End}(M)$ and $\operatorname{Ker}(f) \leq_{\text {ess }} M$. Then $\operatorname{Ker}(f)$ is fully invariant in M (since M is duo). It follows that $\operatorname{Ker}(f)=\oplus_{i \in I}\left(\operatorname{Ker}(f) \cap M_{i}\right.$. Define $f_{i}: M_{i} \mapsto M$ by $f_{i}=f \|_{M_{i}}$ for each i. It is easy to see that $\operatorname{Ker}(f)_{i}=\operatorname{Ker}(f) \cap M_{i} \leq_{\text {ess }} M \cap M_{i}=M_{i}$. But M_{i} is S - K-nonsingular for each $i \in I$, hence $f_{i}\left(M_{i}\right) \ll M_{i}$ for each $i \in I$.
Since $f(M)$ is a submodule of M and M is a duo module, then $f(M)=\oplus_{i \in I}\left(f(M) \cap M_{i}\right)$. It is easy to check that $f_{i}\left(M_{i}\right)=f(M) \cap M_{i}$ for each $i \in I$. Thus $f(M)=\oplus_{i \in I} f_{i}\left(M_{i}\right)$. Moreover, since M_{i} is S -K-nonsingular, then $f_{i}\left(M_{i}\right) \ll M_{i}$ for each $i \in I$. It follows that $f(M)=\oplus_{i \in I} f_{i}\left(M_{i}\right) \ll \oplus M_{i}=M$ and, hence, M is $S-K$-nonsingular.
\Rightarrow It follows by Proposition 2.1.
Definition 2.8: An R-module M is called S - K-nonsingular relative to an R-module W if for each $f \in \operatorname{Hom}(M, W), \operatorname{Ker}(f) \leq_{\text {ess }} M$, implies $\operatorname{Im} f \ll W$.

Remarks and Examples 2.9

1- Every $S-K$-nonsingular module M is a $S-K$-nonsingular relative to M.
2- The Z-module Q is S - K-nonsingular relative to Z-module Z. Z-module Z is not S - K-nonsingular relative to Z-module Z_{2}.
3- Let M_{1} and M_{2} be two R-modules such that M_{1} is S - K-nonsingular relative to $M_{1} \oplus M_{2}$. Then M_{1} is S - K-nonsingular.
Proof: Let $f \in \operatorname{End}\left(M_{1}\right)$ and $\operatorname{Ker}(f) \leq_{\text {ess }} M_{1}$. Then $i \circ f \in \operatorname{Hom}\left(M_{1}, M_{1} \oplus M_{2}\right)$ where i is the inclusion mapping from M_{1} to $M_{1} \oplus M_{2}$. Then $\operatorname{Ker}(i \circ f) \leq_{\text {ess }} M_{1}$ and so $(i \circ f)\left(M_{1}\right) \leq_{\text {ess }} M_{1} \oplus M_{2}$,
since M_{1} is S - K-nonsingular relative to $M_{1} \oplus M_{2}$. Hence $f\left(M_{1}\right) \ll M_{1} \oplus M_{2}$. But $f\left(M_{1}\right) \leq$ $M_{1} \leq{ }^{\oplus} M_{1} \oplus M_{2}$. Thus $f\left(M_{1}\right) \ll M_{1}$ and M_{1} is S - K-nonsingular.
4- $\quad Z_{12}$ is not S - K-nonsingular relative to Z_{6}, since there exists $f: Z_{12} \mapsto Z_{6}$ defined by $f(\bar{x})=$ $\left\{\begin{array}{ll}\overline{0} & \text { if } x \in(\overline{2}) \\ \overline{3} \text { otherwise }\end{array}\right.$. Hence $\operatorname{Ker}(f)=(\overline{2}) \leq_{\text {ess }} Z_{12}$, but $\operatorname{Im} f=\{\overline{0}, \overline{3}\}$ is not small on Z_{6}.
Theorem 2.10: Let $M=M_{1} \oplus M_{2}$. Then M is an S - K-nonsingular module if and only if $M_{i} S-K-$ nonsingular relative to M_{j}, for each $j \in\{1,2\}$.
Proof: $\Rightarrow M_{1}$ and M_{2} are S - K-nonsingular modules by Proposition 2.1, that is, M_{1} is S - K-nonsingular relative to M_{1} and M_{2} is S - K-nonsingular relative to M_{2}. To prove that M_{1} is S - K-nonsingular relative to M_{2}, suppose that $f \in \operatorname{Hom}\left(M_{1}, M_{2}\right)$ and $f\left(M_{1}\right) \nless<M_{2}$. Then $h=i \circ f \circ \rho$, where i is the inclusion mapping from M_{2} to M and ρ is the natural projection from M to $M_{1} . h(M)=(i \circ f \circ$ $\rho)(M)=f\left(M_{1}\right)$, hence $h(M) \nless \nless M$ (because if $\left.h(M) \ll M\right)$, then $f\left(M_{1}\right) \ll M$, but $f\left(M_{1}\right) \leq$ $M_{2} \leq^{\oplus} M$, so $f\left(M_{1}\right) \ll M_{2}$, which is a contradiction. Since $M S$ - K-nonsingular, then Kerh $\Varangle_{\text {ess }} M$. On the other hand, $\operatorname{Ker}(f)=\operatorname{Kerh}$ implies $\operatorname{Ker}(f) \not_{\text {ess }} M$. It follows that $\operatorname{Ker}(f) \not \not_{\text {ess }} M_{1}$, since if $\operatorname{Ker}(f) \leq_{\text {ess }} M_{1}$, then $\operatorname{Kerh}=\operatorname{Ker}(f) \oplus M \leq_{\text {ess }} M_{1} \oplus M_{2}=M$, which is a contradiction. So, $\operatorname{Ker}(f) \not_{\text {ess }} M_{1}$ and M_{1} is S - K-nonsingular module relative to M_{2}.
Similarly, M_{2} is $S-K$-nonsingular module relative to M_{1}.
\Leftarrow Let $\psi \in \operatorname{End}(M)$ and $\operatorname{Ker}(\psi) \leq_{e s s} M$. To prove that $\psi(M) \ll M$, let $\psi_{1}=\left.\psi\right|_{M_{1}}: M_{1} \mapsto M$ defined by $\psi_{1}(x)=\psi(x, 0)$ for each $x \in M_{1} . \operatorname{Ker} \psi_{1}=\operatorname{Ker} \psi \cap M_{1} \leq_{e s s} M \cap M_{1}=M_{1} . \rho_{1} \circ \psi_{1} \in$ $\operatorname{End}\left(M_{1}\right)$ and $\rho_{2} \circ \psi_{1} \in \operatorname{Hom}\left(M_{1}, M_{2}\right)$, where ρ_{1} is the natural projection from M onto M_{1} and ρ_{2} is the natural projection from M onto M_{2}. Then
$\operatorname{Ker} \psi_{1} \leq \operatorname{Ker}\left(\rho_{1} \circ \psi_{1}\right) \cap \operatorname{Ker}\left(\rho_{2} \circ \psi_{1}\right)$. But $\operatorname{Ker} \psi_{1} \leq_{e s s} M$ and $\operatorname{Ker} \psi_{1} \leq M_{1}$, so $\operatorname{Ker} \psi_{1} \leq_{e s s} M_{1}$. It follows that $\operatorname{Ker}\left(\rho_{1} \circ \psi_{1}\right) \leq_{\text {ess }} M_{1}$ and $\operatorname{Ker}\left(\rho_{2} \circ \psi_{1}\right) \leq_{e s s} M_{2}$. But M_{1} is $S-K$-nonsingular and M_{1} is S - K-nonsingular module relative to M_{2}, hence $\rho_{1} \circ \psi_{1}\left(M_{1}\right) \ll M_{1}$ and $\rho_{2} \circ \psi_{1}\left(M_{1}\right) \ll M_{2}$.
Similarly $\rho_{1} \circ \psi_{2}\left(M_{2}\right) \ll M_{1}$ and $\rho_{2} \circ \psi_{2}\left(M_{2}\right) \ll M_{2}$, where ρ_{1} and ρ_{2} are the natural projections from M_{1} onto M_{1} and $M_{2}, \psi_{2}=\left.\psi\right|_{M_{2}}: M_{2} \mapsto M$. Thus $\psi(M)=\sum_{i=1,2}\left(\rho_{j} \circ \psi_{i}\right)\left(M_{i}\right) \ll M_{1} \oplus M_{2}=$ M. Therefore, M is S - K-nonsingular.
Proposition 2.11: Let M and M^{\prime} be two R-modules and $f \in \operatorname{Hom}\left(M, M^{\prime}\right)$ such that f is onto. If M is S - K-nonsingular relative to M^{\prime}, then M^{\prime} is $S-K$-nonsingular.
Proof: Let $g \in \operatorname{End}\left(M^{\prime}\right)$ and $\operatorname{Kerg} \leq_{e s s} M^{\prime}$. Then $g \circ f \in \operatorname{Hom}\left(M, M^{\prime}\right)$ and $\operatorname{Ker}(g \circ f) \leq_{e s s} M$. But M is S - K-nonsingular relative to M^{\prime}, so $(g \circ f)(M) \ll M^{\prime}$, that is $g\left(M^{\prime}\right) \ll M^{\prime}$. Thus, M^{\prime} is $S-K$ nonsingular.
Proposition 2.12: Let M be S - K-nonsingular quasi-injective. Then for each $N \leq_{\text {ess }} M, N$ is $S-K-$ nonsingular relative to M.
Proof: Let $f \in \operatorname{Hom}(N, M)$ with $\operatorname{Ker}(f) \leq_{\text {ess }} N$. As $N \leq_{e s s} M$, then $\operatorname{Ker}(f) \leq_{\text {ess }} M$. Since M is quasi-injective, then there exists $g \in \operatorname{End}(M)$ such that $g \circ i=f$, where i is an inclusion mapping from N into M. But it is clear that $\operatorname{Ker}(f) \leq \operatorname{Kerg}$, so $\operatorname{Kerg} \leq_{e s s} M$ and by S - K-nonsingularity of M ,$g(M) \ll M$. It follows that $g \circ i(N)=g(N) \leq g(M)$ and $g(N) \ll M$. Besides that, $f(N)=g(N)$ so that $f(N) \ll M$ and N is S - K-nonsingular relative to M.
Corollary 2.13: Let M be an R-module. If \bar{M} (quasi-injective hull of M) is S - K-nonsingular, then M is S - K-nonsingular relative to \bar{M}.
Theorem 2.14: Let M be a S - K-nonsingular R-module such that $\operatorname{Rad} M \ll M$. Then M is $S-K$ nonsingular relative to the ring R_{R}.
Proof: Let $f \in \operatorname{Hom}(M, R)$ and $(f) \leq_{\text {ess }} M$. Suppose that $f(M)+J=R$ for some ideal J of R. Hence $1=f(x)+j$ for some $x \in M$ and $j \in J$. Now, for any $m \in M$, define $g_{m}: R \mapsto M$ by $g_{m}(r)=r m$, for each $r \in R g$, as a well-defined homomorphism. It follows that $g_{m} \circ f \in \operatorname{End}(M)$. Since $\operatorname{Ker}\left(g_{m} \circ f\right) \supseteq \operatorname{Ker}(f)$, then $\operatorname{Ker}\left(g_{m} \circ f\right) \leq_{\text {ess }} M$. Hence $\left(g_{m} \circ f\right)(M) \ll M$, since M is $S-K-$ nonsingular, and, hence, for each $m \in M, m f(M) \ll M$. This implies that $\sum_{m \in M} m f(M) \leq \operatorname{RadM} \ll$ M. Hence $M f(M) \ll M$ and so $M f(x) \ll M$. But $1=f(x)+j$, so that $M=M f(x)+M j$. It follows that $M j=M$, hence $x=y \mathrm{j}$ for some $y \in M$ and so $1=f(y j)+j=f(y) j+j \in J$. Thus $J=R$ and $f(M) \ll R$.
3. Additional features of \boldsymbol{S} - \boldsymbol{K}-nonsingular modules

Remark 3.1: For an R-module M, if M is S-K-nonsingular, then $N \leq M$. Then, this shows that M / N is
not necessarily $S-K$-nonsingular, as in the following example.
Example 3.2: $M=Z \oplus Z$, as the Z-module is an S - K-nonsingular module. Let $N=(\overline{0}) \oplus(\overline{2}) \leq M$. Then $\frac{M}{N} \simeq Z \oplus Z_{2}$, which is not S - K-nonsingular, since if $f \in \operatorname{End}(M)$ then $f(x, \bar{y})=(0, \bar{x})$, $\operatorname{Ker}(f)=2 Z \oplus Z_{2} \leq_{\text {ess }} M$. But $f(M)=(0) \oplus Z_{2} \nless \nless M$.
Proposition 3.3: Let M be an S - K-nonsingular module such that $\frac{M}{K}$ is projective for each $K \leq_{e s s} M$. Then $\frac{M}{N}$ is S - K-nonsingular for each $N \leq M$.
Proof: Let $\frac{U}{N} \leq_{\text {ess }} \frac{M}{N}$ and $f \in \operatorname{Hom}\left(\frac{M / N}{U / N}, \frac{M}{N}\right)$. Since $\frac{U}{N} \leq_{e s s} \frac{M}{N}$, then $U \leq_{\text {ess }} M$. On the other hand, $\operatorname{Hom}\left(\frac{M / N}{U / N}, \frac{M}{N}\right) \simeq \operatorname{Hom}\left(\frac{M}{U}, \frac{M}{N}\right)$ that is $f \in \operatorname{Hom}\left(\frac{M}{U}, \frac{M}{N}\right)$, but $\frac{M}{U}$ is projective, so there exist $g \in \operatorname{Hom}\left(\frac{M}{U}, M\right)$ and $\pi \circ g=f$ where π is the natural projection from M to $\frac{M}{N}$. Also, $g\left(\frac{M}{U}\right) \ll M$ by Proposition 1.3, so that $(\pi \circ g)\left(\frac{M}{U}\right) \ll \frac{M}{N}$ and hence $f\left(\frac{M}{U}\right) \ll \frac{M}{N}$. Therefore, $\frac{M}{N}$ is S - K-nonsingular.
It is known that if M is an R-module, such that $E(M)$ (the injective hull of M) is K-nonsingular, then M is K-nonsingular [12, Proposition 2.18]. However, the $S-K$-nonsingular of $E(M)$ is not inherited by M (see example 3.4). Also, if M is K-nonsingular, then $E(M)$ is not necessarily K-nonsingular [5, Example 2.19].

Examples 3.4

1- By Example 2.3, $M=Z \oplus Z_{2}$, as the Z-module is not S - K-nonsingular.
$E(M)=Q \oplus Z_{2}{ }^{\infty}$. Since $\operatorname{Hom}\left(Q, Z_{2} \infty\right)=0$ and $\operatorname{Hom}\left(Z_{2} \infty, Q\right)=0$, then $S=\operatorname{End}(M)=$ $\left(\begin{array}{cc}E n d Q & 0 \\ 0 & Z_{2^{\infty}}\end{array}\right)$. Assume that $f \in S$, hence $f=\left(\begin{array}{cc}f_{1} & 0 \\ 0 & f_{2}\end{array}\right)$ where $f_{1} \in \operatorname{End}(Q), \in f_{2} \operatorname{End}\left(Z_{2} \infty\right)$, and $\operatorname{Ker}(f) \leq_{\text {ess }} E(M)$. But $\operatorname{Ker}(f)=\operatorname{Kerf}_{1} \oplus \operatorname{Ker} f_{2}$, so $\operatorname{Kerf}_{1} \leq_{\text {ess }} Q$ and $\operatorname{Kerf} f_{2} \leq_{\text {ess }} Z_{2}{ }_{2}$. Since Q and $Z_{2^{\infty}}$ are S - K-nonsingular modules, then $f_{1}(Q) \ll Q$ and $\left.f_{2}\left(Z_{2}{ }^{\infty}\right) \ll Z_{2^{\infty}}\right)$. Hence $f(M)=$ $f_{1}(Q) \oplus f_{2}\left(Z_{2}{ }^{\infty}\right) \ll Q \oplus Z_{2}{ }^{\infty}=E(M)$, so that $E(M)$ is S - K-nonsingular.
2- Let $M=Z_{p} \infty \oplus Z_{P} \quad$ as a $\quad Z$-module that is not S - K-nonsingular. $\operatorname{End}(M)=\left(\begin{array}{cc}\operatorname{End}\left(Z_{p^{\infty}}\right) & \operatorname{Hom}\left(Z_{P}, Z_{p^{\infty}}\right) \\ 0 & Z_{P}\end{array}\right) . \operatorname{Let}=\left(\begin{array}{cc}P^{2} & 0 \\ 0 & 0\end{array}\right) \in \operatorname{End}(M) \operatorname{Ker} \varphi \simeq Z_{p^{2}} \oplus Z_{P} \leq_{\text {ess }} M$, but $\varphi(M)=Z_{p^{\infty}} \oplus 0 \nless<4$. Also, $E(M)=Z_{p} \infty \oplus Z_{p^{\infty}}$ is S - K-nonsingular.
Now we ask if $M S$ - K-nonsingular. Then $E(M)$ a S - K-nonsingular. However we have the following:

Remark 3.5

1- Let M be a nonsingular (hence M is S - K-nonsingular). Then $E(M)$ is $-K$-nonsingular.
Proof: Since M nonsingular, then this implies that $E(M)$ is nonsingular. Hence $E(M)$ is $S-K-$ nonsingular.
2- Let M be a polyform extending module. Then \bar{M} (quasi-injective hull of M) is S - K-nonsingular.
Proof: By [4, Proposition 2.4.22], $\bar{M} \oplus M$ is a Rickart module, so it is S - K-nonsingular by Remarks and Examples 1.2(3). Hence \bar{M} is S - K-nonsingular by Proposition 2.1.
3- Let R be a polyform ring. Then $E(R)$ is an S - K-nonsingular R-module.
Proof: R is polyform, implies R is nonsingular by [5, Proposition 2.7]. Hence $E(R)$ is nonsingular and so (R) is S - K-nonsingular.
4- Let M be a prime R-module. Then \bar{M} is S - K-nonsingular.
Proof: Since M is prime, then \bar{M} is polyform. Hence \bar{M} is S - K-nonsingular by Remarks and Examples 1.2(9).

Recall that an R-module M is multiplication if, for each $N \leq M$, there exists an ideal I of R such that $N=M I$ [3].
Theorem 3.6: Let M be a finitely generated faithful multiplication R-module. Then M is $S-K-$ nonsingular if and only if R is S - K-nonsingular, where R is a commutative ring .
Proof: \Rightarrow Let $f \in \operatorname{End}(R)$ with $\operatorname{Ker}(f) \leq_{\text {ess }} R$. Then there exists $r \in R$ such that $f(a)=a r$ for each $a \in R$. Hence $\operatorname{Ker}(f)=\operatorname{ann}_{R}(r) \leq_{\text {ess }} R$. Define $g: M \mapsto M$ by $g(m)=m r$ for each $m \in M . g$ is well-defined homomorphism and $\operatorname{Kerg}=\underset{\operatorname{ann}}{M}(r)$. But, since M is a faithful multiplication finitely generated module, then $\operatorname{ann}_{M}(r)=\operatorname{Mann}_{R}(r)$ and hence $a n n_{M}(r) \leq_{\text {ess }} M$ [3, Theorem 2.13], that
is $\operatorname{Kerg} \leq_{\text {ess }} M$. But M is S - K-nonsingular, so that $g(M)=M r \ll M$. It follows that $<r>=$ $f(R) \ll R$ [12, Proposition 1.1.8]. Thus R is S - K-nonsingular.
\Leftarrow Let $f \in \operatorname{End}(M)$ with $\operatorname{Ker}(f) \leq_{\text {ess }} M$. Since M is a finitely generated multiplication, then there exists $r \in R$ such that $f(m)=m r$, for each $m \in M$.
Define $g: R \mapsto R$ by $g(a)=r a$ for each $a \in R$. Then $\operatorname{Kerg}=a n n_{R}(r)$ and $g(R)=<r>$. But $\operatorname{Ker}(f)=\operatorname{ann}_{M}(r)=\operatorname{Mann}_{R}(r) \leq_{\text {ess }} M, \quad$ which implies that $\operatorname{Kerg}=\operatorname{ann}_{R}(r) \leq_{\text {ess }} M$ [3, Theorem 2.13]. It follows that $g(R)=<r>\ll R$ (since R is S - K-nonsingular). Thus $f(M)=M r \ll$ M [1. Proposition 1.1.8] and so M is S - K-nonsingular.
Corollary 3.7: Let M be a faithful finitely generated multiplication R-module (where R is a commutative ring) . Then the followings are equivalent:
1 - $\quad M$ is a S - K-nonsingular module;
2- $\quad R$ is a S - K-nonsingular ring;
3- $\quad \operatorname{End}(M)$ is a S - K-nonsingular ring;
4- \quad For each $N \leq_{\text {ess }} M$, ann $N \ll R$;
5- \quad For each $I \leq_{\text {ess }} R$, annI $\ll R$.
Proof: $(1) \Leftrightarrow(2)$ It follows by Theorem 3.6.
$(2) \Leftrightarrow(3)$ Since M is a finitely generated faitful multiplication module, then $\operatorname{End}(M) \simeq \frac{R}{\operatorname{ann(M)}} \simeq R$ and so the result is obtained.
(2) $\Leftrightarrow(5)$ It follows by Theorem 2.11.
(5) \Rightarrow (4) Let $N \leq_{\text {ess }} M$. Since M is a faithful multiplication, then $N=M I$ for some essential ideal I of R [11, Theorem 2.13]. Also, $\operatorname{ann}_{R} N=a n n_{R} I$ because M is a faithful multiplication. By (5), $\operatorname{ann}_{R} I \ll R$, hence $a n n_{R} N \ll R$.
(4) \Rightarrow (5) Let $I \leq_{\text {ess }} R$. Then $N=M I \leq_{e s s} M$ [11, Theorem 2.13]. By (4), $a n n_{R} N \ll R$. But M is a faithful multiplication, so $a n n_{R} N=a n n_{R} I$. Thus $a n n_{R} I \ll R$.

Notice that $M=Z \oplus Z$ as Z-module is not a multiplication module and it is not S - K-nonsingular, but the ring Z is S - K-nonsingular.
Corollary 3.8: If M is a local faithful R-module, then R is a S - K-nonsingular.
Proof: Since M is local faithful, then M is hollow and cyclic. Hence M is S - K-nonsingular (by Remarks and Examples 1.2(2)) and, by Theorem 3.6, R is S - K-nonsingular.

References

1. Goodearl K.R.1976." Ring Theory, Non Singular Rings and Modules ,Marcel Dekker, Inc. New York and Basel,.
2. Roman C.S., 2004 ." Baer and Quasi-Baer Modules.", Ph.D.Thesis, M.S, Graduate, School of Ohio, State University.
3. Inaam Mohammed Ali and Tha'ar Younis., 2011. Essentially prime Modules and Related. 37(4): 187-196.
4. Gangyong Lee, 2010. Theory Rickart Modules Ph.D.Thesis, M.S, Graduate, School of Ohio, State University,
5. Rizvi S.T., Roman C.S. 2007. " On K-nonsingular Modules and application.", Comm. In Algebra, 35: 2960-2982.
6. Dung N.V., and Huynh, D.V.Smith P.F. and Wisbauer R. 1994. Extending modules, Pitman Research Note in Math., Series 313 Longman Harlow.
7. Naoum A. G. and Hadi I.M. 1996. Module with a scending(Descending) Chain condition on small submodules, Iraqi.J.Sci, 37(3): 1085-1103.
8. Naoum A.G. and Inaam Mohammed Ali. 2002. SQI submodules and SQD modules, Iraqi J.Sci, 43.D(2): 43-53.
9. Ozcan, A.C. A. Harmanci and Smith. 2006. " Duo Modules", " Glasg. Math. J, 48(3): 533-545.
10. Inaam Mohammed Ali and Farhan D.Shyaa. 2017. Strongly t-semisimple modules and Strongly tsemisimple Rings. International Journal of Pure and Applied Mathematics, 15(1): 27-41.
11. El-Bast Z. A., Smith P. F.1988. "Multiplication Modules", Comm. In Algebra, 16: 755-779.
12. Athab I.A. 2004. "Some generalization of projective Modules ".Ph.D.Thesis, College of Science, University of Baghdad.

[^0]: *Email: farhan.shyaa@qu.edu.iq

