Shyaa and Hadi

Iraqi Journal of Science, 2021, Vol. 62, No. 4, pp: 1314-1320 DOI: 10.24996/ijs.2021.62.4.27

ISSN: 0067-2904

S-K-nonsingular Modules

Farhan Dakhil Shyaa*¹, Inaam Mohammed Ali Hadi²

¹Department of Mathematics University of Al-Qadisiyah, College of education, Al-Qadisiya, Iraq, ²Department of Mathematics University of Baghdad, College of Education for Pure Sciences (Ibn-Al-Haitham), University of Baghdad, Iraq

Received: 30/8/2020

Accepted: 10/10/2020

Abstract

In this paper, we introduce a type of modules, namely S-K-nonsingular modules, which is a generalization of K-nonsingular modules. A comprehensive study of these classes of modules is given.

Keywords: Nonsingular modules, S- K-nonsingular modules. AMS Subject Classification :16D50, 16D80, 16E50, 16E60, 16D40.

المقاسات غير المنفردة من النمط S-K

انعام محد على هادي¹, فرحان داخل شياع²

¹قسم الرياضيات جامعة القادسية، كلية التربية، القادسية، العراق،

² قسم الرياضيات جامعة بغداد، كلية التربية للعلوم الصرفة (ابن الهيثم)، جامعة بغداد، العراق

الخلاصة

في هذا البحث نقدم نوع من المقاسات الغير المنفردة من النمط S-K والتي هي تعميم للمقاسات الغير منفرده من النمط K. دراسة مركزة اعطيت لهذا المقاس.

Introduction

Let *M* be a right *R*-module, where *R* is a ring with unity. A submodule *N* of *M* is called essential in *M* (denoted by $N \leq_{ess} M$). If $N \cap W = (0)$ and $W \leq M$, then W = (0) [1]. Rizievi [2] introduced the concept of K-nonsingular modules, where an *R*-module *M* is called *K*-nonsingular if for each $f \in End(M)$, $Ker(f) \leq_{ess} M$, implies f = 0. Ali and Younis [3] called an *R*-module *M* as an essentially quasi-Dedekind if $Hom(\frac{M}{N}, M) = 0$ for each $N \leq_{ess} M$. Also, they proved that *K*-nonsingular modules and essentially quasi-Dedekind modules are coinciding concepts. In this paper, we introduce a generalization of *K*-nonsingular module which we call *S*-*K*-nonsingular, where an *R*-module *M* is called *S*-*K*-nonsingular if for each $f \in End(M)$, $Ker(f) \leq_{ess} M$, implies $f(M) \ll M$. A submodule *N* of *M* is small and denoted by $(N \ll M)$ if whenever $N + W = M, W \leq M$, then W = M [4]. It is clear that the zero submodule is small, hence every *K*-nonsingular is *S*-*K*-nonsingular. However, the converse may be not true (see Remarks and Examples 1.2 [1].

This paper consists of three sections. In section one, we study the basic properties of S-K-nonsingular modules. In section two, we show that the direct summand of S-K-nonsingular is S-K-nonsingular. The direct sum of S-K-nonsingular might not be true (Examples 3.4 [2]). Also, we show that, under certain conditions, the direct sum of S-K-nonsingular modules is S-K-nonsingular (Theorem 2.4, Proposition 2.5, Proposition 2.6, Theorem 2.7).

In section three, we show that if E(M) (injective hull of module M) is an S-K-nonsingular, then M is

^{*}Email: farhan.shyaa@qu.edu.iq

not necessarily an S-K-nonsingular. Also, we show that if M is a faithful finitely generated multiplication R-module, then M is S-K-nonsingular if R is S-K-nonsingular.

Note that $N \leq^{\oplus} M$ (implies that N is a direct summand of M) and, for any $m \in M$, $r \cdot ann_R(m)$ implies that $\{r \in R: m(t) = 0\}$ and Im f (implies an image of f).

Definition 1.1An *R*-module *M* is called *S*-*K*-nonsingular if for each $f \in End(M)$, $Ker(f) \leq_{ess} M$ implies $f(M) \ll M$.

Remarks and Examples 1.2

1- It is clear that every K-nonsingular module is S-K-nonsingular, but the converse is not true in general; for examples, each of the Z-modules Z_4 , Z_{12} and $Z_{P^{\infty}}$, where P is a prime number, is S-K-nonsingular, but they are not K-nonsingularmodules.

2- Every hollow module M (that is, every submodule of M is small see) X is S-K-nonsingular.

3- Every Rickart module M is K-nonsingular and hence S-K-nonsingular, where M is called Rickart module if for each $f \in End(M)$,

 $Ker(f) \leq^{\bigoplus} M$ [4,P.21].

Proof: Let $f \in End(M)$ with $Ker(f) \leq_{ess} M$. Since M is Rickart, then $Ker(f) \leq^{\oplus} M$. It follow that Ker(f) = M, hence f = 0 and M is K-nonsingular.

4- S-K-nonsingular modules need not to be Rickart modules; for example, Z_4 as Z-module is S-K-nonsingular and it is not Rickart.

5- If *M* is *S*-*K*-nonsingular and dual Rickart module, then *M* is *K*-nonsingular, where *M* is called dual Rickart if for each $f \in End(M)$, $Im(f) \leq^{\bigoplus} M$ [4,P.21].

Proof: Let $f \in End(M)$ and $Ker(f) \leq_{ess} M$. To prove that f = 0, we state that since M is S-Knonsingular, then $f(M) \ll M$. But M is a dual Rickart, then $f(M) \leq^{\bigoplus} M$, so that f(M) = 0, that is f = 0.

6- For any *R*-module $M, \frac{M}{Z_2(M)}$ is nonsingular, so it is *K*-nonsingular, which implies that *S*-*K*-nonsingular, where $Z_2(M)$ is the second Z_2 -torsion submodule of *M*.

7- Let M be an R-module with RadM = 0. Then M is S-K-nonsingular if and only if M is K-nonsingular.

Proof: \Leftarrow It is clear by (1).

⇒ Let $f \in End(M)$ and $Ker(f) \leq_{ess} M$. Since M is S-K-nonsingular, then $f(M) \ll M$. Hence $f(M) \leq RadM = 0$. Thus f = 0.

8- Every nonsingular module is *K*-nonsingular [5], hence it is *S*-*K*-nonsingular.

9- Every polyform module is *K*-nonsingular, hence it is *S*-*K*-nonsingular, where a module *M* is said to be a polyform if for each $L \le M$ and for any $0 \ne \varphi: L \mapsto M$, $Ker\varphi \le_{ess} L$ [6, P.44].

The following Proposition is a characterization of *S*-*K*-nonsingular module.

Proposition 1.3: Let *M* be an *R*-module. Then *M* is *S*-*K*-nonsingular if and only if for each $f \in Hom\left(\frac{M}{N}, M\right), N \leq_{ess} M$, implies $f(M) \ll M$.

Proof: \Rightarrow Let $N \leq_{ess} M$ and $f \in Hom\left(\frac{M}{N}, M\right)$. Then $g = f \circ \pi \in End(M)$, where π is the natural projection from M to $M/_N$. $N \leq Kerg$, so $Kerg \leq_{ess} M$. But M is S-K-nonsingular, implies $g(M) \ll M$, that is $f\left(\frac{M}{N}\right) \ll M$.

 $\leftarrow \text{Let } f \in End(M) \text{ such that } Ker(f) \leq_{ess} M. f \text{ induces } \widehat{f} \colon \frac{M}{Ker(f)} \mapsto M \text{ by } \widehat{f}(m + Ker(f)) = f(m)$ for each $m \in M$. By hypothesis, $\widehat{f}\left(\frac{M}{Ker(f)}\right) \ll M$. It follows that $f(M) \ll M$ and M is S-K-nonsingular.

Corollary 1.4: Let *M* be a *S*-*K*-nonsingular. If $N \leq_{ess} M$, then $Mr \ll M$ for each $r \in ann(N)$.

Recall that for an *R*-module *M*, $Z^k(M) = \sum_{\varphi \in S} Im\varphi$ and $Ker\varphi \leq_{ess} M.M$ is *K*-nonsingular if and only if $Z^k(M) = 0$ [6, 2964].

We have the following.

Proposition 1.5: For an *R*-module *M*, *M* is *S*-*K*-nonsingular if $Z^k(M) \ll M$ and the converse holds if *M* satisfies the ascending chain condition on small submodules.

Proof: Let $\varphi \in S$ and $Ker \varphi \leq_{ess} M$. By the definition of $Z^k(M)$, $Im\varphi \leq Z^k(M) \ll M$. Hence $Im\varphi \ll M$. Thus M is S - K-nonsingular.

Conversely, since *M* satisfies the ascending chain condition on small submodules, then $RadM \ll M$ [7, Theorem 3.1].

Hence. for $\varphi \in S$, with $Ker\varphi \leq_{ess} M$, then $Im\varphi \ll M$. It follows that $Z^k(M) = \sum_{\varphi \in S, Ker\varphi \leq_{ess} M} Im\varphi \leq RadM \ll M$. Thus $Z^k(M)$ is a small submodule.

Remark 1.6: If $Z(M) \ll M$, then M is S-K-nonsingular.

Proof: Since $Z^k(M) \leq Z(M)$ [5, Proposition 2.11] and $Z(M) \ll M$, then $Z^k(M) \ll M$ and hence *M* is *S*-*K*-nonsingular, by Proposition 1.5.

Example 1.7: Let $M = Q \oplus Z_4$ as Z-module and $Z(M) = (0) \oplus (\overline{2}) \ll M$. By Remark 1.6, M is S-K-nonsingular. Also, M is not K-nonsingular since, if so, then Z_4 (direct summand of M) is K-nonsingular, which is a contradiction.

Recall that an *R*-module is essentially prime if $ann_R M = ann_R N$ for each $N \leq_{ess} M$ [3].

Proposition 1.8: Let M be a divisible R-module (where R is an integral domain). If M is S-Knonsingular, then M is essentially prime.

Proof: Assume that $N \leq_{ess} M$ and $annM \subsetneq annN$, that is, there exists $a \in annN$ and $a \notin annM$. Thus aN = 0 and $aM \neq 0$. But M is divisible, so aM = M. Define $f: M \mapsto M$ by f(m) = am for each $m \in M$. It is clear that f is a well-defined R-homomorphism. Since $Ker(f) \supseteq N \leq_{ess} M$ and M is *S*-*K*-nonsingular, then $f(M) \ll M$, which is a contradication, since f(M) = aM = M. Thus annM = annN for each $N \leq_{ess} M$.

Remark 1.9: Essentially prime modules need not to be *S*-*K*-nonsingular; for example, $M = Z \oplus Z_2$ as *Z*-module is an essentially prime [3], but *M* is not *S*-*K*-nonsingular.

Recall that an *R*-module *M* is called a SQD-module if every nonzero submodule *N* of *M* is a SQD-submodule of *M*, that is, for each $f \in Hom\left(\frac{M}{N}, M\right)$, $f\left(\frac{M}{N}\right) \ll M^{"}[9]$. By applying Proposition 1.3, we have immediately the following.

Remark 1.10: Every SQD-module is *S*-*K*-nonsingular. However, the convers is not true; for example, the *Z*-module $Z \oplus Z$ is *K*-nonsingular (hence *S*-*K*-nonsingular) but it is not SQD-module [8].

The following Theorem is a characterization for *S*-*K*-nonsingular rings.

Theorem 1.11: For a ring *R*, *R* is *S*-*K*-nonsingular if and only if, for each ideal *I* in *R*, $I \leq_{ess} R$, implies $ann_R I \ll R$.

Proof: Suppose that $ann_R I + J = R$ for some ideal J of R. Then 1 = a + b for some $a \in ann_R I, b \in J$. Define $f: R \mapsto R$ by f(a) = ra for each $r \in R$. f is a well-defined homomorphism. f(I) = Ia = 0, so that $I \leq Ker(f)$. Hence $Ker(f) \leq_{ess} R$, since $I \leq_{ess} R$. Now, by S-K-nonsingular of R, $f(R) \ll R$; that is $Ra \ll R$. But R = Ra + Rb, so R = Rb and this implies that 1 = tb for some $t \in R$. Thus $1 \in J$ and hence J = R and $ann(I) \ll R$.

 \leftarrow Let $f \in End(R)$ with $Ker(f) \leq_{ess} R$. To prove that $f(R) \ll R$, since $f \in End(R)$, then there exists $a \in R, a \neq 0$ such that f(r) = ra, for all $r \in R$. Hence f(R) = Ra and $Ker(f) = ann_R(a) \leq_{ess} R$. By the condition, $ann_R(Ker(f)) = ann_R(ann(a)) \ll R$. Thus $f(R) \ll R$.

Corollary 1.12: For a ring *R*, *R* is *S*-*K*-nonsingular if and only if, for each $f \in End(R)$, there exists $a \in R$, $ann_R(a) \leq_{ess} R$, implies $(a) \ll R$.

2. Direct summand of *S***-***K***-nonsingular modules and direct sum of** *S***-***K***-nonsingular modules** First we have the following.

Proposition 2.1: A direct summand of *S*-*K*-nonsingular *R*-module is a *S*-*K*-nonsingular module.

Proof: Let *M* be a *S*-*K*-nonsingular module, $W \leq^{\bigoplus} M$. Then $W \oplus U = M$ for some $U \leq M$. To prove that *W* is a *S*-*K*-nonsingular, suppose that $f \in End(W)$ and $Ker(f) \leq_{ess} W$. Since $End(M) = \begin{pmatrix} End(W) & Hom(U,W) \\ Hom(W,U) & End(U) \end{pmatrix}$, take $g = \begin{pmatrix} f & 0 \\ 0 & 0 \end{pmatrix}$, then $Kerg = Ker(f) \oplus U \leq_{ess} W \oplus U = M$. But *M* is *S*-*K*-nonsingular, hence $g(M) \ll M$ and so $f(W) \oplus (0) \ll W \oplus U$. Thus $f(W) \ll W$ and *W* is *S*-*K*-nonsingular.

Remark 2.2: The direct sum of two *S*-*K*-nonsingular modules needs not to be *S*-*K*-nonsingular (see Example 3.4(2)).

Proposition 2.3: Let *M* be indecomposable *S*-*K*-nonsingular which has a maximal essential submodule *N*. Then $M \oplus \frac{M}{N}$ is not *S*-*K*-nonsingular, but *M* and $\frac{M}{N}$ are *S*-*K*-nonsingular.

Proof: Suppose that $M \oplus \frac{M}{N}$ is *S*-*K*-nonsingular, and let $\varphi \in End\left(M \oplus \frac{M}{N}\right)$ defined by $\varphi(m, \bar{n}) =$

 $(0,\overline{m})$. Thus $Ker\varphi = N \oplus \frac{M}{N} \leq_{ess} M \oplus \frac{M}{N}$, so that $\varphi(M \oplus \frac{M}{N}) = (0) \oplus \frac{M}{N} \ll M \oplus \frac{M}{N}$ which is a contradiction. Thus $M \oplus \frac{M}{N}$ is not S-K-nonsingular, but it is clear that M and $\frac{M}{N}$ are S-K-nonsingular. Recall that a submodule N of an R-module M is fully invariant if for each $f \in End(M)$, $f(N) \subseteq N$. M

is called Duo if every submodule is fully invariant [8]. **Theorem 2.4:** Let a module $M = M_1 \oplus M_2$ where M_1 and M_2 are fully invariant submodules of M. Then *M* is *S*-*K*-nonsingular if and only if

1- M_i is S-K-nonsingular modules for each $i \in \{1,2\}$.

2- $Hom(M_i, M_i) = 0$ for each $i \neq j$.

Proof: ⇒ The condition (1) holds by Proposition 2.1 and condition (2) holds by [10, Lemma 1.9]. $\leftarrow End(M) = \begin{pmatrix} End(M_1) & Hom(M_2, M_1) \\ Hom(M_1, M_2) & End(M_2) \end{pmatrix}. \text{ Hence } End(M) = \begin{pmatrix} End(M_1) & 0 \\ 0 & End(M_2) \end{pmatrix} \text{ by} \\ \text{condition (2). Let } f \in End(M), \text{ then } f = \begin{pmatrix} f_1 & 0 \\ 0 & f_2 \end{pmatrix} \text{ for some } f_1 \in End(M_1), f_2 \in End(M_2), \text{ and let} \\ Ker(f) \leq_{ess} M = M_1 \oplus M_2. \text{ Since } Ker(f) = Kerf_1 \oplus Ker(f)_{2,n}, \text{ then } Kerf_1 \leq_{ess} M_1, \\ Kerf_2 \leq_{ess} M_2. \text{ Then } \text{ by condition } (1), f_1(M_1) \ll M_1, f_2(M_2) \ll M_2, \text{ so that} \\ f(M) = f(M) \oplus f(M) \ll M \oplus M_1 = M \end{cases}$ $f(M) = f_1(M_1) \oplus f_2(M_2) \ll M_1 \oplus M_2 = M.$

Proposition 2.5: Let *M* be a direct sum of *R*-modules M_1 and M_2 , and let $ann_R M_1 \oplus ann_R M_2 = R$. Then M is S-K-nonsingular module if and only if M_1 and M_2 are S-K-nonsingular modules. **Proof:** \Rightarrow It follows by Proposition 2.1.

Proof:⇒ It follows by Proposition 2.1. $\leftarrow End(M) = \begin{pmatrix} End(M_1) & Hom(M_2, M_1) \\ Hom(M_1, M_2) & End(M_2) \end{pmatrix}.$ Since $ann_R M_1 \oplus ann_R M_2 = R$, then $Hom(M_2, M_1) = 0$ and $Hom(M_1, M_2) = 0$ by [10, Lemma 2.7]. Thus $End(M) = \begin{pmatrix} End(M_1) & 0 \\ 0 & End(M_2) \end{pmatrix}.$ Let $f \in End(M)$, with $Ker(f) \leq_{ess} M$. Then we get $f(M) \ll M$.

M(by the same procedure of Theorem 2.4.

Recall that M is an abelian module if all idempotent endomorphism commutes with any endomorphism [2, Definition 4.2.1]. Equivalently, every direct summand of M is fully invariant [5, Theorem 4.6].

Proposition 2.6: Let M be abelian module and $M = M_1 \oplus M_2$ where $M_1, M_2 \leq M$. Then M is S-Knonsingular if and only if M_1 and M_2 are S-K-nonsingular.

Proof: Since M is abelian, then M_1 and M_2 are fully invariant submodules and so $(M_1, M_2) = 0$, $Hom(M_2, M_1) = 0$, by [9, Lemma 1.9]. Thus the result follows by Theorem 2.4.

Theorem 2.7: Let $M = \bigoplus M_i$ (*I* is an index set) be a direct sum of modules M_i ($i \in I$) such that M is duo. Then *M* is *S*-*K*-nonsingular if and only if M_i is *S*-*K*-nonsingular, for each $i \in I$.

Proof: \leftarrow Let $f \in End(M)$ and $Ker(f) \leq_{ess} M$. Then Ker(f) is fully invariant in M(since M is duo). It follows that $Ker(f) = \bigoplus_{i \in I} (Ker(f) \cap M_i)$. Define $f_i: M_i \mapsto M$ by $f_i = f \parallel_{M_i}$ for each *i*. It is easy to see that $Ker(f)_i = Ker(f) \cap M_i \leq_{ess} M \cap M_i = M_i$. But M_i is S-K-nonsingular for each $i \in I$, hence $f_i(M_i) \ll M_i$ for each $i \in I$.

Since f(M) is a submodule of M and M is a duo module, then $f(M) = \bigoplus_{i \in I} (f(M) \cap M_i)$. It is easy to check that $f_i(M_i) = f(M) \cap M_i$ for each $i \in I$. Thus $f(M) = \bigoplus_{i \in I} f_i(M_i)$. Moreover, since M_i is S-K-nonsingular, then $f_i(M_i) \ll M_i$ for each $i \in I$. It follows that $f(M) = \bigoplus_{i \in I} f_i(M_i) \ll \bigoplus M_i = M_i$ and, hence, *M* is *S*-*K*-nonsingular.

 \Rightarrow It follows by Proposition 2.1.

Definition 2.8: An *R*-module *M* is called *S*-*K*-nonsingular relative to an *R*-module *W* if for each $f \in Hom(M, W)$, $Ker(f) \leq_{ess} M$, implies $Imf \ll W$.

Remarks and Examples 2.9

1- Every S-K-nonsingular module M is a S-K-nonsingular relative to M.

2- The Z-module Q is S-K-nonsingular relative to Z-module Z. Z-module Z is not S-K-nonsingular relative to Z-module Z_2 .

3- Let M_1 and M_2 be two *R*-modules such that M_1 is *S*-*K*-nonsingular relative to $M_1 \oplus M_2$. Then M_1 is *S*-*K*-nonsingular.

Proof: Let $f \in End(M_1)$ and $Ker(f) \leq_{ess} M_1$. Then $i \circ f \in Hom(M_1, M_1 \oplus M_2)$ where *i* is the inclusion mapping from M_1 to $M_1 \oplus M_2$. Then $Ker(i \circ f) \leq_{ess} M_1$ and so $(i \circ f) (M_1) \leq_{ess} M_1 \oplus M_2$, since M_1 is S-K-nonsingular relative to $M_1 \oplus M_2$. Hence $f(M_1) \ll M_1 \oplus M_2$. But $f(M_1) \le M_1 \le M_1 \oplus M_2$. Thus $f(M_1) \ll M_1$ and M_1 is S-K-nonsingular. 4- Z_{12} is not S-K-nonsingular relative to Z_6 , since there exists $f: Z_{12} \mapsto Z_6$ defined by $f(\bar{x}) =$

4- Z_{12} is not S-K-nonsingular relative to Z_6 , since there exists $f: Z_{12} \mapsto Z_6$ defined by $f(\bar{x}) = \{\overline{0} \ if \ x \in (\overline{2})\}$. Hence $Ker(f) = (\overline{2}) \leq_{ess} Z_{12}$, but $Im \ f = \{\overline{0}, \overline{3}\}$ is not small on Z_6 .

 $(\overline{3} \text{ otherwise})$ Theorem 2.10: Let $M = M_1 \oplus M_2$. Then M is an *S*-*K*-nonsingular module if and only if M_i *S*-*K*-nonsingular relative to M_i , for each *j* ∈ {1,2}.

Proof: $\Rightarrow M_1$ and M_2 are *S*-*K*-nonsingular modules by Proposition 2.1, that is, M_1 is *S*-*K*-nonsingular relative to M_1 and M_2 is *S*-*K*-nonsingular relative to M_2 . To prove that M_1 is *S*-*K*-nonsingular relative to M_2 , suppose that $f \in Hom(M_1, M_2)$ and $f(M_1) < < M_2$. Then $h = i \circ f \circ \rho$, where *i* is the inclusion mapping from M_2 to *M* and ρ is the natural projection from *M* to M_1 . $h(M) = (i \circ f \circ \rho)(M) = f(M_1)$, hence h(M) < < M (because if h(M) < M), then $f(M_1) < M$, but $f(M_1) \le M_2 \le \Phi$ *M*, so $f(M_1) < M_2$, which is a contradiction. Since *M S*-*K*-nonsingular, then *Kerh* $\leq_{ess} M$. On the other hand, Ker(f) = Kerh implies $Ker(f) \leq_{ess} M_1$. It follows that $Ker(f) \leq_{ess} M_1$, since if $Ker(f) \leq_{ess} M_1$ and M_1 is *S*-*K*-nonsingular module relative to M_2 .

Similarly, M_2 is S-K-nonsingular module relative to M_1 .

 \leftarrow Let $\psi \in End(M)$ and $Ker(\psi) \leq_{ess} M$. To prove that $\psi(M) \ll M$, let $\psi_1 = \psi |_{M_1}: M_1 \mapsto M$ defined by $\psi_1(x) = \psi(x, 0)$ for each $x \in M_1$. $Ker \psi_1 = Ker \psi \cap M_1 \leq_{ess} M \cap M_1 = M_1$. $\rho_1 \circ \psi_1 \in$ $End(M_1)$ and $\rho_2 \circ \psi_1 \in Hom(M_1, M_2)$, where ρ_1 is the natural projection from M onto M_1 and ρ_2 is the natural projection from M onto M_2 . Then

 $Ker \psi_1 \leq Ker(\rho_1 \circ \psi_1) \cap Ker(\rho_2 \circ \psi_1)$. But $Ker\psi_1 \leq_{ess} M$ and $Ker\psi_1 \leq M_1$, so $Ker\psi_1 \leq_{ess} M_1$. It follows that $Ker(\rho_1 \circ \psi_1) \leq_{ess} M_1$ and $Ker(\rho_2 \circ \psi_1) \leq_{ess} M_2$. But M_1 is *S*-*K*-nonsingular and M_1 is *S*-*K*-nonsingular module relative to M_2 , hence $\rho_1 \circ \psi_1(M_1) \ll M_1$ and $\rho_2 \circ \psi_1(M_1) \ll M_2$.

Similarly $\rho_1 \circ \psi_2(M_2) \ll M_1$ and $\rho_2 \circ \psi_2(M_2) \ll M_2$, where ρ_1 and ρ_2 are the natural projections from M_1 onto M_1 and M_2 , $\psi_2 = \psi |_{M_2} : M_2 \mapsto M$. Thus $\psi(M) = \sum_{i=1,2} (\rho_i \circ \psi_i) (M_i) \ll M_1 \oplus M_2 = M$. Therefore, M is S-K-nonsingular.

Proposition 2.11: Let *M* and *M'* be two *R*-modules and $f \in Hom(M, M')$ such that *f* is onto. If *M* is *S*-*K*-nonsingular relative to *M'*, then *M'* is *S*-*K*-nonsingular.

Proof: Let $g \in End(M')$ and $Kerg \leq_{ess} M'$. Then $g \circ f \in Hom(M, M')$ and $Ker(g \circ f) \leq_{ess} M$. But *M* is *S*-*K*-nonsingular relative to *M'*, so $(g \circ f)(M) \ll M'$, that is $g(M') \ll M'$. Thus, *M'* is *S*-*K*-nonsingular.

Proposition 2.12: Let *M* be *S*-*K*-nonsingular quasi-injective. Then for each $N \leq_{ess} M, N$ is *S*-*K*-nonsingular relative to *M*.

Proof: Let $f \in Hom(N, M)$ with $Ker(f) \leq_{ess} N$. As $N \leq_{ess} M$, then $Ker(f) \leq_{ess} M$. Since M is quasi-injective, then there exists $g \in End(M)$ such that $g \circ i = f$, where i is an inclusion mapping from N into M. But it is clear that $Ker(f) \leq Kerg$, so $Kerg \leq_{ess} M$ and by S-K-nonsingularity of M, $g(M) \ll M$. It follows that $g \circ i(N) = g(N) \leq g(M)$ and $g(N) \ll M$. Besides that, f(N) = g(N) so that $f(N) \ll M$ and N is S-K-nonsingular relative to M.

Corollary 2.13: Let *M* be an *R*-module. If \overline{M} (quasi-injective hull of *M*) is *S*-*K*-nonsingular, then *M* is *S*-*K*-nonsingular relative to \overline{M} .

Theorem 2.14: Let *M* be a *S*-*K*-nonsingular *R*-module such that $RadM \ll M$. Then *M* is *S*-*K*-nonsingular relative to the ring R_R .

Proof: Let $f \in Hom(M, R)$ and $(f) \leq_{ess} M$. Suppose that f(M) + J = R for some ideal J of R. Hence 1 = f(x) + j for some $x \in M$ and $j \in J$. Now, for any $m \in M$, define $g_m: R \mapsto M$ by $g_m(r) = rm$, for each $r \in R$ g, as a well-defined homomorphism. It follows that $g_m \circ f \in End(M)$. Since $Ker(g_m \circ f) \supseteq Ker(f)$, then $Ker(g_m \circ f) \leq_{ess} M$. Hence $(g_m \circ f)(M) \ll M$, since M is S-K-nonsingular, and, hence, for each $m \in M$, $mf(M) \ll M$. This implies that $\sum_{m \in M} mf(M) \leq RadM \ll M$. Hence $Mf(M) \ll M$ and so $Mf(x) \ll M$. But 1 = f(x) + j, so that M = Mf(x) + Mj. It follows that Mj = M, hence x = yj for some $y \in M$ and so $1 = f(yj) + j = f(y)j + j \in J$. Thus J = R and $f(M) \ll R$.

3. Additional features of *S*-*K*-nonsingular modules

Remark 3.1: For an R-module M, if M is S-K-nonsingular , then N≤M. Then, this shows that M/N is

not necessarily S-K-nonsingular, as in the following example.

Example 3.2: $M = Z \oplus Z$, as the Z-module is an S-K-nonsingular module. Let $N = (\overline{0}) \oplus (\overline{2}) \le M$. Then $\frac{M}{N} \simeq Z \oplus Z_2$, which is not S-K-nonsingular, since if $f \in End(M)$ then $f(x, \bar{y}) = (0, \bar{x})$, $Ker(f) \stackrel{\scriptstyle N}{=} 2Z \oplus Z_2 \leq_{ess} M.$ But $f(M) = (0) \oplus Z_2 \measuredangle \measuredangle M.$

Proposition 3.3: Let *M* be an *S*-*K*-nonsingular module such that $\frac{M}{K}$ is projective for each $K \leq_{ess} M$. Then $\frac{M}{N}$ is *S*-*K*-nonsingular for each $N \leq M$.

Proof: Let $\frac{U}{N} \leq_{ess} \frac{M}{N}$ and $f \in Hom(\frac{M/N}{U/N}, \frac{M}{N})$. Since $\frac{U}{N} \leq_{ess} \frac{M}{N}$, then $U \leq_{ess} M$. On the other hand, $Hom(\frac{M_N}{U_N}, \frac{M}{N}) \simeq Hom(\frac{M}{U}, \frac{M}{N})$ that is $f \in Hom(\frac{M}{U}, \frac{M}{N})$, but $\frac{M}{U}$ is projective, so there exist $g \in Hom(\frac{M}{U}, M)$ and $\pi \circ g = f$ where π is the natural projection from M to $\frac{M}{N}$. Also, $g\left(\frac{M}{U}\right) \ll M$ by Proposition 1.3, so that $(\pi \circ g)\left(\frac{M}{U}\right) \ll \frac{M}{N}$ and hence $f\left(\frac{M}{U}\right) \ll \frac{M}{N}$. Therefore, $\frac{M}{N}$ is S-K-nonsingular.

It is known that if M is an R-module, such that E(M) (the injective hull of M) is K-nonsingular, then M is K-nonsingular [12, Proposition 2.18]. However, the S-K-nonsingular of E(M) is not inherited by M (see example 3.4). Also, if M is K-nonsingular, then E(M) is not necessarily K-nonsingular [5, Example 2.19].

Examples 3.4

1- By Example 2.3, $M = Z \oplus Z_2$, as the Z-module is not S-K-nonsingular. $E(M) = Q \oplus Z_2 \infty$. Since $Hom(Q, Z_2 \infty) = 0$ and $Hom(Z_2 \infty, Q) = 0$, then S = End(M) = C $\begin{pmatrix} EndQ & 0\\ 0 & Z_{2^{\infty}} \end{pmatrix}$. Assume that $f \in S$, hence $f = \begin{pmatrix} f_1 & 0\\ 0 & f_2 \end{pmatrix}$ where $f_1 \in End(Q), \in f_2End(Z_{2^{\infty}})$, and $Ker(f) \leq_{ess} E(M)$. But $Ker(f) = Kerf_1 \oplus Kerf_2$, so $Kerf_1 \leq_{ess} Q$ and $Kerf_2 \leq_{ess} Z_{2^{\infty}}$. Since Qand $Z_{2^{\infty}}$ are S-K-nonsingular modules, then $f_1(Q) \ll Q$ and $f_2(Z_{2^{\infty}}) \ll Z_{2^{\infty}}$. Hence f(M) = $f_1(Q) \oplus f_2(Z_{2^{\infty}}) \ll Q \oplus Z_{2^{\infty}} = E(M)$, so that E(M) is S-K-nonsingular.

2- Let $M = Z_{p^{\infty}} \oplus Z_{P}$ as a Z-module that is not S-K-nonsingular. $End(M) = \begin{pmatrix} End(Z_{p^{\infty}}) & Hom(Z_{P}, Z_{p^{\infty}}) \\ 0 & Z_{P} \end{pmatrix}$. Let $= \begin{pmatrix} P^{2} & 0 \\ 0 & 0 \end{pmatrix} \in End(M) \ Ker\varphi \simeq Z_{p^{2}} \oplus Z_{P} \leq_{ess} M$, but

 $\varphi(M) = Z_n \otimes \bigoplus 0 \ll M$. Also, $E(M) = Z_n \otimes \bigoplus Z_n \otimes$ is S-K-nonsingular.

Now we ask if M S-K-nonsingular. Then E(M) a S-K-nonsingular. However we have the following: Remark 3.5

1- Let M be a nonsingular (hence M is S-K-nonsingular). Then E(M) is -K-nonsingular.

Proof: Since M nonsingular, then this implies that E(M) is nonsingular. Hence E(M) is S-Knonsingular.

2- Let M be a polyform extending module. Then \overline{M} (quasi-injective hull of M) is S-K-nonsingular.

Proof: By [4, Proposition 2.4.22], $\overline{M} \oplus M$ is a Rickart module, so it is S-K-nonsingular by Remarks and Examples 1.2(3). Hence \overline{M} is S-K-nonsingular by Proposition 2.1.

3- Let R be a polyform ring. Then E(R) is an S-K-nonsingular R-module.

Proof: R is polyform, implies R is nonsingular by [5, Proposition 2.7]. Hence E(R) is nonsingular and so (*R*) is *S*-*K*-nonsingular.

4- Let *M* be a prime *R*-module. Then \overline{M} is *S*-*K*-nonsingular.

Proof: Since M is prime, then \overline{M} is polyform. Hence \overline{M} is S-K-nonsingular by Remarks and Examples 1.2(9).

Recall that an *R*-module *M* is multiplication if, for each $N \leq M$, there exists an ideal *I* of *R* such that N = MI [3].

Theorem 3.6: Let M be a finitely generated faithful multiplication R-module. Then M is S-Knonsingular if and only if R is S-K-nonsingular, where R is a commutative ring .

Proof: \Rightarrow Let $f \in End(R)$ with $Ker(f) \leq_{ess} R$. Then there exists $r \in R$ such that f(a) = ar for each $a \in R$. Hence $Ker(f) = ann_R(r) \leq_{ess} R$. Define $g: M \mapsto M$ by g(m) = mr for each $m \in M$. g is well-defined homomorphism and $Kerg = ann_M(r)$. But, since M is a faithful multiplication finitely generated module, then $ann_M(r) = Mann_R(r)$ and hence $ann_M(r) \leq_{ess} M$ [3, Theorem 2.13], that

is $Kerg \leq_{ess} M$. But *M* is *S*-*K*-nonsingular, so that $g(M) = Mr \ll M$. It follows that $\langle r \rangle = f(R) \ll R$ [12, Proposition 1.1.8]. Thus *R* is *S*-*K*-nonsingular.

 \leftarrow Let $f \in End(M)$ with $Ker(f) \leq_{ess} M$. Since *M* is a finitely generated multiplication, then there exists $r \in R$ such that f(m) = mr, for each $m \in M$.

Define $g: R \mapsto R$ by g(a) = ra for each $a \in R$. Then $Kerg = ann_R(r)$ and $g(R) = \langle r \rangle$. But $Ker(f) = ann_M(r) = Mann_R(r) \leq_{ess} M$, which implies that $Kerg = ann_R(r) \leq_{ess} M$ [3, Theorem 2.13]. It follows that $g(R) = \langle r \rangle \langle R$ (since R is S-K-nonsingular). Thus $f(M) = Mr \ll M$ [1. Proposition 1.1.8] and so M is S-K-nonsingular.

Corollary 3.7: Let M be a faithful finitely generated multiplication R-module (where R is a commutative ring). Then the followings are equivalent:

- 1- *M* is a *S*-*K*-nonsingular module;
- 2- *R* is a *S*-*K*-nonsingular ring;
- 3- *End*(*M*) is a *S*-*K*-nonsingular ring;
- 4- For each $N \leq_{ess} M$, $annN \ll R$;
- 5- For each $I \leq_{ess} R$, $annI \ll R$.

Proof: (1) \Leftrightarrow (2) It follows by Theorem 3.6.

(2) \Leftrightarrow (3) Since *M* is a finitely generated faitful multiplication module, then $End(M) \simeq \frac{R}{ann(M)} \simeq R$ and so the result is obtained.

(2) \Leftrightarrow (5) It follows by Theorem 2.11.

 $(5) \Rightarrow (4)$ Let $N \leq_{ess} M$. Since M is a faithful multiplication, then N = MI for some essential ideal I of R [11, Theorem 2.13]. Also, $ann_R N = ann_R I$ because M is a faithful multiplication. By (5), $ann_R I \ll R$, hence $ann_R N \ll R$.

(4) \Rightarrow (5) Let $I \leq_{ess} R$. Then $N = MI \leq_{ess} M$ [11, Theorem 2.13]. By (4), $ann_R N \ll R$. But M is a faithful multiplication, so $ann_R N = ann_R I$. Thus $ann_R I \ll R$.

Notice that $M = Z \oplus Z$ as Z-module is not a multiplication module and it is not S-K-nonsingular, but the ring Z is S-K-nonsingular.

Corollary 3.8: If *M* is a local faithful *R*-module, then *R* is a *S*-*K*-nonsingular.

Proof: Since M is local faithful, then M is hollow and cyclic. Hence M is S-K-nonsingular (by Remarks and Examples 1.2(2)) and, by Theorem 3.6, R is S-K-nonsingular.

References

- 1. Goodearl K.R.1976." *Ring Theory, Non Singular Rings and Modules*, Marcel Dekker, Inc. New York and Basel,.
- 2. Roman C.S., 2004 ." Baer and Quasi-Baer Modules.", Ph.D.Thesis, M.S, Graduate, School of Ohio, State University.
- **3.** Inaam Mohammed Ali and Tha'ar Younis., **2011**. Essentially prime Modules and Related. **37**(4): 187-196.
- **4.** Gangyong Lee, **2010**. Theory Rickart Modules Ph.D.Thesis, M.S, Graduate, School of Ohio, State University,.
- 5. Rizvi S.T., Roman C.S. 2007. " On K-nonsingular Modules and application.", *Comm. In Algebra*, 35: 2960-2982.
- 6. Dung N.V., and Huynh, D.V.Smith P.F. and Wisbauer R. 1994. *Extending modules*, Pitman Research Note in Math., Series 313 Longman Harlow.
- 7. Naoum A. G. and Hadi I.M. **1996**. Module with a scending(Descending) Chain condition on small submodules, *Iraqi.J.Sci*, **37**(3): 1085-1103.
- Naoum A.G. and Inaam Mohammed Ali. 2002. SQI submodules and SQD modules, *Iraqi J.Sci*, 43.D(2): 43-53.
- 9. Ozcan, A.C. A. Harmanci and Smith. 2006. "Duo Modules", "Glasg. Math. J, 48(3): 533–545.
- **10.** Inaam Mohammed Ali and Farhan D.Shyaa. **2017**. Strongly t-semisimple modules and Strongly t-semisimple Rings. *International Journal of Pure and Applied Mathematics*, **15**(1): 27-41.
- 11. El-Bast Z. A., Smith P. F.1988. "Multiplication Modules", Comm. In Algebra, 16: 755-779.
- **12.** Athab I.A. **2004**. "Some generalization of projective Modules ".Ph.D.Thesis, College of Science, University of Baghdad.