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Abstract

In this paper, we introduce a type of modules, namely S-K-nonsingular modules,
which is a generalization of K-nonsingular modules. A comprehensive study of
these classes of modules is given.
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Introduction
Let M be aright R-module, where R is a ring with unity. A submodule N of M is called essential in
M (denoted by N <,5¢ M). If NQOW = (0) and W < M, then W = (0) [1]. Rizievi [2] introduced the
concept of K-nonsingular modules, where an R-module M is called K-nonsingular if for each f €
End(M), Ker(f) <.ss M, implies f = 0. Ali and Younis [3] called an R-module M as an essentially

quasi-Dedekind if Hom(%,M) = 0 for each N <4, M. Also, they proved that K-nonsingular modules

and essentially quasi-Dedekind modules are coinciding concepts. In this paper, we introduce a
generalization of K-nonsingular module which we call S-K-nonsingular, where an R-module M is
called S-K-nonsingular if for each f € End(M), Ker(f) <.ss M, implies f(M) « M. A submodule N
of M is small and denoted by (N <« M) if whenever N + W = M,W < M, then W = M [4]. It is clear
that the zero submodule is small, hence every K-nonsingular is S-K-nonsingular. However, the
converse may be not true (see Remarks and Examples 1.2 [1].

This paper consists of three sections. In section one, we study the basic properties of S- K-
nonsingular modules. In section two, we show that the direct summand of S- K-nonsingular is S- K-
nonsingular. The direct sum of S- K-nonsingular might not be true (Examples 3.4 [2]).Also, we show
that, under certain conditions, the direct sum of S- K-nonsingular modules is S- K-nonsingular
(Theorem 2.4, Proposition 2.5, Proposition 2.6, Theorem 2.7).

In section three, we show that if E(M)(injective hull of module M) is an S- K-nonsingular, then M is
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not necessarily an S- K-nonsingular. Also, we show that if M is a faithful finitely generated
multiplication R-module, then M is §- K-nonsingular if R is S- K-nonsingular.

Note that N <® M (implies that N is a direct summand of M) and, for any m € M, r- anngz(m)
implies that {r € R: m(t) = 0} and Im f( implies an image of f).

Definition 1.1An R-module M is called S-K-nonsingular if for each f € End(M),Ker(f) <gss M
implies f(M) < M.

Remarks and Examples 1.2

1- It is clear that every K-nonsingular module is S-K-nonsingular, but the converse is not true in
general; for examples, each of the Z-modules Z,, Z,, and Zp~, where P is a prime number, is S-K-
nonsingular, but they are not K-nonsingularmodules.

2- Every hollow module M (that is, every submodule of M is small see) X is S-K-nonsingular.

3- Every Rickart module M is K-nonsingular and hence S-K-nonsingular, where M is called Rickart
module if for each f € End(M),

Ker(f) <® M [4,P.21].

Proof: Let f € End(M) with Ker(f) <..s M. Since M is Rickart, then Ker(f) <® M. It follow that
Ker(f) = M, hence f = 0 and M is K-nonsingular.

4- S-K-nonsingular modules need not to be Rickart modules; for example, Z, as Z-module is S-K-
nonsingular and it is not Rickart.

5- If M is S-K-nonsingular and dual Rickart module, then M is K-nonsingular, where M is called dual
Rickart if for each f € End(M), Im(f) <® M [4,P.21].

Proof: Let f € End(M) and Ker(f) <.ss M. To prove that f = 0, we state that since M is S- K-
nonsingular, then f(M) « M. But M is a dual Rickart, then f(M) <® M, so that f(M) = 0, that is
f=0.

6- For any R-module M,% IS nonsingular, so it is K-nonsingular, which implies that S-K-
2

nonsingular, where Z, (M) is the second Z,-torsion submodule of M.

7- Let M be an R-module with RadM = 0. Then M is S-K-nonsingular if and only if Mis K-
nonsingular.

Proof: < Itis clear by (1).

= Let f € End(M) and Ker(f) <.ss M. Since M is S-K-nonsingular, then f(M) <« M. Hence
f(M) < RadM = 0. Thus f = 0.

8- Every nonsingular module is K-nonsingular [5], hence it is S- K-nonsingular.

9- Every polyform module is K-nonsingular, hence it is S- K-nonsingular, where a module M is said
to be a polyform if for each L < M and forany 0 # @: L — M, Kerp %5 L [6, P.44].

The following Proposition is a characterization of S- K-nonsingular module.

Proposition 1.3: Let M be an R-module. Then M is S- K-nonsingular if and only if for each f €

Hom (X, M), N <5, M, implies £ (M) < M.

Proof: = Let N <,,c M and f € Hom (%M) Then g = f o € End(M), where  is the natural
projection from M to M/N' N < Kerg, so Kerg <.,,c M. But M is S- K-nonsingular, implies
g(M) « M, that is f (%) & M.

< Let f € End(M) such that Ker(f) <.ss M. f induces f: ——

e M by f(m + Ker(f)) = f(m)

ul )<< M. 1t follows that f(M) <« M and M is S-K-

for each m € M. By hypothesis, f (Ker(f)

nonsingular.
Corollary 1.4: Let M be a S- K-nonsingular. If N <,4 M, then Mr « M for each r € ann(N).
Recall that for an R-module M, Z¥(M) = ¥ ,es Img and Kerg <,sc M. M is K-nonsingular if and
only if Z¥(M) = 06, 2964].
We have the following.
Proposition 1.5: For an R-module M, M is S- K-nonsingular if Z¥(M) « M and the converse holds if
M satisfies the ascending chain condition on small submodules.
Proof: Let ¢ € S and Kerg <., M. By the definition of ZX (M), Img < Z¥(M) « M. Hence
Imep < M. Thus M is S - K-nonsingular.
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Conversely, since M satisfies the ascending chain condition on small submodules, then RadM «

M [7, Theorem 3.1].

Hence. for @e€eS, with Kerp <, M, then Imp <KM. It follows that

ZE(M) = ¥ peskerpsz . Ime < RadM <« M. Thus Z¥ (M) is a small submodule.

Remark 1.6: If Z(M) « M, then M is S-K-nonsingular.

Proof: Since Z*(M) < Z(M) [5, Proposition 2.11] and Z(M) « M, then Z¥(M) « M and hence M is

S-K-nonsingular, by Proposition 1.5.

Example 1.7: Let M = Q&®Z, as Z-module and Z(M) = (0)®(2) « M. By Remark 1.6, M is S-K-

nonsingular. Also, M is not K-nonsingular since, if so, then Z,(direct summand of M) is K-

nonsingular, which is a contradiction.

Recall that an R-module is essentially prime if annyM = anngzN for each N <,.; M [3].

Proposition 1.8: Let M be a divisible R-module (where R is an integral domain). If M is S-K-

nonsingular, then M is essentially prime.

Proof: Assume that N <,,c M and annM < annN, that is, there exists a € annN and a ¢ annM.

Thus aN = 0 and aM # 0. But M is divisible, so aM = M. Define f: M +— M by f(m) = am for

each m € M. It is clear that f is a well-defined R-homomorphism. Since Ker(f) 2 N <,;c M and M

is S-K-nonsingular, then f(M) <« M, which is a contradication, since f(M) =aM = M. Thus

annM = annN foreach N <,,; M.

Remark 1.9: Essentially prime modules need not to be S-K-nonsingular; for example, M = Z®Z, as

Z-module is an essentially prime [3], but M is not S-K-nonsingular.

Recall that an R-module M is called a SQD-module if every nonzero submodule N of M is a SQD-

submodule of M, that is, for each f € Hom (%M) f (%) & M”’[9]. By applying Proposition 1.3, we

have immediately the following.

Remark 1.10: Every SQD-module is S-K-nonsingular. However, the convers is not true; for example,

the Z-module Z&Z is K-nonsingular (hence S-K-nonsingular) but it is not SQD-module [8].

The following Theorem is a characterization for S-K-nonsingular rings.

Theorem 1.11: For a ring R, R is S- K-nonsingular if and only if, for each ideal I in R, I <., R,

implies anngl < R.

Proof:= Suppose that annzl +] = R for some ideal / of R. Then 1=a+ b for some a €

anngl,b € J. Define f:R+— R by f(a) = ra for each r € R. f is a well-defined homomorphism.

f(I) =1a=0, so that I < Ker(f). Hence Ker(f) <.,c R, since I <,,c R. Now, by S-K-

nonsingular of R, f(R) < R; that is Ra < R. But R = Ra + Rb, so R = Rb and this implies that

1 =tbforsomet € R. Thus 1 € J and hence ] = R and ann(I) < R.

< Let f € End(R) with Ker(f) <.ss R. To prove that f(R) < R, since f € End(R), then there

exists a € R,a# 0 such that f(r) =ra, for all r€R. Hence f(R)=Ra and Ker(f) =

anng(a) <.ss R. By the condition, anng(Ker(f)) = anng(ann(a)) « R. Thus f(R) < R.

Corollary 1.12: For a ring R, R is S- K-nonsingular if and only if, for each f € End(R), there exists

a € R, anng(a) <.s R, implies (a) < R.

2. Direct summand of $-K-nonsingular modules and direct sum of S-K-nonsingular modules

First we have the following.

Proposition 2.1: A direct summand of S-K-nonsingular R-module is a S- K-nonsingular module.

Proof: Let M be a S-K-nonsingular module , W <® M. Then W@U = M for some U < M. To prove

that W is a S-K-nonsingular, suppose that f € End(W) and Ker(f) <.sc W. Since End(M) =
E H

(Ho?ni%?]) ZYZ‘EI(JUI;V)) take g = (](; 8) then Kerg = Ker(f)®U <., WU = M. But M

is S-K-nonsingular, hence g(M) «< M and so f(W)®(0) K WU. Thus f(W) « W and W is S-K-

nonsingular.

Remark 2.2: The direct sum of two S-K-nonsingular modules needs not to be S-K-nonsingular (see

Example 3.4(2)).

Proposition 2.3: Let M be indecomposable S-K-nonsingular which has a maximal essential

submodule N. Then MEB% is not S-K-nonsingular, but M and% are S-K-nonsingular.
Proof: Suppose that MEB% is S-K-nonsingular, and let ¢ € End (Mea %) defined by @(m,n) =
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(0,m). Thus Kerp = N@% <ess MEB%, so that ¢( MEB%) = (O)EB%« MEB% which is a

contradiction. Thus MGB% is not S-K-nonsingular, but it is clear that M and % are S-K-nonsingular.

Recall that a submodule N of an R-module M is fully invariant if for each f € End(M), f(N) € N. M
is called Duo if every submodule is fully invariant [8].

Theorem 2.4: Let a module M = M;®M, where M, and M, are fully invariant submodules of M.
Then M is S-K-nonsingular if and only if

1- M; is S-K-nonsingular modules for each i € {1,2}.

2- Hom(M;, M;) = 0 for each i # j.

Proof: = The condition (1) holds by Proposition 2.1 and condition (2) holds by [10, Lemma 1.9].

_( End(My) Hom(M,, M) _ (End(My) 0
= End(M)_(Hom(Ml,le) End(lf/lz)l ) Hence End(M) —< 0 1 End(Mz)) by

condition (2). Let f € End(M), then f = (];1 ]9> for some f; € End(M,), f, € End(M,), and let
2

Ker(f) Sess M = M ®M,. Since Ker(f) = Kerfi®Ker(f),, then Kerf; <ess My,
Kerf, <ess M,. Then by condition 1), ilMy) K My, f,(M,) <K M,, o) that
M) = fL(M)®f,(M,) < My DM, = M.

Proposition 2.5: Let M be a direct sum of R-modules M,and M,, and let annyM;@annyM, = R.
Then M is S-K-nonsingular module if and only if M, and M, are S-K-nonsingular modules.

Proof:= It follows by Proposition 2.1.

End(M;) Hom(M,, M)
< EndM) = (Hom(Ml,MZ) End(M,) )
Hom(M,,M;) =0 and Hom(M,,M,) =0 by [10, Lemma 2.7]. Thus
End(M) = (EndéMl) End(zMz)) Let f € End(M), with Ker(f) <.ss M. Then we get f(M) <
M ( by the same procedure of Theorem 2.4.

Recall that M is an abelian module if all idempotent endomorphism commutes with any

endomorphism [2, Definition 4.2.1]. Equivalently, every direct summand of M is fully invariant [5,

Theorem 4.6].

Proposition 2.6: Let M be abelian module and M = M, M, where M;,M, < M. Then M is S-K-

nonsingular if and only if M; and M, are S-K-nonsingular.

Proof: Since M is abelian, then M; and M, are fully invariant submodules and so (M, , M,) = 0,

Hom(M, , M;) = 0, by [9, Lemma 1.9]. Thus the result follows by Theorem 2.4.

Theorem 2.7: Let M = @M; (I is an index set) be a direct sum of modules M; (i € I) such that M is

duo. Then M is S-K-nonsingular if and only if M; is S-K-nonsingular, for each i € I.

Proof: < Let f € End(M) and Ker(f) <.ss M. Then Ker(f) is fully invariant in M(since M is duo).
It follows that Ker(f) = @;¢;(Ker(f) NM;. Define f;: M; — M by f; = f Il for each i. It is easy

to see that Ker(f); = Ker(f)NM; <.,cc MNM; = M;. But M; is S-K-nonsingular for each i €I,

hence f;(M;) «< M; foreachi € I.

Since f(M) is a submodule of M and M is a duo module, then f(M) = ®,;( f(M) NM;). It is easy

to check that f;(M;) = f(M)NM; for each i € I. Thus f(M) = @;¢,f;(M;). Moreover, since M; is S-

K-nonsingular, then f;(M;) <« M; for each i € I. It follows that f(M) = ®;¢;f;(M;) K &M; = M

and, hence, M is S-K-nonsingular.

= It follows by Proposition 2.1.

Definition 2.8: An R-module M is called S-K-nonsingular relative to an R-module W if for each

f € Hom(M, W), Ker(f) <gss M, implies Imf <K W.

Remarks and Examples 2.9

1- Every S-K-nonsingular module M is a S-K-nonsingular relative to M.

2- The Z-module Q is S-K-nonsingular relative to Z-module Z. Z-module Z is not S-K-nonsingular

relative to Z-module Z,.

3- Let M; and M, be two R-modules such that M, is S-K-nonsingular relative to M;®M,. Then M, is
S-K-nonsingular.

Proof: Let f € End(M;) and Ker(f) <.ss M;. Then io f € Hom(M;, M;®M,) where i is the

inclusion mapping from M; to M;@®M,. Then Ker(io f) <.s M; and so (i o f) (M;) <gss M1®M,,

Since anngM;@anngM, = R, then
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since M; is S-K-nonsingular relative to M;@®M,. Hence f(M;) <K M;®M,. But f(M,) <
M; <® M;®M,. Thus f(M;) « M, and M, is S-K-nonsingular.

4- Z,, is not S-K-nonsingular relative to Zg, since there exists f: Z;, +— Zg defined by f(x) =
{0 if x €(2) Hence Ker(f) = (2) <ess Z12, butIm f = {0,3 } is not small on Zg.

3 otherwise _ _ _
Theorem 2.10: Let M = M;@®M,. Then M is an S-K-nonsingular module if and only if M; S-K-

nonsingular relative to M;, for each j € {1,2}.

Proof: =M, and M, are S-K-nonsingular modules by Proposition 2.1, that is, M; is S-K-nonsingular
relative to M, and M, is S-K-nonsingular relative to M, . To prove that M, is S-K-nonsingular relative
to M,, suppose that f € Hom(M,M,) and f(M;) <<« M,. Then h=1io fop, where i is the
inclusion mapping from M, to M and p is the natural projection from M to M;. h(M) = (io f o
p)(M) = f(M,), hence h(M) «<« M (because if h(M) < M), then f(M;) <K M, but f(M;) <
M, <® M, so f(M;) < M,, which is a contradiction. Since M S-K-nonsingular, then Kerh <4 M.
On the other hand, Ker(f) = Kerh implies Ker(f) £.ss M. It follows that Ker(f) £.ss M, since if
Ker(f) <ess M;, then Kerh = Ker(f)®M <,,c M;®M, = M, which is a contradiction. So,
Ker(f) £ess My and M; is S-K-nonsingular module relative to M,.

Similarly, M, is S-K-nonsingular module relative to M;.

& Let Y € End(M) and Ker(y) <ees M. To prove that (M) < M, letypy = |, :M; — M
defined by ¥, (x) = ¥(x,0) for each x € M;. Ker y; = KertpN\M; <,os MNM; = M;. p; o, €
End(M;) and p, oy, € Hom(M,, M,), where p; is the natural projection from M onto M; and p, is
the natural projection from M onto M,. Then

Ker y; < Ker(p; e Y1)NKer(p, o Y1). But Kerp, <,;c M and Kery; < My, S0 Kery; <.ss M.
It follows that Ker(p; © 1) <ess My and Ker(p; o) <.ss M,. But M is S-K-nonsingular and M,
is S-K-nonsingular module relative to M,, hence p; o ;(M;) < M; and p, o ¥;(M;) <K M,.
Similarly p; e, (M;) « M; and p, o, (M,) < M,, where p; and p, are the natural projections
from M, onto M; and M,, ¥, =y | My My — M. Thus (M) = Yi=12(pj e Yi))(M;) K M;®OM, =
M. Therefore, M is S-K-nonsingular.

Proposition 2.11: Let M and M’ be two R-modules and f € Hom(M, M") such that f is onto. If M is
S-K-nonsingular relative to M’, then M" is S -K-nonsingular.

Proof: Let g € End(M") and Kerg <.,s,c M'. Then go f € Hom(M,M") and Ker(ge f) <gss M.
But M is S-K-nonsingular relative to M’, so (g o f)(M) « M', that is g(M") « M'. Thus, M" is S-K-
nonsingular.

Proposition 2.12: Let M be S-K-nonsingular quasi-injective. Then for each N <,cc M,N is S-K-
nonsingular relative to M.

Proof: Let f € Hom(N, M)with Ker(f) <,ss N. As N <,4 M, then Ker(f) <., M. Since M is
quasi-injective, then there exists g € End(M) such that g o i = f, where i is an inclusion mapping
from N into M. But it is clear that Ker(f) < Kerg, so Kerg <.,ss M and by S-K-nonsingularity of M
, g(M) <« M. It follows that g o i(N) = g(N) < g(M) and g(N) < M. Besides that, f(N) = g(N)
sothat f(N) « M and N is S-K-nonsingular relative to M.

Corollary 2.13: Let M be an R-module. If M (quasi-injective hull of M) is S-K-nonsingular, then M
is S-K-nonsingular relative to M.

Theorem 2.14: Let M be a S-K-nonsingular R-module such that RadM <« M. Then M is S-K-
nonsingular relative to the ring Rp.

Proof: Let f € Hom(M,R) and (f) <. M. Suppose that f(M) + ] = R for some ideal J of R.
Hence 1 = f(x)+j for some x e M and j € J. Now, for any m € M, define g,,:R+— M by
9m () = rm, for each r € R g, as a well-defined homomorphism. It follows that g,,, o f € End(M).
Since Ker(gm © f) 2 Ker(f), then Ker(gm, © f) <ess M. Hence (g, o f)(M) < M, since M is S-K-
nonsingular, and, hence, for eachm € M, mf (M) « M. This implies that },,,cpy mf (M) < RadM <
M . Hence Mf(M) « M and so Mf(x) <« M.But 1 = f(x) +j, sothat M = Mf(x) + Mj. It follows
that Mj = M, hence x = yj forsome ye M andso 1 = f(yj) +j=f(y)j+j €J. Thus ] =R and
f(M) < R.

3. Additional features of S-K-nonsingular modules

Remark 3.1: For an R-module M, if M is S-K-nonsingular , then N<M. Then, this shows that M/N is
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not necessarily S-K-nonsingular, as in the following example.
Example 3.2: M = Z&®Z, as the Z-module is an S-K-nonsingular module. Let N = (0)®(2) < M.

Then %z Z®Z,, which is not S-K-nonsingular, since if f € End(M)then f(x,y) = (0,x),
Ker(f) = 2Z@®Z; <.5s M. But f(M) = (0)®Z, <<+ M.
Proposition 3.3: Let M be an S-K-nonsingular module such that% is projective for each K <,qx M.

Then % is S-K-nonsingular for each N < M

Proof: Let %sess% and feHom(U/ N) Since %Sess then U <, M. On the other

hand, Hom( ~Hom(— —) that is feHom(— ) but £ s projective so there exist

V ﬁ
g€ Hom(— M) and o g = f where 1 is the natural prOJectlon from M to —. Also, g( ) &K M by

Proposition 1.3, so that (1 o g) ( ) « X and hence f( ) & ﬁ. Therefore, v is S-K-nonsrngular.

It is known that if M is an R-module, such that E (M) (the injective hull of M) is K-nonsingular, then
M is K-nonsingular [ 12, Proposition 2.18]. However, the S-K-nonsingular of E(M) is not inherited by
M (see example 3.4). Also, if M is K-nonsingular, then E(M) is not necessarily K-nonsingular [5,
Example 2.19].

Examples 3.4

1- By Example 2.3, M = Z@®Z,, as the Z-module is not S-K-nonsingular.

E(M) = Q®Z,». Since Hom(Q,Z,») =0 and Hom(Z,»,Q) =10, then S =End(M) =
(En(;iQ ZS ) Assume that f € S, hence f = (](C)l ]92> where f; € End(Q), € f,End(Z,~), and
Ker(f) <.ss E(M). But Ker(f) = Kerf,®Kerf,, S0 Kerf; <.ss Q and Kerf, <,s Z,». Since Q
and Z,» are S-K-nonsingular modules, then f£,(Q) < Q and f,(Z,») <<Z,»). Hence f(M) =
f1(Q)Bf,(Z,») K QBZ,» = E(M), so that E(M) is S-K-nonsingular.

2- Let M = Z,-®Zp as a Z-module that is not S-K-nonsingular.

End(M) = (E"d(z”w) Hom(ZP’Z””)). Let= (P : 0) € End(M) Ker = Z,2@2Zp <55 M, but
0 Zp 0 0 P

O(M) = Z,o®0 << M. Also, E(M) = Z,~@®Zy is S-K-nonsingular.

Now we ask if M S-K-nonsingular. Then E(M) a S-K-nonsingular. However we have the following:

Remark 3.5

1- Let M be a nonsingular (hence M is S- K-nonsingular). Then E(M) is -K-nonsingular.

Proof: Since M nonsingular, then this implies that E(M) is nonsingular. Hence E(M) is S-K-

nonsingular.

2- Let M be a polyform extending module. Then M (quasi-injective hull of M) is S- K-nonsingular.

Proof: By [4, Proposition 2.4.22], M@®M is a Rickart module, so it is S- K-nonsingular by Remarks

and Examples 1.2(3). Hence M is S- K-nonsingular by Proposition 2.1.

3- Let R be a polyform ring. Then E(R) is an S-K-nonsingular R-module.

Proof: R is polyform, implies R is nonsingular by [5, Proposition 2.7]. Hence E (R) is nonsingular and

so (R) is S-K-nonsingular.

4- Let M be a prime R-module. Then M is S-K-nonsingular.

Proof: Since M is prime, then M is polyform. Hence M is S-K-nonsingular by Remarks and Examples

1.2(9).

Recall that an R-module M is multiplication if, for each N < M, there exists an ideal I of R such that

N = MI [3].

Theorem 3.6: Let M be a finitely generated faithful multiplication R-module. Then M is S-K-

nonsingular if and only if R is S-K-nonsingular, where R is a commutative ring .

Proof: = Let f € End(R) with Ker(f) <.ss R. Then there exists r € R such that f(a) = ar for each

a € R. Hence Ker(f) = anng(r) <.ss R. Define g:M — M by g(m) = mr for each m e M. g is

well-defined homomorphism and Kerg = anny (r). But, since M is a faithful multiplication finitely

generated module, then anny, (r) = Manng(r) and hence anny(r) <.,. M [ 3, Theorem 2.13 ], that
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is Kerg <,ss M. But M is S-K-nonsingular, so that g(M) = Mr « M. It follows that < r >=
f(R) < R [12, Proposition 1.1.8]. Thus R is S-K-nonsingular.

< Let f € End(M) with Ker(f) <.ss M. Since M is a finitely generated multiplication, then there
exists r € R such that f(m) = mr, for eachm € M.

Define g:R — R by g(a) =ra for each a € R. Then Kerg = anngz(r) and g(R) =<r >. But
Ker(f) = anny(r) = Manng(r) <.s M, which implies that Kerg = anng(r) <. M [3,
Theorem 2.13]. It follows that g(R) =< r > <<R (since R is S-K-nonsingular). Thus f(M) = Mr <
M [1. Proposition 1.1.8] and so M is S-K-nonsingular.

Corollary 3.7: Let M be a faithful finitely generated multiplication R-module (where R is a
commutative ring) . Then the followings are equivalent:

1- M is a S- K-nonsingular module;

2- R is a S- K-nonsingular ring;

3- End(M) is a S- K-nonsingular ring;
4- Foreach N <.,4; M, annN < R;

5- For each I <,4 R, annl < R.

Proof: (1)<>(2) It follows by Theorem 3.6.
(2) < (3) Since M is a finitely generated faitful multiplication module, then End(M) =

and so the result is obtained.
(2) < (5) It follows by Theorem 2.11.
(5) = (4) Let N <. M. Since M is a faithful multiplication, then N = M1 for some essential ideal I
of R [11, Theorem 2.13]. Also, anngN = anngl because M is a faithful multiplication. By (5),
anngl < R, hence anngN < R.
(4) = (B) Let I <,45 R. Then N = MI <,,c M [11, Theorem 2.13]. By (4), annzgkN < R. But M is a
faithful multiplication, so anng N = anngl. Thus anngl < R.

Notice that M = Z@Z as Z-module is not a multiplication module and it is not S-K-nonsingular,
but the ring Z is S-K-nonsingular.
Corollary 3.8: If M is a local faithful R-module, then R is a S- K-nonsingular.
Proof: Since M is local faithful, then M is hollow and cyclic. Hence M is S- K-nonsingular (by
Remarks and Examples 1.2(2)) and, by Theorem 3.6, R is S- K-nonsingular.

R ~
ann(M) -
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