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Abstract  

      In this paper, we introduce a type of modules, namely S-K-nonsingular modules, 

which is a generalization of K-nonsingular modules. A comprehensive study of 

these classes of modules is given. 
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 S-Kمنفردة من النمط القاسات غير الم
 

1,  2فرحان داخل شياع انعام محمد علي هادي   
العخاق، القادسية، التخبية، كمية القادسية، جامعة الخياضيات قسم 1 

 العخاق بغجاد، جامعة ،(الهيثم ابن) الصخفة لمعمهم التخبية كمية بغجاد، جامعة الخياضيات قسم 2
 الخلاصة

 والتي  هي تعميم  لممقاسات      S-Kالمنفخدة من النمط الغيخفي هحا البحث نقجم نهع من المقاسات      
  دراسة مخكدة اعطيت لهحا المقاس.. Kالغيخ منفخده من النمط 

Introduction 

     Let   be a right  -module, where   is a ring with unity. A submodule   of   is called essential in 

  (denoted by          If     (            then   (   [1]. Rizievi [2] introduced the 

concept of K-nonsingular modules, where an  -module   is called  -nonsingular if for each   
   (      (         implies    . Ali and Younis [3] called an  -module   as an essentially 

quasi-Dedekind if Hom(
 

 
      for each       . Also, they proved that  -nonsingular modules 

and essentially quasi-Dedekind modules are coinciding concepts. In this paper, we introduce a 

generalization of  -nonsingular module which we call  - -nonsingular, where an  -module   is 

called  - -nonsingular if for each      (      (         implies  (    . A submodule   

of   is small and denoted by (     if whenever          , then     [4]. It is clear 

that the zero submodule is small, hence every  -nonsingular is  - -nonsingular. However, the 

converse may be not true (see Remarks and Examples 1.2 [1]. 

    This paper consists of three sections. In section one, we study the basic properties of  -  -

nonsingular modules. In section two, we show that the direct summand of  -  -nonsingular is  -  -

nonsingular.  The direct sum of  -  -nonsingular might not be true (Examples 3.4 [2]).Also, we show 

that, under certain conditions, the direct sum of  -  -nonsingular modules is  -  -nonsingular 

(Theorem 2.4, Proposition 2.5, Proposition 2.6, Theorem 2.7). 

   In section three, we show that if  (  (injective hull of module  ) is an  -  -nonsingular, then   is  
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not necessarily an  -  -nonsingular. Also, we show that if   is a faithful finitely generated 

multiplication  -module, then   is  -  -nonsingular if   is  -  -nonsingular. 

Note that      (implies that   is a direct summand of  ) and, for any    ,  -     (    
implies that       (      and Im  ( implies an image of  ). 

Definition 1.1An  -module   is called  - -nonsingular if for each      (      (        

implies  (    . 

Remarks and Examples 1.2 

1- It is clear that every  -nonsingular module is  - -nonsingular, but the converse is not true in 

general; for examples, each of the  -modules   ,     and    , where   is a prime number, is  - -

nonsingular, but they are not  -nonsingularmodules. 

2- Every hollow module   (that is, every submodule of   is small see) X is  - -nonsingular. 

3- Every Rickart module   is  -nonsingular and hence  - -nonsingular, where   is called Rickart 

module if for each       (    
    (      [4,P.21]. 

Proof: Let       (   with    (       . Since   is Rickart, then    (     . It follow that 

   (    , hence     and   is  -nonsingular. 

4-  - -nonsingular modules need not to be Rickart modules; for example,    as  -module is   - -

nonsingular and it is not Rickart. 

5- If        - -nonsingular and dual Rickart module, then   is  -nonsingular, where   is called dual 

Rickart if for each       (  ,   (      [4,P.21]. 

Proof: Let       (   and    (       . To prove that    , we state that since   is  -  -

nonsingular, then  (    . But   is a dual Rickart,  then   (     , so that  (      that is 

   . 

6- For any  -module   
 

  (  
 is nonsingular, so it is  -nonsingular, which implies that  - -

nonsingular, where   (   is the second   -torsion submodule of  . 

7- Let   be an  -module with       . Then   is  - -nonsingular if and only if   is   -

nonsingular. 

Proof:  It is clear by (1). 

  Let       (   and    (       . Since   is  - -nonsingular, then  (    . Hence 

 (         . Thus    . 

8- Every nonsingular module is  -nonsingular [5], hence it is  -  -nonsingular. 

9- Every polyform module is  -nonsingular, hence it is  -  -nonsingular, where a module   is said 

to be a polyform if for each     and for any                   [6, P.44]. 

The following Proposition is a characterization of  -  -nonsingular module. 

Proposition 1.3: Let   be an  -module. Then   is  -  -nonsingular if and only if for each   

   (
 

 
  )          implies  (    . 

Proof:  Let        and      (
 

 
  ). Then          (  , where   is the natural 

projection from   to  
 ⁄ .       , so           . But   is  -  -nonsingular, implies 

 (    , that is  (
 

 
)   . 

 Let      (   such that    (       .   induces   ̂ 
 

   (  
   by  ̂(     (     (   

for each    . By hypothesis,   ̂ (
 

   (  
)   . It follows that  (     and   is  -  -

nonsingular. 

Corollary 1.4: Let   be a  -  -nonsingular. If       , then      for each      (  . 

   Recall that for an  -module  ,   (   ∑        and          .   is  -nonsingular if and 

only if    (     [ 6, 2964]. 

We have the following. 

Proposition 1.5: For an  -module  ,   is  -  -nonsingular if   (     and the converse holds if 

  satisfies the ascending chain condition on small submodules. 

Proof: Let     and          . By the definition of   (  ,       (    . Hence  

     . Thus   is   -  -nonsingular. 
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Conversely, since   satisfies the ascending chain condition on small submodules, then      
  [7, Theorem 3.1]. 

Hence.  for    , with          , then      . It follows that 

  (   ∑                        . Thus   (   is a small submodule. 

Remark 1.6: If  (      then   is  - -nonsingular. 

Proof: Since   (    (    5, Proposition 2.11] and  (    , then   (     and hence   is 

 - -nonsingular, by Proposition 1.5. 

Example 1.7: Let        as  -module and  (   (   ( ̅   . By Remark 1.6,   is  - -

nonsingular. Also,   is not  -nonsingular since, if so, then    (direct summand of  ) is  -

nonsingular, which is a contradiction. 

Recall that an  -module is essentially prime if             for each         [3]. 

Proposition 1.8: Let   be a divisible  -module (where   is an integral domain). If   is  - -

nonsingular, then   is essentially prime. 

Proof: Assume that        and          , that is,  there exists        and       . 

Thus      and     . But    is divisible, so     . Define       by  (      for 

each    . It is clear that   is a well-defined  -homomorphism. Since    (          and   

is  - -nonsingular, then  (    , which is a contradication, since  (       . Thus 

          for each       . 

Remark 1.9: Essentially prime modules need not to be  - -nonsingular; for example,        as 

 -module is an essentially prime [3], but   is not  - -nonsingular. 

Recall that an  -module   is called a SQD-module if every nonzero submodule   of   is a SQD-

submodule of    that is, for each      (
 

 
  )   (

 

 
)   ”[9]. By applying Proposition 1.3, we 

have immediately the following. 

Remark 1.10: Every SQD-module is  - -nonsingular. However, the convers is not true; for example, 

the  -module     is  -nonsingular (hence  - -nonsingular) but it is not SQD-module [8]. 

The following Theorem is a characterization for  - -nonsingular rings. 

Theorem 1.11: For a ring  ,   is  -  -nonsingular if and only if, for each ideal   in  ,         
implies        . 

Proof: Suppose that           for some ideal   of  . Then       for some   
         . Define       by  (      for each    .   is a well-defined homomorphism. 

 (       , so that      (  . Hence     (       , since       . Now, by   -  -

nonsingular of  ,  (    ; that is     . But        , so      and this implies that 

     for some    . Thus     and hence     and    (    . 

 Let      (   with    (       . To prove that  (    , since      (  , then there 

exists         such that  (     , for all    . Hence  (      and    (   

    (       . By the condition,     (   (        (   (  )   . Thus  (    . 

Corollary 1.12: For a ring  ,       -  -nonsingular if and only if, for each      (  , there exists  

   ,     (         implies (    . 

2. Direct summand of  - -nonsingular modules and direct sum of  - -nonsingular modules 

First we have the following. 

Proposition 2.1: A direct summand of  - -nonsingular  -module is a  -  -nonsingular module. 

Proof: Let   be a  - -nonsingular module ,     . Then        for some    . To prove 

that   is a   - -nonsingular, suppose that      (   and    (       . Since    (   

(
   (     (    

   (       (  
), take   (

  
  

)  then          (             . But   

is  - -nonsingular, hence  (     and so  (   (      . Thus  (     and   is  - -

nonsingular. 

Remark 2.2: The direct sum of two  - -nonsingular modules needs not to be  - -nonsingular (see 

Example 3.4(2)).  

Proposition 2.3: Let   be indecomposable  - -nonsingular which has a maximal essential  

submodule  . Then   
 

 
 is not  - -nonsingular, but   and 

 

 
  are  - -nonsingular. 

Proof: Suppose that   
 

 
 is  - -nonsingular, and let      (  

 

 
) defined by  (   ̅   
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(   ̅ . Thus         
 

 
          

 

 
, so that  (   

 

 
  (   

 

 
   

  

 
 which is a 

contradiction. Thus   
 

 
  is not  - -nonsingular, but it is clear that   and 

 

 
 are  - -nonsingular. 

Recall that a submodule   of an  -module   is fully invariant if for each      (    (    .   

is called Duo if every submodule is fully invariant [8]. 

Theorem 2.4: Let a module         where    and    are fully invariant submodules of  . 

Then   is  - -nonsingular if and only if  

1-    is  - -nonsingular modules for each        . 

2-    (     )    for each    . 

Proof:  The condition (1) holds by Proposition 2.1 and condition (2) holds by [10, Lemma 1.9]. 

    (   (
   (      (      

   (         (   
). Hence    (   (

   (    
    (   

) by 

condition (2). Let      (  , then   (
   
   

) for some       (          (   , and let 

   (             . Since    (            (    , then            ,  

           . Then by condition (1),   (         (      , so that 

 (     (      (           . 

Proposition 2.5: Let   be a direct sum of  -modules           and let                . 

Then   is  - -nonsingular module if and only if            are  - -nonsingular modules. 

Proof: It follows by Proposition 2.1.  

    (   (
   (      (      

   (         (   
). Since                , then 

   (         and    (         by [10, Lemma 2.7]. Thus 

   (   (
   (    

    (   
). Let      (  , with    (       . Then we get  (   

 ( by the same procedure of Theorem  2.4. 

Recall that   is an abelian module if all idempotent endomorphism commutes with any 

endomorphism [2, Definition 4.2.1]. Equivalently, every direct summand of    is fully invariant [5, 

Theorem 4.6]. 

Proposition 2.6: Let   be abelian module and         where        . Then   is  - -

nonsingular if and only if    and    are  - -nonsingular. 

Proof: Since   is abelian, then    and    are fully invariant submodules and so (   ,      , 

   (   ,        by [9, Lemma 1.9]. Thus the result follows by Theorem 2.4. 

Theorem 2.7: Let       (  is an index set) be a direct sum of modules    (     such that   is 

duo. Then   is  - -nonsingular if and only if     is  - -nonsingular, for each    . 

Proof:  Let      (   and    (       . Then    (   is fully invariant in  (since   is duo). 

It follows that    (       (   (       . Define         by        
 for each  . It is easy 

to see that    (       (                . But    is  - -nonsingular for each      
hence   (       for each    . 

Since  (   is a submodule of   and   is a duo module, then  (       (  (        ). It is easy 

to check that   (     (      for each    . Thus  (          (   . Moreover, since    is  -

 -nonsingular, then   (       for each    .  It follows that  (         (          

and, hence,   is  - -nonsingular. 

 It follows by Proposition 2.1. 

Definition 2.8: An  -module   is called    - -nonsingular relative to an  -module   if for each 

     (         (         implies        
Remarks and Examples 2.9 

1- Every  - -nonsingular module   is a  - -nonsingular relative to   . 

2- The   -module   is  - -nonsingular relative to  -module  .  -module   is not  - -nonsingular 

relative to  -module   . 

3- Let           be two  -modules such that    is  - -nonsingular relative to      . Then    is 

   - -nonsingular. 

Proof: Let      (    and     (        . Then        (          where   is the 

inclusion mapping from    to      . Then    (             and so (     (             , 
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since    is  - -nonsingular relative to      . Hence  (         . But  (    
         . Thus   (       and    is  - -nonsingular. 

4-     is not  - -nonsingular relative to      since there exists          defined by  ( ̅  

{
 ̅        ( ̅ 

  ̅          
. Hence    (   ( ̅          , but        ̅   ̅} is not small on   . 

Theorem 2.10: Let        . Then          - -nonsingular module if and only if     - -

nonsingular relative to   , for each        . 

Proof:    and    are  - -nonsingular modules by Proposition 2.1, that is,    is  - -nonsingular 

relative to    and    is  - -nonsingular relative to    . To prove that    is  - -nonsingular relative 

to   , suppose that      (       and  (       . Then        , where   is the 

inclusion mapping from    to   and    is the natural projection from   to   .  (   (    
  (    (   , hence  (       (because if  (    ), then  (     , but  (    
     , so  (       , which is a contradiction. Since    - -nonsingular, then          . 

On the other hand,    (        implies    (       . It follows that    (        , since if 

   (        , then         (               , which is a contradiction. So, 

   (         and    is  - -nonsingular module relative to   . 

Similarly,    is   - -nonsingular module relative to   . 

 Let      (   and    (        . To prove that  (    , let        
      

defined by    (    (     for each     .                           .        
   (                   (         where    is the natural projection from   onto     and    is 

the natural projection from   onto   . Then  

          (           (       . But               and          , so              . 

It follows that    (                and    (               . But    is  - -nonsingular and    

is  - -nonsingular module relative to   , hence       (       and       (      . 

Similarly       (       and       (      , where    and    are the natural projections 

from    onto    and   ,         
     . Thus  (   ∑ (            (           

 . Therefore,   is  - -nonsingular. 

Proposition 2.11: Let          be two  -modules and      (      such that   is onto. If   is 

 - -nonsingular relative to   , then    is    - -nonsingular. 

Proof: Let      (    and              . Then        (      and      (         . 

But   is  - -nonsingular relative to   , so (    (     , that is  (      . Thus,    is  - -

nonsingular. 

Proposition 2.12: Let   be  - -nonsingular quasi-injective. Then for each           is  - -

nonsingular relative to  . 

Proof: Let      (    with    (       . As        ,          (       . Since   is 

quasi-injective, then there exists      (   such that      , where   is an inclusion mapping 

from   into  . But it is clear that    (       , so            and by  - -nonsingularity  of   

,  (    . It follows that    (    (    (   and  (    . Besides that,  (    (   

so that  (     and   is  - -nonsingular relative to  . 

Corollary 2.13:  Let   be an  -module. If  ̅ (quasi-injective hull of    is  - -nonsingular, then    

is   - -nonsingular relative to  ̅. 

Theorem 2.14: Let   be a  - -nonsingular  -module such that       . Then   is  - -

nonsingular relative to the ring   . 

Proof:  Let      (     and (         . Suppose that  (       for some ideal   of  . 

Hence    (     for some     and    . Now, for any    , define         by 

  (     , for each      , as a well-defined homomorphism. It follows that         (  . 

Since    (         (  , then     (           . Hence (     (      since   is  - -

nonsingular, and, hence, for each    ,   (    . This implies that ∑   (           

    Hence   (     and so   (    . But    (    , so that     (     . It follows 

that     , hence    j for some     and so    (       (       . Thus     and 

 (    . 

3. Additional features of  - -nonsingular modules 

Remark 3.1: For an R-module M, if M is S-K-nonsingular , then N≤M. Then, this   shows that M/N is 
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 not necessarily  - -nonsingular, as in the following example. 

Example 3.2:        as the  -module is an  - -nonsingular module. Let   ( ̅  ( ̅   . 

Then  
 

 
     , which is not  - -nonsingular, since if      (   then  (   ̅  (   ̅ , 

   (              . But  (   (        . 

Proposition 3.3: Let   be an  - -nonsingular module such that 
 

 
 is projective for each        . 

Then 
 

 
 is  - -nonsingular for each    . 

Proof: Let    
 

 
    

 

 
 and      (

 
 ⁄

 
 ⁄

 
 

 
 . Since  

 

 
    

 

 
, then        . On the other 

hand,    (
 

 ⁄

 
 ⁄

 
 

 
     (

 

 
 
 

 
  that is      (

 

 
 
 

 
 , but 

 

 
  is projective, so there exist 

     (
 

 
    and       where   is the natural projection from   to 

 

 
. Also,  (

 

 
)    by 

Proposition 1.3, so that (    ( 
 

 
)  

 

 
 and hence  (

 

 
)  

 

 
. Therefore, 

 

 
 is  - -nonsingular. 

  It is known that if   is an  -module, such that  (   (the injective hull of  ) is  -nonsingular, then 

  is  -nonsingular [ 12, Proposition 2.18]. However, the  - -nonsingular of  (   is not inherited by 

  (see example 3.4). Also, if   is  -nonsingular, then  (   is not necessarily  -nonsingular [5, 

Example 2.19]. 

Examples 3.4  

1- By Example 2.3,         as the  -module is not  - -nonsingular.  
 (        . Since     (         and    (        , then      (   

(
     

    
). Assume that    , hence   (

   
   

) where       (         (      and  

    (       (  . But    (              , so             and              . Since   

and     are  - -nonsingular modules, then   (     and   (     <<    . Hence  (   
  (     (            (    so that  (   is   - -nonsingular. 

2-  Let          as a  -module that is not  - -nonsingular. 

   (   (
   (       (       

   
). Let  ( 

  
  

)     (                    , but 

 (           . Also,  (           is   - -nonsingular. 

Now we ask if     - -nonsingular. Then   (   a  - -nonsingular. However we have the following: 

Remark 3.5 

1- Let   be a nonsingular (hence   is  -  -nonsingular). Then  (   is - -nonsingular. 

Proof: Since   nonsingular, then this implies that  (   is nonsingular. Hence  (   is  -  -

nonsingular. 

2- Let   be a polyform extending module. Then  ̅ (quasi-injective hull of  ) is  -  -nonsingular. 

Proof: By [4, Proposition 2.4.22],   ̅̅̅   is a Rickart module, so it is  -  -nonsingular by Remarks 

and Examples 1.2(3). Hence  ̅ is  -  -nonsingular by Proposition 2.1. 

3- Let   be a polyform ring. Then  (   is an  - -nonsingular  -module. 

Proof:   is polyform, implies   is nonsingular by [5, Proposition 2.7]. Hence  (   is nonsingular and 

so (   is  - -nonsingular. 

4- Let   be a prime  -module. Then   ̅ is  - -nonsingular. 

Proof: Since   is prime, then  ̅ is polyform. Hence  ̅ is  - -nonsingular by Remarks and Examples 

1.2(9). 

Recall that an  -module   is multiplication if, for each    , there exists an ideal   of   such that 

     [3]. 

Theorem 3.6: Let   be a finitely generated faithful multiplication  -module. Then   is   - -

nonsingular if and only if    is   - -nonsingular, where   is a commutative ring  . 

Proof:  Let      (   with    (       . Then there exists     such that  (      for each  

   . Hence    (       (       . Define       by  (      for each    .   is 

well-defined homomorphism and          (  . But , since   is a faithful multiplication finitely 

generated module, then     (        (   and hence      (         [ 3, Theorem 2.13 ], that 
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is          . But   is  - -nonsingular, so that   (       . It follows that     
 (     [12, Proposition 1.1.8]. Thus   is  - -nonsingular. 

 Let      (    with    (       . Since   is a finitely generated multiplication, then there 

exists     such that  (     , for each    . 

Define        by  (      for each    . Then          (   and  (      . But 

   (       (        (       ,   which implies that          (        [3, 

Theorem 2.13]. It follows that  (       <<   (since   is  - -nonsingular). Thus  (      
  [1. Proposition 1.1.8] and so   is  - -nonsingular. 

Corollary 3.7: Let    be a faithful finitely generated multiplication  -module (where   is a 

commutative ring) . Then the followings are equivalent: 

1-   is a  -  -nonsingular module; 

2-   is a  -  -nonsingular ring; 

3-    (   is a  -  -nonsingular ring; 

4- For each       ,       ; 

5- For each       ,       . 

Proof: (1)(2) It follows by Theorem 3.6. 

(2)  (3) Since   is a finitely generated faitful multiplication module, then    (   
 

   (  
   

and so the result is obtained. 

(2)  (5) It follows by Theorem 2.11. 

(5)  (4) Let       . Since   is a faithful multiplication, then      for some essential ideal   

of   [11, Theorem 2.13]. Also,             because   is a faithful multiplication. By (5), 

       , hence        . 

(4)  (5) Let       . Then           [11, Theorem 2.13]. By (4),        . But   is a 

faithful multiplication, so            . Thus        . 

     Notice that       as  -module is not a multiplication module and it is not  - -nonsingular, 

but the ring   is  - -nonsingular. 

Corollary 3.8: If   is a local faithful  -module, then   is a  -  -nonsingular. 

Proof: Since    is local faithful, then   is hollow and cyclic. Hence   is  -   -nonsingular (by 

Remarks and Examples 1.2(2)) and, by Theorem 3.6,   is  -   -nonsingular. 
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