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Abstract

This research aims to give a splitting structure of the projective line over the
finite field of order twenty-seven that can be found depending on the factors of the
line order. Also, the line was partitioned by orbits using the companion matrix.
Finally, we showed the number of projectively inequivalent k-arcs on the conic
v(XZ — X,X,) through the standard frame of the plane PG (2,27).
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1. Introduction

The partitions of the finite projective line into disjoint subsets which have certain characteristics
depend on the order of the line, if it is prime number or not; that is, if it is factoring into non-trivial
integer factorization. The factoring numbers of the line’s order can also be used to split the projective
line by fixed it as a power of the companion matrix (cyclic projectivity). Then, the line is partitioned
by the orbits that come from the action of the companion matrix on the projective line. The
partitionining of the line by orbits is regarded as a special approach, since the distinct orbits are
projectively equivalent.
In [1], Hirschfeld discussed the projective line for arbitrary g and then the certain types of splitting of
projective line over F,,q =4,5,6,7,9,11,13 were discussed. The projective line over F;q was
investigated and partitioned [2]. For g = 16,17, the projective lines were only classified by Al-Seraji
[3] and [4]. Al-Zangana [5] gave a classification and separated the projective line through the arcs on
the conic when g = 23. Later on, the line PG(1,25) was classified and some partitions were given on
it [6]. As related to the line PG (1,27), it was only classified by Ibrahim [7], who gave the description
of an k-set into the types of the (k — 1)-subsets, k =5, ... 14. Among the researchers who focused
only on the projective space over F,, Coolsaet [8] o computed the complete arcs in the plane.

*Email: emad77_kaka@yahoo.com
1979



Abdulkareem Iragi Journal of Science, 2021, Vol. 62, No. 6, pp: 1979-1985

The aims of this paper are divided into two parts. The first discusses the most common ways
to partition the line by taking advantage of the number twenty-seven, which achieved by
using classical partitions and groups acting on the projective line. The second introduces the
incomplete k-arcs passing through the standard frame on the conic C* = v(X? — X,X,).

2. Basic Definitions and Previous Results
Let PG(n — 1,q) denotes the (n — 1)-dimensional projective space over the finite field of g = p"
elements denoted by F,. Let F;* denotes the field F, with an additional point co.
Definition 2.1 [1]: A k-arc, K in the projective plane PG (2, q), is a set of k points where no three of
them are collinear, but there are some two collinear. A k-set, K in the projective line PG(1,q), is just
a set of k distinct points.
Definition 2.2 [1]: The cross-ratio of a set S of four ordered points P;,P,,P;,P,€ PG(1,q) with
coordinates tq, t,, ts, ty iS

CR(S) = {Py, Py; P3, Py} = {t1, ty; t3, 84} = (t1 — t3)(t2 — t4)/ (1 — ta)(t2 — t3).
For q =27, the cross-ratio of any 4-set in PG(1,27) is separated into five classes,
{a13}, {a, az’ alO’ a16‘ a24, 0(25}, {a3, 0(4, a6, azo’ azz’ a23}, {as’ a7, all, a15, 0(19, a21}, and
{a® a® a'? a'™, a7, a'®). Let I, (n + 2) refers to the standard frame in PG (n, q). Here, C,, 4(f) is
the (n + 1) X (n + 1) companion matrix of the projective space PG (n, q) by the primitive polynomial
f of degree (n + 1). The matrix C, 4(f) is always cyclic matrix of order 8(n, q); that is, C,, ,(f)
generate a cyclic subgroup of PGL(n + 1, q).
If the order of C,,(f) is factored to oy, 05,...,0, and A € {1,...7}, then the group generated by

Cn,q(f) Mjeadj forms a subgroup of (Cnq(f)) of order [[;epco;. The [[;epco; orbits of length

[1jen o; that are constructed from the of group (C,, 4 (f) [ljeaj y on the PG (n, q) are splitting the space
PG(n, q). Not all of these orbits have a known representation in the projective space. But as special
orbits, for any positive integer m, if m and (n + 1) coprime, then 8(n, q) divides 6(n,q™) and the

m 8(n,q™) . .
orbits orb(i),i = 0, ...,Gg(?r'qu)) —1 of Cpgm(f) ®™@ are subgeometries PG(n,q) which are

equivalent, since orb(i) = orb(0)Cp qm (f)" [1].

Throughout this paper, the symbol o;" refers to the factor of 6(n, q), such that 8(n,q) = o;0;".

As mentioned before, the classification of PG(1,27) was achieved by Ibrahim [7], where each k-set,
which contains the standard frame I5,(3), is partitioned into k of projectively distinct (k — 1)-sets,
k =5, ...,14. The results are summarized below.

Theorem 2.3: The number of inequivalent k-sets and their stabilizer group types in PG(1,27) are
summarized in Table-1.

A cell G : m means that m of k-sets is stabilized by the group of type G; 7, indicates the number of
inequivalent k-sets.

Table 1- Summary of the results of the classification of PG(1,27).

k-set A G:m

3-set 1 1:8;

4-set 5 Syl V4 4

5-set 8 I:2 Z,:6

6-set 34 1:6 Z,:14 V,: 6 S3:4

7-set 73 [:51 Z,:17 S3:4 D;:1

8-set 196 | 1:128 Z,:54 V11 D,:3

9-set 382 | 1:323 Z,:54 Z3:4 (Z3 X Z3)xZy:1
10-set 745 | 1:600 Z,:125 Z3:4 V,:15 (Z3 XZ3)xZ,:1
11-set | 1142 | 1:1043 Z5:99

12-set | 1665 | 1:1449 Z,:182 Z3:3 V,:21 | S3:6 D43 | Ayl
13-set | 1976 | 1:1840 Z,:125 Z3:4 S3:6 | Dy3:1

14-set | 2170 |[]:1924 Z,:224 Vy:19 Z3:1 | D;:1 | Dyy:l

Regarding PG (1,27), it has 28 points with four factors, namely 2,4, 7,and 14. So, It can partition the
projective line into two disjoint 14-sets, seven disjoint 4-sets, and four disjoint 7-sets.
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In this paper, all details about the splitting of the projective line of order twenty-seven into disjoint,
inequivalent 4-sets and 7-sets are provided, as well as into disjoint equivalent (EQ) and inequivalent
(NEQ) 14-sets with stabilizer groups for each splitting. Some examples related to each size of splitting
are given. The idea of the splitting of line was studied in the view of orbits of action group on the line.
Finally, ~ the  numbers of  projectively  inequivalent  k-arcs on  the  conic
C* = {P(t%t,1) € PG(2,27)|t € F;} were founded.

All over this paper, the symbol Si”'k, 1 < k < m refers to the splitter part k of length n, index symbol
i,and ST = {S/*; ..., 8™}, where n and m are factors of 8(1, q).

3. Splitting The Projective Line by Factor 14

A 14-set, S!*', and its complement, Si“"lc = §;'*?, formed a splitting of PG(1,27). The stabilizer
group Gsi“'l of 5}4'1 also fixes the complement Si“'lc, due to the action of the projective linear group

PGL(2,27) on PG(1,27). Thus, if G € PGL(2,27) fixes a subset A, then it will fix PG(1,27) — A. If
PG(1,27) splitted into two 14-sets St* = {(S;'*"; §;**}, then the stabilizer group of the partition
Si* is as follows.

(i) If S}** projectively inequivalent to its complement s*1¢

, then G 14:¢ IS G141 and the stabilizer
group of the splitting, S}*, is also Gsi14,1 . This type of splitting is called to be of type NEQ.

(ii) If S1*1 projectively equivalent to its complement S*1°, then the stabilizer group of the splitting,

S, is the G4 union to all the projectivity between s and $1*1°. In this case, the stabilizer of the

splitting, S}*, is generated always by two elements, one belongs to Ggie1 and the other is the

projectivity between S+ and 51+, This type of splitting is called to be of type EQ.

A mathematical Gap programming [9] was used to examine the equivalence issues between the 14-
sets and deduced the following theorem. For the equivalence examination procedure, see [2,4].
Theorem 3.1: The projective line PG(1,27) has S}* splitting of type EQ, 1 < i < 298,

and NEQ,1<i<1872.

Table-2 provides the details of stabilizer group types of the partitions in Theorem 3.1.

Table 2- Types and numbers of the stabilizer groups to the partitions S_i*14
EQ |260:7, 27:V,, 1: Z, 7:D, | 1:D;4 | 1:D14 | 1:Gs
NEQ | 1664:] 196:Z, 12:V,

The group Gse has 29 elements of order two, 2 elements of order four, 6 elements of order seven, 6
elements of order fourteen, and 12 elements of order twenty-eight.
Example 3.2
(i) Splitting type EQ
Let 5}4'1 ={,0,1,a'3,a,a? a* a’ a’,ad,a’ a'l,a'*,a'>} be the 14-set and 5i14,1C =
{a3,a5 a'® a'?,a®, a7, a'® al® a??, a?l, a??, a?3, a?*, a?5 } be its complement. The stabilizer
group of this partition S}* is the dihedral group of order 14, D,.
— — 1 — t+ a16 v 42 — K14 _ — -1

D14—<a—<m),b—<m>.a =b*=1,ba=ab )
Note that b is only the projective transformation from S1** into 5141,
(ii) Splitting type NEQ
Let 5]-14’1 ={,0,1,a'3,a,a? a3 a’ a,a’ a'®,a% a'’,a?®*} be the 14-set and 51-14’16 =
{a* a?,a' alt, al? al al® al® al? a??, a?, a??,a?*, a?® } be its complement. Here, S'*" and

5].14'16 are projectively inequivalent and the group that fixes the partition S/* is the Klein four-

a13t+1) _ (“16”’1): c?=d*=1).

alot+1 adt+a3

group, V, = (¢ = (
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4. Splitting the Projective Line by Factor 7
The PG(1,27) can be split into four 7-sets, 7 = {s/*,8/%,8/?,8/*}. There are many possibilities to
achieve that, one of which is as given below:

5i7'1 — {oo’ 0’ 1’ a, aZ’ a3’ a4}, 5i7'2 — { aS’ a6’ a7’ a8’ a9’ alO’ all}’

Si7,3 — { a12’ a13’ a14»’ a15, a16’ a17’ a18}’ 5i7,4 — { a19’ aZOJ a21’ aZZ’ a23’ a24’ aZS}.
Each of these four 7-sets is equivalent by a matrix transformation T to one that passes through the
standard frame I, (3), as shown below.

T = Row 1, Row 2 T =Row 1, Row 2
H, S7 1 0,0 1 H, S a® ad a'* a*
:H‘z 53? a22 alo, a,Z all :H‘z SZ alO a,17, Cl16 a18

where ; = L, (3)U{ a,a?, a3, a* }and I, = I;(3)U{ a, a® a’, a*? }. Both of the 7-sets, H; and
H,, have three distinct pairs of 6-sets and stabilizer groups of type Z, .

5. Splitting the Projective Line by Factor 4

There are five distinct 4-sets, called the 4-sets of types H, N;, N,, N5, and N,, where

H= I7(3)U{a™®}, Ny = I;(3)U{al, N, = L;(3)Uf{a®},

N3 = [;(3)U{a®}, Ny = D;(3)U{a®}

These types emerge according to the cross-ratio of each 4-set. From these 4-sets, the projective line
can be divided into seven 4-sets, as displayed below. These 4-sets are found with comprehensive
details in [7].

(i) Partitioning by ¢, §7 =, H,i =1,2,...7.
St =0, (3)U{at3), % = {a,a?, a® a'%}, 3 = {a* a5, ab, al?},

5;%.4 = {a’, a8 a5, a9}, 511.5 = {a° a'%, a?°, a?1}, Sf’6 = {al®, a* a7, a??},

5{1»,7 = {a', a3, a 24 25}.

(ii) Partitioning by §%, S5 =, Ny,i = 1,2,...7.

Syt =1y (3)Ufal, S5t = {a2 a3,a4,a9}, S5 ={ab ab a’,a'?},
St = (48,10, g1, 1), 545 = {a'3, a1, 15, ¢20), SH6 = (q16 17, 18, q23),
551-7 — {0( ) 22,(124,0!25}.
(iiii) Partitioning by 8%, S3* =, Ny, i = 1,2, ...7.
S = I,(3)U{a®}, 3% = {a,a?, a* a'®}, S3° = {a® a’ a’,a'?},
5?"1-.4 — {a8' a9' all, 0(25}, 5;',5 — {a12’ 0(13, 0!14, (I17}, 5;1-,6 — {0(15, a16’ a20’ 0(21},

53‘}.7 = (a1, a??,a?3, %)
(iv) Partitioning by %, S5 =, N5, i = 1,2,...7.
St =0y (3)U{a’}, 7% ={a,a? a3 a’}, S5 = {a* ab ad, a'®),
5:,4 = {a° al0, a1, 13}, Sf’S = (a2, a'*, a5, a17), 5:,6 = (a8, a1%, a2, q?1),
SH = (a?1,a?3, a?*, a?5).
(v) Partitioning by SZ, S2 ‘“ =, N3,i=12,..7.
5;1—1“27(3)U{a8}, S ={a,a?, a3 a%, S = {a® ab, a’,al?},
Sé'4 = {a° a'®, !, a2}, 5;&5 _ {a13,a14,a15,a24}, 546 = (a7, a8, q?3, q?5),
5;&7 = (a1, a?, a?!, a??),
It is also possible to divide PG(1,27) into seven 4-sets that contain all the five types of 4-sets, as
shown below.
(vi) Partitioninng by S¢, S¢* =, H,i = 1,6,7 and S¢”/ =, N;,j = 2,3,4,5.
St =1, (3)Ufat?}, S = {a,a?, a3 a®}, $&3 = {a* a® ab, a’),

544 = {a’, a0, a1, a4, 52’5 = {a'%, 2%, a?2, a5}, 53’6 = {a'?,a'7, a2, q?4)
547 = (a6, 18, a2, o 23},
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6. Splitting by Orbits
By taking the companion matrix T of the projective line PG(1,27), we have

1 0 O
T:Cl.27(f) = 0 1 0l.
a15 a14 0

The order of T is 28, so the factors of the order are o, = 2, 0, = 4,03 =7, and o, = 14. Let
orb,, (j) denotes the orbit of T, = 0, ...0; — 1.

Theorem 6.1: The projective line PG(1,27) can be split by orbits into:

(i) seven 4-sets of type H which form PG (1,3);

(i) two 14-sets of type EQ;

(iii) four 7-sets that are projectively equivalent to a unique 7-set through the standard frame;

(iv) fourteen pairs such that any two distinct pairs form a 4-set of type N;.

Proof:

(i) Case o3 = 7: As explained in Section 2, the orbits orb,(j), j = 0, ...,7 of T7 are just the PG(1,3)
and all of them are 4-sets of type H in PG(1,27); that is, CR(orb,(j)) = a'*.

orb,(0) = {oo, a3, a??, a8}, orb,(4) = (a3, a?*, a>, 1},
orb,;(1) = {0,at, a7, at}, orb,(5) = {at®,a?%, al?, a?},
orb,(2) = {a?%, a?t,al?, a4}, orb,(6) = {a'®, a'? ab a’).
orb,(3) = {a,a?, a* a'?},

(i) Case o, = 2: The two orbits, orb,(0) and orb,(1), of T? are 14-sets that do not have a standard
frame and both are projectively equivalent to the unique 14-set of type EQ, Si“'l, with stabilizer group
Gse in Theorem 3.1; that is, these orbits are of type EQ.

14,1 _ 13 2 3 6 ,14 15 10 16 19 .23
§ = L;3)U{a", a,a% a®,a® a*,a®,a'®, a*®,a'”, a®’},
_ 20 ,3 15 11 .12 .25 .22 10 .5 .8 .6 13 .2
OrbZ(O)_ {OO’(Z ,av,a,a T, av,a",a",a”,av,a,a",a,a }1
— 16 ,,23 21 24 .19 7 4 4 17 18 ,, 14 9
orb,(1) = {0,a,a*®, a%®, a*, a0, a’,a*, a*, a0, a*®, a* %, 1,,a’}.

The matrix transformation from T;: S*' — orb, (i),i = 0,1 is represented by its rows, as follows:

Ty = [a*0,a??1], T, =[0a3 a'®a®].
(iii) Case o, = 4: The four orbits, orb,(0), ..., orb,(6), of T* are 7-sets that do not have a standard
frame and all are projectively equivalent to the unique 7-set, H3, and projectively inequivalent from
H; and H,, with a stabilizer group, of type dihedral group, of degree seven that is given in Table-1.

Hz = L;(3)U{a, ab a't, a'?},
orby(0) = {o,a a™ a?®a',a®a'®},  orb,(2) =  {a*%a’®a'?a% a’ e’ a?),
orb,(1) = {0,a®, a?l,al? at, al®, 1}, orb,(3) = {a,a?3,a?, a7, a'’, a'*, a}.

The matrix transformation from L;: 73 — orb,(i),i = 0, ...,3 is represented by its rows, as follows:
Lo =[a?°0,a?>1], L, =[a* a'%a’” a''], L, =[0 a°a a®], L,=[a'® a'?a'* a’].
(iv) Case g, = 14: The fourteen orbits, orb;,(0), ..., orb,,(13) of T'* are 2-sets; that is, PG (1,27) is
separated into fourteen order pairs.

(00 a,22) (0 a7) (a20a,10) (aa4) (a3a5) (a16a17) (a15a8)

(6‘(236‘(18) (a11a6) (a21a14) (a12a13) (a24-1) (a25a2) (a19a9)'

Let us code the five types of 4-sets by 0 for H, 1 for Ny, 2 for N,, 3 for N3, and 4 for N,. Each i-th
row of the matrix M comes from the type of 4-set that is constructed from the i-th pair with the other
13 pairs in orders. The interesting properties of M are:

(1) The (i + 1)-th row is just the cyclic of the i-th row.

(2) If any row of the matrix M is deleted, then the new matrix is a square matrix with diagonal 3.
Therefore, the line PG(1,27) is separated into fourteen pairs such that any two of them construct a 4-
set of type Ns.
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1313432023431 37

3313432023431
1331343202343

3133134320234
4313313432023

3431331343202
2343133134320

0234313313432
2023431331343

3202343133134
4320234313313

3432023431331
1343202343133

1313432023431 3
7. Arcs on the conic

In the projective plane over Fy, the zero set of a non-singular form F of degree two is called a
conic and denoted by C =v(F). If a conic passes through the standard frame I (4), then F =
a1 XoX; + a, XX, + a3X, X,. Each projectively inequivalent 5-arc determines a unique conic and the
conic is unique up to projectivity. The form F* = X? — X,X, has the four points of I;(4) as zero
points, and the conic C* = v(F*) is parameterized such that C* = {P(t?,t,1) € PG(2,q)|t € F;'}
corresponding to PG(1, q) by

@*:PG(1,q) — C*; P(X,Y) » P((X/V)%,X/Y,1).
If the map ¢~ is restricted on the set of all inequivalent k-sets that contains I5(3).I (k, q), then the
image will be the set of all incomplete, inequivalent k-arcs that contains I7(4) on the conic C* up to
projectivity. Let us denote <p*(1“1 (k, q)) by C;(k, q@). Then, we can define a bijective map

Ok = ©"Ir g Ti(k, @) — C3(k, q).

1 0 O
Throughout this paper, the companion matrix C,.;(f) = [ 0 1 0] is used to construct the
(I15 a14 0

points and lines of PG(2,27), where I5,(4) = {1,2,3,487} is the standard frame in numeral form.
Also, the position representations of points of PG (2,27) will be used.
The following results are deduced from the above and Theorem 2.3.
Theorem 7.1: In PG(1,27), there are incomplete k-arcs through the standard frame, k =5, ...,14, on
the conic C*.
Proof:
Firstly, the map @, = ¢*|r, (k27): [1(k,q) — C3(k,27) transforms the five 4-sets into a unique 4-
arc, which is the frame I, (4), since all the 4-arcs are projectively equivalent. Secondly, using the
map @ = @*r,k27): T1(k, @) — C3(k,27), eight 5-arcs are constructed from eight 5-sets, ;, in
PG(1,27), as founded in [7], where

@5(P) = s(EU{a}) = Ay = L;(DU{6},  ¢5(Ps) = ps(NU{a”}) = A5 = [7(4)U{13},

P3(Py) = i (N U{a?)) = 4, = (U7}, 95(Pe) = 3 (N U{a'2}) = A = I3, (4)U{14},

ps5(P3) = (PE(N1U{C¥3}) =A; =L,(HU{8},  9s(Py) = <P§(N2U{“7}) = A; = [,;(4)U{25},

OL(Py) = 95 (N, U{a®)) = 4, = [, (HU{12},  i(Py) = p3(N,U{a®}) = Ag = I3,(4)U{32}.
Each 5-src, A;, determines a form F; of a unique conic C;, as given below with parameterizations.

F; form P(t) pointof C;, t € F5,
F; = XoX;, + a®XoX, + a?*X, X, P((t? — a't),a'®(1 — al?t), al%t)

F, = XoX; + a3Xo X, + a** X, X,

F3 = XoX; + at°X X, + a'°X, X,

Fy = XoX, + a”XoX, + a7 X, X,

Fs = XoX, + a*®>Xo X, + a'2X X,

Fg = XoX; + a'®Xo X, + a°X1 X,

Fy = XoX; + at°Xo X, + a'°X, X,

Fg = F; = XoX1 + a®XoX, + a?*X, X,

P(ate(t? — a't),a’ (1 — al?t), a'tt)
P(a?1(t? — a't), a*(1 — al?t), al%t)
P(a(t? — a'*t), a'(1 — al?t),a®t)
P(a™(t? — a'™t), a'®(1 — al?t),at)
P(at(t? — a't), a?°(1 — al?t), al%t)
P(a3(t? — a't), (1 — al?t), al®t)
P((t% — a*t),a'®(1 — a'?t), a'%t)
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Since all C; are projectively equivalent to C*, then the number of incomplete, projectively inequivalent
k-arcs, k = 5, ...,14, and their stabilizer group types are as in Theorem 2.3.
Conclusions

The projective line of order twenty seven was partitioned by disjoint n-sets, n = 2,4,7,14, not all of
which being of the same type, using the classification of line, where these partitions are not unique. By
the factors of line order, 28, which are 2, 4, 7, 14, and using the action of group properties, the line
was also partitioned as equivalent classes. Each of these classes is projectively equivalent to a unique
type of k-set, k = 4,7,14. At factor two, the line was partitioned into 14 pairs such that any two of
them formed a 4-set of type N5. The results provided in this paper can be used in the areas of graph
theory, cryptography, and coding theory, see [2,4,10,11].
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