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Abstract 
     Magnetohydrodynamic (MHD) effects of unsteady blood flow on Casson fluid 

through an artery with overlapping stenosis were investigated. The nonlinear 

governing equations accompanied by the appropriate boundary conditions were 

discretized and solved based on a finite difference technique, using the pressure 

correction method with MAC algorithm. Moreover, blood flow characteristics, such 

as the velocity profile, pressure drop, wall shear stress, and patterns of streamlines, 

are presented graphically and inspected thoroughly for understanding the blood flow 

phenomena in the stenosed artery. 

 

Keywords: Numerical simulation; Casson fluid; Pressure correction; overlapping 
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محاكاة عددية لتأثير السغشاطيدية الديشاميكية عمى تدفق دم كاسون خلال الذريان الذي يعاني من 
 تزيقات متداخل

 

2عرام عبد الامير، 1*حسد بخيتا  

قدم الرياضيات، كمية العمهم، جامعة السدتشرريه، بغداد، العراق1  
قدم الرياضيات، كمية عمهم الحاسهب والرياضيات، جامعة واسط، واسط ، العراق2  

 الخلاصة
تست دراسة التأثيرات السغشاطيدية الديشاميكية لتدفق الدم غير السدتقر عمى سائل كاسهن عبر الذريان      

عاني من تزيقات متداخل. وقد تم تحديد السعادلات غير الخظية الحاكسة لتدفق الدم السرحهبة الذي ي
 معبالذروط الحدية السشاسبة وحمها بشاءً عمى تقشية الفروق السحدودة باستخدام طريقة ترحيح الزغط 

الجدار . خرائص تدفق الدم مثل ممف تعريف الدرعة ، وانخفاض الزغط ، وإجهاد قص ماكخهارزمية 
 .السريضوأنساط انديابية الدم قدمت بذكل بياني وتم فحرها بدقة لفهم عاهرة تدفق الدم في الذريان 

 
1. Introduction 

     Stenosis is an abnormal increase in the thickness of the arterial wall that can develop at various 

locations in the vascular system under diseased conditions [1]. It can form in irregular shapes or as 

multiple or overlapping stenosis [2, 3]. Chakravarty and Mandal [4] stated that the presence of an 

overlapping stenosis in the artery is more critical than of a mild one. For this reason, researches have 

shown an increased interest to evaluate the effects of this kind of stenoses with different conditions 

and methods. An earlier study [4], extended by a later work [5], investigated the effects of on blood 
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flow characteristics. Both studies introduced blood as a Newtonian fluid. In addition, another work [6] 

examined the hemodynamics of the stenosed artery. To better understand this disease, an analytical 

study of blood flow considering the pressure variation along the axis of the artery was introduced [7]. 

The Newtonian model of blood was further considered  [8, 9] to establish the impacts of the 

overlapping stenotic artery on the features of the flow. Also, this problem was adopted with steady 

equations and one-dimensional laminar blood flow [10], while another investigation [11] focused on 

the narrow artery and Casson fluid model. Furthermore, Ismail et al. [12] characterized blood flow as 

the generalized power law of fluids to determine the possible effects of tapered overlapping stenosis 

on streaming blood. COMSOL was employed to investigate the impacts of slip and magnetic field on 

power law model of blood flow [13]. The influences on blood flow properties were investigated using 

mild stenosis [14, 15]. Moreover, the effects of temperature and chemical reactions in the streaming 

blood through the tapered stenosed artery were studied and a Newtonian model of blood flow through 

a bifurcated stenosed artery was developed [16]. To gain further understanding of the influences of the 

overlapping stenosis, different blood models were applied in various studies; For instance, Jeffrey 

model [17], Casson model [18], couple stress fluids [19], polar fluid model ([20, 21], two-layered 

model ([3, 9, 22-25], and Rabinowitsch fluid model [26]. However, all previous researches did not 

calculate pressure drop and most of them involved velocities and wall shear only. 

In this paper, Casson model of blood flow through an overlapping stenosis with the effects of MHD is 

considered. Blood flow was assumed to be unsteady and two-dimensional. A finite difference 

technique using the pressure correction method with marker and cell algorithm was employed to 

numerically solve the nonlinear governing equations.  

2. Formation of the Governing Equations 

Consider the blood flow through a uniform straight artery with an axisymmetric overlapping stenosis 

in a dimensionless form, as shown in Figure- 1 [7]. 

       
2 3 43 2
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0

3
1 11 47 72 36 ,  
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where R (z) is the radius of the artery with stenosis, d indicates its location, and L0, x  and rc represent 

length, maximum  height, and  plug flow  radius, respectively. 

R0

rc

d d+L0

r

z0

 
Figure 1- The geometry of the overlapping stenosis. 

 

     The governing equations of blood motion in the cylindrical polar coordinate system can be written 

in a conservative form as 
2
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     where r and  z are the radial and axial dimensionless coordinates scaled with respect to R0. 

Meanwhile, the dimensionless w and u are scaled with respect to the cross-sectional average velocity 

U0. Reynolds number Re, the dimensionless pressure P,  the dimensionless shear stress ij , and the 

Hartmann number M were defined as 

00 0
0 02

00

Re , ,  ,  and ,
ij

ij

RU R
M R B

UU

 


  


                                  (5) 

 where the external magnetic field is B 0  and σ is the electrical conductivity.  

While, the rheological equations of Casson fluid flow are given by Fung [27]  
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 The model of Casson flow condition is given by  
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* 1
where    

2
ij ij

J    is the stress tensor in the second invariant. 
1

( ),  ,    and 
2

ij ij y
J J e e    

represent the apparent viscosity, strain tensor invariant rate, yield stress, and coefficient of viscosity, 

respectively. 

 

Blood velocity boundaries of the arterial wall are no-slip [10] 
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For the Casson model, the inlet velocity conditions may be taken as described by Fung [25] 
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and for inlet velocity we have 
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  with (0) 0
o

U   and the angular frequency is ω.  
w
 is an adjustable parameter which maintains the 

same stroke volume as a physiological flow waveform having the same stroke volume as the 

physiological flow. By using the condition (0) 0
o

U  , the value of  1 (1 )
cos .w

O

w







 
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 

 

Conditions for the outlet  velocities are given by 
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where the length of the artery is L. Furthermore, if it is supposed that there is no flow takes place as 

system is at rest except the flow at the inlet, 
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3. Solution Development  

For the purpose of avoiding interpolation error while discretizing the governing equations and to map 

the constricted domain into a rectangular one, the transformation 
( )

r

R z
   was adopted. 
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4. Numerical Procedure 

     The equations were solved by the finite difference method in a uniform grid. 
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volume, respectively, as shown in  Figure-2. 
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Figure 2-Typical MAC 

 

    Consequently, equation (19) was discretized by the second order accurate three point central 

difference formula 
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The discretized form of the z-direction of the motion equation (17) becomes 
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In the same manner, the finite difference of the motion equation in the  -direction (18) is given by 
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 .                         (29) 

The comprehensive numerical algorithm for the other model was already discussed elsewhere [28]. 

5. Numerical Results and Discussion  

     Figure-2 demonstrates the agreement with Haghighi et al. [9] on the axial velocity outcome at the 

stenostic region. The following parameter values were used for the numerical computations: 

0 0
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y
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Figure 3-Dimensionless axial velocity profile 

The graphical outcomes are displayed for the following parameters: 
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z= 20,  M=0

z= 30,  M=0

z= 50,  M=0

z= 70,  M=0

z= 80,  M=0

z=80,  M=4

z=80,  M=8

 
Figure 4-Velocity distribution for different values of M and for different axial locations 

 

    Figure-4 depicts the velocity profile for different values of Hartmann number and different axial 

locations. It is noted that the velocities decrease significantly with the increase in Hartmann number at 

the artery center. However, the velocity increases near the wall, which will help to prevent the 

backflow that occurs downstream the stenosis ( 80)z  , which is determined when the velocity 

acquires a negative value also it is obviously observed, when M=0 and M=4 downstream the stenosis 

and terminate when M=8.  
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Figure 5- The variation of dimensionless wall shear stress with axial distance for different M 

 

    Figure-5 reveals that the wall shear stress increases substantially to reach its maximum height at the 

throats of the overlapping stenosis in the axial direction at z= 30 and z = 70. Also, it decreases from z 

= 80 to reach its minimum value downstream the stenosis in the axial direction, reaching minus values 

that indicate the backflow. It is also observed that the increase in M leads to an increase in the shear 

stress of the dimensionless wall. 

     Table-1 estimates dimensionless blood pressure across the first and second stenosis and along the 

artery with different values of Hartmann number M (magnetic intensity). It is noted that the value of 

pressure drop that occurs across the second stenosis is higher than that across the first one, reaching 

the highest value across the artery. Moreover, the pressure considerably increases with the increase of 

M. 

 

Table 1-Diminsinless pressure drop across the overlapping stenosis 

M 0 4 8 

Presure across first stenosis 28.511 31.836 40.348 

Presure across second stenosis 57.083 61.547 118.630 

Presure across the artery 115.225 169.608 284.834 

 

    Figure-6 demonstrates the patterns of blood streamlines through the overlapping stenosis with 

various values of Hartmann number. It is obvious that more and larger recirculation zones develop at 

the downstream of the stenosis ( 80)z  with M=0, while they diminish with M=4 and completely 

terminate when M=8.  
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Figure 6-Streamline patterns for different values of M. 

 

6. Conclusions 

     Blood flow is represented here by Casson model through an arterial segment having an overlapping 

stenosis. Significant outcomes revealed that both the magnetic intensity and the stenosis affect the 

characteristics of blood flow. Furthermore, the value of the pressure drops and the peak of the wall 

shear stress increases with the increase of magnetic intensity. On the other hand, for some specific 

value of magnetic intensity, blood recirculation zone can be diminished. 
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