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Abstract

Magnetohydrodynamic (MHD) effects of unsteady blood flow on Casson fluid
through an artery with overlapping stenosis were investigated. The nonlinear
governing equations accompanied by the appropriate boundary conditions were
discretized and solved based on a finite difference technique, using the pressure
correction method with MAC algorithm. Moreover, blood flow characteristics, such
as the velocity profile, pressure drop, wall shear stress, and patterns of streamlines,
are presented graphically and inspected thoroughly for understanding the blood flow
phenomena in the stenosed artery.
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1. Introduction

Stenosis is an abnormal increase in the thickness of the arterial wall that can develop at various
locations in the vascular system under diseased conditions [1]. It can form in irregular shapes or as
multiple or overlapping stenosis [2, 3]. Chakravarty and Mandal [4] stated that the presence of an
overlapping stenosis in the artery is more critical than of a mild one. For this reason, researches have
shown an increased interest to evaluate the effects of this kind of stenoses with different conditions
and methods. An earlier study [4], extended by a later work [5], investigated the effects of on blood
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flow characteristics. Both studies introduced blood as a Newtonian fluid. In addition, another work [6]
examined the hemodynamics of the stenosed artery. To better understand this disease, an analytical
study of blood flow considering the pressure variation along the axis of the artery was introduced [7].
The Newtonian model of blood was further considered [8, 9] to establish the impacts of the
overlapping stenotic artery on the features of the flow. Also, this problem was adopted with steady
equations and one-dimensional laminar blood flow [10], while another investigation [11] focused on
the narrow artery and Casson fluid model. Furthermore, Ismail et al. [12] characterized blood flow as
the generalized power law of fluids to determine the possible effects of tapered overlapping stenosis
on streaming blood. COMSOL was employed to investigate the impacts of slip and magnetic field on
power law model of blood flow [13]. The influences on blood flow properties were investigated using
mild stenosis [14, 15]. Moreover, the effects of temperature and chemical reactions in the streaming
blood through the tapered stenosed artery were studied and a Newtonian model of blood flow through
a bifurcated stenosed artery was developed [16]. To gain further understanding of the influences of the
overlapping stenosis, different blood models were applied in various studies; For instance, Jeffrey
model [17], Casson model [18], couple stress fluids [19], polar fluid model ([20, 21], two-layered
model ([3, 9, 22-25], and Rabinowitsch fluid model [26]. However, all previous researches did not
calculate pressure drop and most of them involved velocities and wall shear only.
In this paper, Casson model of blood flow through an overlapping stenosis with the effects of MHD is
considered. Blood flow was assumed to be unsteady and two-dimensional. A finite difference
technique using the pressure correction method with marker and cell algorithm was employed to
numerically solve the nonlinear governing equations.
2. Formation of the Governing Equations
Consider the blood flow through a uniform straight artery with an axisymmetric overlapping stenosis
in a dimensionless form, as shown in Figure- 1 [7].
36,
R(z)= 2L,
1, otherwise

where R (z) is the radius of the artery with stenosis, d indicates its location, and Lo, 5, and r represent

length, maximum height, and plug flow radius, respectively.
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Figure 1- The geometry of the overlapping stenosis.

The governing equations of blood motion in the cylindrical polar coordinate system can be written
in a conservative form as
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where r and z are the radial and axial dimensionless coordinates scaled with respect to Rq.
Meanwhile, the dimensionless w and u are scaled with respect to the cross-sectional average velocity

Uy. Reynolds number Re, the dimensionless pressure P, the dimensionless shear stress Ty and the
Hartmann number M were defined as
' ! R
Re= oo p_ Pz, r”.:T“ O,andM:ROBO\/E, (5)
n 0 o U
where the external magnetic field is B, and o is the electrical conductivity.
While, the rheological equations of Casson fluid flow are given by Fung [27]
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The model of Casson flow condition is given by
0 if J <r§
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where J*zlr.r.. is the stress tensor in the second invariant. x(J), J :le..e.., 7, and 7
2 U} 2 U} y
represent the apparent viscosity, strain tensor invariant rate, yield stress, and coefficient of viscosity,

respectively.

Blood velocity boundaries of the arterial wall are no-slip [10]

w(r,z,t)=u(r,z,t)=0 on r=R(z), (12)
and
wzu(r,z,t)zo onr=0. (13)

For the Casson model, the inlet velocity conditions may be taken as described by Fung [25]

r)) 8 [r re (., r .
W(r,O,t):[[l—(Ej ]—5 E(l—\/;J+2E(1—EﬂUO(t)|f r.<r<R(z),

w(r,o,t){(l—g\/gu;—u%(%j )}Uo(t) if 0<r<r, (14)

and u(r,0,t)=0,

1, for steady velocity

and for inlet velocity we have U _(t) = . .
y .®) { 1-¢, [1+cos(wt +48,)],  for pulsatile velocity,
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with U (0)=0 and the angular frequency is w. ¢, is an adjustable parameter which maintains the
same stroke volume as a physiological flow waveform having the same stroke volume as the

physiological flow. By using the condition U (0)=0 , the value of &, =cos‘1{w}.
&

Conditions for the outlet velocities are given by
aw(r,z,t)zozau(r,z,t) at 7 =L (15)
oz oz

where the length of the artery is L. Furthermore, if it is supposed that there is no flow takes place as
system is at rest except the flow at the inlet,

w(z,r,00=0=u(r,z,0) and P(r,z,0)=0 forz >0. (16)
3. Solution Development
For the purpose of avoiding interpolation error while discretizing the governing equations and to map

. . . r
the constricted domain into a rectangular one, the transformation ¢ = TS was adopted.
z

Equations (2)-(4), (6)-(8), and (10) with the boundary conditions (12)-(16) become
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4. Numerical Procedure
The equations were solved by the finite difference method in a uniform grid.

{=jAl,z=iAz,t =nAt and P({,z,t)=P(jAL,iAZ,nAt) =P, . Here, n refers to the time

direction, At is the increment, and A, Az are the length and width of the (i, j)" cell of the control
volume, respectively, as shown in Figure-2.
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Figure 2-Typical MAC

Consequently, equation (19) was discretized by the second order accurate three point central
difference formula

w" o—w" nfw" o —w" u" - u"
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The discretized form of the z-direction of the motion equation (17) becomes
W oss ~Wies; _ Py =Play € @jn Pl Pl =Pl Pl
At Az Ri"os\ 0z ANS

+conw o5 i
i+0.5

+i(diff W05 —M w!os i)
Re . - (28)
In the same manner, the finite difference of the motion equation in the ¢ -direction (18) is given by

UMles —Ul s 1 [P =P, 1.
% :R7 I’JA—Q’I’J +Ccon Uinyj+0.5 +%|:d|ff Uin’j+0_5:| . (29)
1
The comprehensive numerical algorithm for the other model was already discussed elsewhere [28].
5. Numerical Results and Discussion
Figure-2 demonstrates the agreement with Haghighi et al. [9] on the axial velocity outcome at the
stenostic region. The following parameter values were used for the numerical computations:

Ag =0.0125, Az =0.1, Re =300, z=14, L,=10,d =7 ,L=30,U,=0.5 ©=0.02,7, =0.
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Figure 3-Dimensionless axial velocity profile
The graphical outcomes are displayed for the following parameters:
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Figure 4-Velocity distribution for different values of M and for different axial locations

Figure-4 depicts the velocity profile for different values of Hartmann number and different axial
locations. It is noted that the velocities decrease significantly with the increase in Hartmann number at
the artery center. However, the velocity increases near the wall, which will help to prevent the
backflow that occurs downstream the stenosis (z =80) , which is determined when the velocity

acquires a negative value also it is obviously observed, when M=0 and M=4 downstream the stenosis

and terminate when M=8.
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Figure 5- The variation of dimensionless wall shear stress with axial distance for different M

Figure-5 reveals that the wall shear stress increases substantially to reach its maximum height at the
throats of the overlapping stenosis in the axial direction at z= 30 and z = 70. Also, it decreases from z
= 80 to reach its minimum value downstream the stenosis in the axial direction, reaching minus values
that indicate the backflow. It is also observed that the increase in M leads to an increase in the shear
stress of the dimensionless wall.

Table-1 estimates dimensionless blood pressure across the first and second stenosis and along the
artery with different values of Hartmann number M (magnetic intensity). It is noted that the value of
pressure drop that occurs across the second stenosis is higher than that across the first one, reaching
the highest value across the artery. Moreover, the pressure considerably increases with the increase of
M.

Table 1-Diminsinless pressure drop across the overlapping stenosis

M 0 4 8
Presure across first stenosis 28.511 31.836 40.348
Presure across second stenosis 57.083 61.547 118.630
Presure across the artery 115.225 169.608 284.834

Figure-6 demonstrates the patterns of blood streamlines through the overlapping stenosis with
various values of Hartmann number. It is obvious that more and larger recirculation zones develop at
the downstream of the stenosis (z =80) with M=0, while they diminish with M=4 and completely

terminate when M=8.
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Figure 6-Streamline patterns for different values of M.

6. Conclusions

Blood flow is represented here by Casson model through an arterial segment having an overlapping
stenosis. Significant outcomes revealed that both the magnetic intensity and the stenosis affect the
characteristics of blood flow. Furthermore, the value of the pressure drops and the peak of the wall
shear stress increases with the increase of magnetic intensity. On the other hand, for some specific
value of magnetic intensity, blood recirculation zone can be diminished.
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