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Abstract:
Let R be a commutative ring with an identity and X be a unitary R-module. We
say that a non-zero submodule P of X is small primary if for each a € R, x €

X, (x) « X with ax € P.Then either x € P or a € \/[P: X] and an R-module X is a

small primary if vann X = vann P for each proper submodule P small in X. We
provided and demonstrated some of the characterizations and features of these types
of submodules (modules).
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1. Introduction
A non-zero submodule P of X is called primary if whenever ae R and me X with am e P implies
that ae/[P: X] or € P . Also, X is called primary if vVann X = vann P for each proper submodule P
of X [1]. These two concepts were generalized by many researchers [2, 3, 4]. As for this research, we
present and study a generalization of the concepts of small primary submodule and small primary
module as follows; We call a submodule P of X as a small primary submodule if whenever ac R, m €
X,(m) issmall in X and am e P, then either m € P or a € ,/[P: X], and X is a small primary module
if Vann X = +vann P for each proper submodule P small in X, where "a submodule P of X is called
small (notationally, P < X) if P+ W = X for all submodules W of X implies W = X" [5]. This
research consists of two parts; in the first part, we present the definition of small primary submodules
and discuss some of their relationships with some types of the previously studied submodules and
gave the conditions of equivalence between them. We also gave and demonstrated some of the

characteristics and features of this type of submodules. In the second part, we present a definition of
small primary modules and study and demonstrate some of their properties in detail.
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2- Small Primary Submodules
Definition (2.1): i) A non-zero submodule P of R-module X is called small primary iff whenever

a e R, m € X and (m) «< X such thatam e P, then either me P or a € \/[P: X].

i) A proper ideal A of R is small primary if A is a small primary submodule of an R-module R.
Remark (2.2)

1- Every primary submodule is small primary . But the converse is not true; for example: Let X = Z
be a Z-module, then each non-zero submodule P of Z is small primary. Since if ax € P with ae Z and
(x) < Z. But (0) is the only small submodule in Z, so x = 0. Hence x = 0 € P. However, if we
take N = 30Z, then it is clear that P is not primary.

2- Suppose that X is an R-module and let A be an ideal of R with A € annX. Then P is small primary
R-submodule of X iff P is a small primary R/A - submodule of X.

Proof: Leta € R/A, m € X with (m) < X, and am € P. But am = am. Therefore , we achieve the
result.

3- Let X be a hollow R-module, then every small primary submodule P of a module X is primary
submodule, where " An R-module X is called a hollow module if every non-zero submodule of X is
small in X" [6].

Proof: Suppose that am € P, where a € R, m € X. But X is hollow, so (m) « X. Since P is a small
primary in X, hence either a € \/[P: X] or m € P. Therefore, P is a primary submodule in X.

4- If C is a small prime submodule of an R-module X, then C is a small primary submodule in X where
"A proper submodule C of an R-module X is called small prime iff whenever a e R, x € X with
(x) € X suchthat ax e C implies eitherx e Cora < [C: X]" [7].

Proof: Let ac R , (m) < X with ame C. Hence either me C or a € [C: X]. But [C: X] & /[C:X].

So either me C or a € ,/[C: X] . Hence C is small primary. But the converse is not true; for example:
Let X = Z, be a Z-module, then (0 ) is small primary since it is primary by [1] . But ( 0 ) is not small
prime, by [7] .

5- If [P: X] is a semiprime ideal of R, then P is a small primary submodule iff it is a small prime.
Proof: Since [P: X] is a semiprime, so [P: X] = /[P:X]. Hence the result follows easily.

6- If W <P<Xand Pisasmall primary of X , then W needs not to be small primary, as the
following example shows:

Consider that X = Z,, as a Z -module , P = (6) is small primary since P is small prime by [7].
However W = (12) is not small primary submodule of X , since (6) «< Z,, and (12) = 2.6 € W,
but2 & /[W:X] =V12Z and 6 ¢ W.

7- (0) is not small primary in Zs, , since 4. (8) = (0 )and (8) « Z3,. But (8) ¢ (0) and 4 ¢
Jann Zs, = \32Z = 322

Theorem (2.3): Suppose that P is a non-zero submodule of a module X.Then, the followings are
equivalent:

i. A submodule P is small primary.

ii. VaeR,W « X suchthataWW < P, implieseither W & Pora e./[P:X].

Proof: (i) —— (ii): Let aW < P. Suppose that W & P, then 3,we W such that w«P. Hence
(w) < X,sinceweW and W « X by [8]. Now aw P. But P is small primary submodule of X and
wgP, hence ae /[P: X].

(if) —>(i): Let a eR,y € X and (y) « X such that ay e P. Then < a ><y >& P. So either
<y>G Por a e./[P:X] by (ii). Thus, either ye P or a €/[P:X]. Hence P is small primary .

Now, we can give the following result.

Theorem(2.4): Let P be a non-zero submodule of an R- module X.Then, the followings are
equivalent:

1. A submodule P is small primary .

2. (P:x A) is a small primary submodule of X, ¥, A & R such that AX & P.

3. (P:x (a)) is a small primary submodule of X, ¥, a € R such that aX & P.
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Proof: (1) ——(2): Let ax € (P:x A) and (X) « P; that is a(x) & (P:x A), then aAx & P. Since (X) «
X, then (Ax) « X. But P is small primary, so (Ax) € P or a € \/[P: X] by theorem (2.3). But (Ax) & P

implies that AX < P, which is a contradiction. So a € /[P:X] and hence a" X < P for some n € Z,.
But P < (P:x A) and hence a" X € (P:x A). It follows that a" € [ (P:x A): X] . Hence (P:x A) is a
small primary.
(2) —(3): It is clear.
(3) ——(1): By taking a = 1, so it follows easily.
Proposition(2.5): Let a: X——> Y be an R-epimorphism. If P is small primary submodule of a module
Y, then a ~*(P) is small primary submodule of X.
Proof: To prove that a *(P) is a non-zero submodule of X, suppose that a ~*(P) = X, then a(X) < P,
which is a contradiction to the assumption. Let a eR, m € X such that (m) « X and am ea ~*(P).
Hence a a (m) € P. But (m) < X, so a (m) «< Y by [8], and as P is a small pimary of Y, then either
a(m) e Pora” Y ¢ Pforsomen eZ, . If a (m) € P, then mea '(P).Ifa"Y &P, thena"a (X) & P
since a(X) = Y. This implies that 8" X & a ~*(P) for some n €Z.. Therefore & ~*(P) is small primary.
Proposition (2.6): Suppose that X is an R-module, S is a multiplicative subset of R, and P is a small
primary of X. Then Ps is a small primary submodule of Xs .
Proof: Suppose that a / s € Rsand X/t € Xg with ax / st € Ps such that ( x/t) << Xs. S0 3 ueS such
that uax € P. But (X/t) < Xs, 50 (X) < X by [7]. So (ux) << X. Since P is small primary of X, then
either ux € P or (a)"e [P:X] for some n eZ,.Therefore either ux /ut = x/te Psor (a/s)" €[P:X]s &
[Ps : X s] for some neZ, . Therefore, Ps is a small primary submodule of Xs.
Remark (2.7 ): If W is a small primary submodule of X, then [W : X] is not a primary ideal of R.
For example: X = Z,, asa Z -module, W = (6) is small primary. But 6Z = [ W:X] is not primary
ideal of Z.
Proposition (2.8): Let P be a non-zero submodule of R- module X. If P is a small primary submodule
of X, then [P:X] is a small primary ideal of R.
Proof: Suppose that uve[P:X] where u, ve R such that (v) << R. Suppose that v ¢ [P:X]. Now for
any xe X, define ay : R—>X by a(x) = ax. So it is clear that this function is well-defined and is a
homomorphism. Since (v) << R, so for any xe X we get (vx) << X ....... (1). Butv ¢ [P:X], s0o 3 me
X such that vmgP. But uvmeP. Also by (1), (vm) << X. Since P is a small primary submodule of X,
so either vmeN or u" e [P:X] for some n €Z,. If u" e [P:X], then we are done. If vm <P then this
contradicts our assumption.
Remark (2.9 ): If [P:X] is a small primary ideal of R, so it is not necessary that P is a small primary
submodule of X. For example: X = Z,, as a Z —-module , P = (12) is not small primary see (2.2,6).
But [P:X] = 12Z which is small primary ideal of Z.

Recall that an R-module X is called a mulitplication if for each submodule P of X there is an ideal
A of R such that P =AX [9].
Proposition (2.10): Let P be a non-zero submodule of a faithful finietly generated mulitplication R-
module X. Then P is a small primary submodule of X if [P:X] is a small primary ideal of R.
Proof:. Let ax € P where a € R, y € X such that (y) « X. But X is a finietly generated faithful
mulitplication module, so (y) =AX and A<< R [8]. It follows that aAX & P, then a A & [P:X]. But

[P:X] is small primary, so either A& [P:X] or a €,/[P:X] . Hence AX S Pora e,/[P:X],s0(y) S P

orae/[P:X].Thusy e Pora e,/[P:X] .

Propostion (2.11): Let P and C be small primary submodules of a module X and \/[P: X] =/[C: X] .
Then P n C is a small primary submodule of X.

Proof: Suppose that a € R,m € X and (m) « X such thatam € P N C. Then am € P and am € C.
Therefore either m € P or a € /[P: X] and either m € W or a € /[C: X] . Hence either (m € P and

m e C) or (a €/[P:X] = \J[C:X]), which implies that either m € PN C or a € /[P N C:X].
Hence P N C is small primary.

Proposition (2.12): Let X; ,X, be two R-modules and let X = X;®X,. If P = P,®P, is a small
primary submodule of X, then P; and P, are small primary of X; and X, respectively.

Proof: Suppose that a € R, x € X;, (x) <« X; such that ax € P;, then a(x,0) € P;®P,. But (x) <
X; and (0) < X, , 50 (x,0) < X;©X, by [8]. But P;@®P, is a small primary submodule of X. Hence
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either (x,0) € P,@®P, or a™ € [PyDP,: X,DX,] = [P;: X;] N [P,:X,] for some n € Z,. Thus, either
X € Py ora™ € [P;: X;] forsome n € Z,. Therefore P; is a small primary of X;.

By a similar proof , P, is a small primary of X,.

3- Small Primary Modules

Definition (3.1) :i) An R-module X is called small primary iff Vann X =+vann P,V 0 # P < X.

i) Aring R is a small primary ring iff vann A =0,V 0 # A < R.

Remark (3.2)

1- If X'is a primary R-module , then X is small primary . But the converse is not true; for example : Zg
as a Z-module is small primary but not primary.

2- Let X be a hollow small primary R-module, then X is primary.

3- Every small prime R-module is small primary, but the converse is not true in general; for example :
Z, as a Z-module is small primary but not small prime, by [7].

Theorem (3.3): Suppose that X is a module, then X is small primary iff VannX = \/ann (x),
VO0#x€Xand (x) < X.

Proof: = It is clear.

& Let 0P KX and a € VannP. Then a"x =0, Vx € P and for some n € Z, hence a €
Jann(x) , Vx € P. Since P < X and (X) & P, so (x) < X [8]. Hence Vann X = \/ann (x) . But

vannP < ./ ann(x), therefore VannP € vannX. Hence vann X = Vann P and so X is small
primary.

Theorem (3.4): Suppose that X is a module. Then X is small primary iff (0) is a small primary
submodule of X .

Proof: = Suppose that a € R,m € X with (m) <« X such that am = 0. If m # 0, so a € \/ann(m)

and hence a € vannX (since X is small primary). So a € ,/[0: X]. If m = 0, so m € (0). Hence (0) is
a small primary submodule of X.
< Suppose that 0 # P « X and let a € vann P. Then am = 0,vm € P. Hence am € (0). Let

m# 0,50a € /[0:X] = Vann X. Thenvann P & +ann X, therefore vann X = vann P. Thus X is
small primary.
Corollary (3.5): A non-zero submodule P of a module X is a small primary submodule iff X/P is a
small primary R-module.
Corollary (3.6): Suppose that X is a module . Then the followings are equivalent:
a- A module X is small primary.
b- Vann X = \/ann (x),V,0 #x € Xand (x) < X.
c- (0) is small primary.
Proposition (3.7): If X is a small primary R-module, then annP is a primary ideal of R, ,V,0 # P <
X.
Proof: Let u,v € R such that uv € annP and 0 # P «< X. Suppose that v € annP, so vx # 0 for
some x € P, and since uv € annP, implies that uvx = 0. But (vx) is a submodule of P and P «< X,
implies that (vx) <« X [8]. On the other hand , X is small primary , so (0) is a small primary of X.
Then u € Vann X . But Vann X = vann P, hence u € vann P . Thus, annP is a primary ideal in R.
Proposition (3.8): If X is a small primary R-module, then a non-zroe submodule is a small primary R-
module.
Proof: Supose that P # 0 is a submodule of X. Suppose that 0 # W < P. So W « X [8]. Hence
Vann X =+vann W. ButVannX & vann P, so VannW & +annP . Hence Vann P =+ann W and
therefore P is small primary.

The following example shows that the converse is not true : Let X = Z, be a Z-module, then Zg is
a small primary Z-module. While Z;, as a Z-module is not a small primary Z-module. Since (6) «

Zy, but \JannZ,, = V12Z # \Jann(6) = 2Z.

Proposition (3.9): If J(Y)is a direct summand small primary of an R-module Y and VannY =
Jann J(Y), then Y is a small primary R-module, where J(Y) is the Jacobson radical of Y .

Proof: Supose that 0 # x € Y and (X) < Y. Then x € J(Y), s0 (x) < J(Y), [8]. Therefore \/ann J(Y)
= Jann (x). ButvannY = \JannJ(Y),so VannY =,/ann (x) and therefore Y is small primary.
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Theorem (3.10): Suppose that X = X;®X, is an R-module and annX; + annX, = R. Then X is a
small primary R-module iff X; and X, are small primary R-modules.
Proof: =)Let 0 # P < X. Since annX; + annX, =R, so P = P;@®P, where P,and P, are

submodules of X;and X,, respectively [10]. But P < X, so P; < X; and P, < X, [8]. Now, VannP =
Jann (P,®P,) = \/annP; N annP, = [annX; N annX, (since X; and X, are small primary).
Hence VannP = \/ann (X;®X,) = vann X. Therefore, X is small primary.
<) It followos directly by (3. 8).
Theorem (3.11): Suppose that X = Y. Then X is small primary if and only if Y is small primary.
Proof: Let X be small primary. Since X =Y, so there exists a: X — Y that is an R-isomorphism.
Assume that 0 # P « Y. Hence a~*(P) « X and a~*(P) # 0 [8]. So Vann X = \/ann a~1(P) . But
X = Y implies that Vann X = vannY , [11]. Thus VannY = \/ann a~1(P). But it is easily that
Vann P = \/ann a=1(P) , which completes the proof.
Proposition (3.12): If a: X — Y is an R-homomorphism and Y is small primary such that vannX =
VvannY, then X is small primary.
Proof: Let a € R such that a € Vann P and 0 # P < X. Then a"P =0, for some n € Z, so
a(a™P) = a"a(P) = 0 implies that a € \/ann a(P). But P < X, so a(P) «< Y [8]. Since Y is small
primary, hence a € VannY . But +vannX = +vannY so a € vannX and hence vannP c+annX.
Therefore vVannP = +ann X. Thus X is small primary.
Corollary (3.13): Suppose that P is a submodule of R-module X and vannX = \/[P:X]. If X/P is
small primary, then X is small primary.
Corollary (3.14): If P is a small primary submodule of R-module X and vannX = \/[P: X], then X is
small primary.

Recall that an R-module M is called coprime if annX = annX /P for every proper submodule P of
X[12].
Co[rol]lary (3.15): If X is a coprime R-module, P is a submodule of X, and X /P is small primary, then
X is small primary.
Proposition (3.16 ): Let U be a submodule of an R-module X. If X /U is small primary, so {/[U: W] =
VIU: X,LVW KX and W 2 U.
Proof: Let 0#W « X and W 2 U. Hence W/U « X/U,[8]. But X/U is small primary, so
Jann X /U = JannW /U. Therefore \/[U: W] = \/[U: X].
Corollary (3.17): If U is a small primary submodule of an R-module X, then \/[U: W] = \/[U:X] , Vv,
WK X and W 2 U.
Proposition (3.18 ): If U is a small submodule of an R-module X and \/[U: W] = /[U:X] ,V W K X
and W 2 U,then X/U is small primary.
Proof: Let U,W be two submodules of X and W 2 U suchthat W /U << X/U. Then W < X [8].
Therefore \/[U: W] = /[U:X], 50 /ann X/U = \/Jann W /U. Hence X/P is small primary.
Corollary (3. 19): Supose that U is a small submodule of R-module X. Then /[U: W] = /[U:X],V
WK X and W 2 U iff X/U is asmall primary in X.
Corollary (3.20 ): Supose that U is a small submodule of an R-module X. Then J[U: W] = \/[U: X]
,Z VW KX and W 2 Uiff wisasmall primary in X.
Corollary (3. 21): Supose that U is a submodule of a hollow R-module X. Then \/[U: W] = |/[U: X]
VWX and W 2 U iff X/U isasmall primary in X.
Theorem (3.22): Let X be a finietly generated R-module. Then X is a small primary R —module iff
X, is a small primary R¢ —module, where S is a multiplicatively closed subset of R.
Proof:=) Letu/v € Rg,x/y € Xssuchthatu/v.x/y = 0g, and suppose that Os # x/y < Xs. SO
(x) < X [7]. Then for each s € S,sx # 0. On the other hand , ux/vy = 05, so 3t € S such that
tux = u(tx) = 0. But (tx) # 0 is a submodule of (x) and (x) « X, which implies that 0 # (tx) « X
[8]. On the other hand , X is small primary , so (0) is a small primary of X. Then u™ € annX for some
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n € Z,, therefore (u/ v)" = :—: € (annX)g. But X is finietly generated, so (annX)s = annXs, [13].

Hence (u/ v)™ € annXs. Thus, (0)s is a small primary Rg —module.

<) It follows similarly.

Theorem (3.23): Let X be a multiplication finietly generated faithful R-module. Then X is a small

primary R —module iff R is a small primary ring.

Proof: =): Suppose that 0 # A is a small ideal of R. But X is a multiplication finietly generated

faithful, so AX is a small submodule of X and 0 = AX. Since X is small primary and faithful, then 0 =

VvannX = VannAX. But vannl cvannAX , therefore vannA = 0. Hence R is a small primary ring.
&<): Suppose that 0 = P < X. So [P: X] « R [8]. But X is a multiplication, so P = [P: X]X [9] .

Hence [P:X] # 0 . But R is a small primary ring, so /ann[P:X] =0. Since X is faithful , so

Jann[P: X]X = \fann[P: X] and hence VannX = 0 . Thus, VannX = vannP . Therefore X is small
primary .
Corollary (3.24): Let X be a multiplication cyclic faithful R-module.Then X is a small primary
R —module iff R is a small primary ring.

Recall that an R-module X is called a scalar module if V, ¢ € End(X); ¢ # 0,3a € R,a # 0 such
that (x) = ax vx € X [ 14].
Proposition(3.25): Suppose that X is a finietly generated multiplication R-module, then X is a small
primary R —module iff X is a small primary S — module (where End(X) = S).
Proof:=) Let 0 # P be a small S-submodule of X . Then 0 # P is a small R-submodule of X.

Assume that 3 a € S, a € \JanngP and a ¢ \/anngX . Since X is a multiplication finietly generated,
hence X is a scalar R-module [14]. Hence a(m) = am,vm € X. Thus, a™(P) = a™P =0 and so
a € Vann P =+annX . Hence a"X =0, so a™(X) =0, which is a contradiction. Therefore
JanngP = \JanngX . Thus, X is asmall primary S — module .

<) Suppose that 0 # P <« X and vannP & vannX, so 3a € VannP and a & VannX. Thus,
a"X #0 for some ne Z, . Define a:X - X by a(x) =ax,Vx € X. Clearly, 0 # a is R-
homomorphism and well-defined. Since a™ (P) =a™P = 0,50 a € \/annSP = \/annSX (since X is
a small primary S-module). Hence a™ (X) = 0, so a = 0, which is a contradication. Thus, vannP =
vannX and so X is a small primary R-maodule.
Proposition(3.26): If X isascalar R-module and annX is a prime ideal of R, then End(X) = Sisa
small primary ring.
Proof: Since X is a scalar R-module and annX is a prime, so End(X)=S is a small prime ring, by
[7]. Hence End(X) = S is a small primary ring, by (3.2,(5)).
Theorem (3.27): Let X be a scalar faithful R-module . Then End (X) = S is a small primary ring iff
R is a small primary ring.
Proof: Since X is a scalar, then a:ﬁ = § [15]. But X is faithful, so R = S. Therefore R is a small
primary ring iff End (X) = S is a small primary ring.
Theorem (3.28): The followingss are equivalent for a multiplication faithful finietly generated R-
module
a- A module X is small primary.
c- Aring R issmall primary .
c- End (X) = S is asmall primary ring.
Proof:
(1) & (2); by Theorem (3.23).
(2) & (3); since X is a multiplication finietly generated, then X is a scalar, by [14]. Hence, by
Theorem (3.27), the result follows.
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